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Abstract: Aliphatic and aromatic nitriles react with thioacetic acid
in the presence of calcium hydride to give the corresponding thio-
amides in good to excellent yields. The examples studied include
haloaryl nitriles in which the halogen is facile towards SNAr reac-
tions under other conditions.
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Aromatic and aliphatic thioamides are regarded as versa-
tile intermediates in organic synthesis.1 They are the key
intermediates in the synthesis of molecules which are of
varied utilities such as pesticides2 and pharmaceuticles.3–5

Many methods are available in the literature for the syn-
thesis of thioamide. They are synthesized either from the
corresponding amides using Lawesson reagent,5c or from
the corresponding nitriles using alkali metal hydrogen sul-
fide or ammonium sulfide under high pressure.6 In addi-
tion reagents such as phosphorus decasulfide,7 thioacids,8

thioacetic acid in combination with Lewis acid,9a thioace-
tic acid in benzylamine,9b thioacetamide,10 DowexSH,11

O-dialkyldithiophosphates,12 diphenylphosphinodithioac-
ids,13 sodium trimethylsilanethiolate,14 sodium hydrosul-
fide hydrate and diethyl amine hydrochloride,15 sodium
hydrosulfide hydrate and magnesium chloride hexahy-
drate,16 and (P4S11)Na2,

17,18 are also widely used in their
synthesis from the corresponding nitriles. In special cases,
thioamides are synthesized using elemental sulfur in the
presence of morpholine19a and ammonium sulfide19b un-
der microwave conditions.

As part of our current research program, we were in need
of halogen-substituted aromatic thioamides. When some
of the halogen substituted aryl nitriles were reacted with
phosphorous pentasulfide or others sulfide-based reagents
they resulted in various side products and required prod-
uct formed in less than 10% yield. We tried to explore a
condition which tolerates most of the functional groups.

One of the published methods utilized thioacetic acid in
the presence of Lewis acid or light, but it is not compatible
with other acid-sensitive groups such as acetals or tert-
butyl esters. We observed that under basic conditions
thioacetic acid could bring about desired transformation
of nitriles to thioamide without any noticeable side reac-
tions (Scheme 1).

Scheme 1 Synthesis of thioamides from various nitrilies 2a–w

Attempts to use other bases, such as carbonates or hydrox-
ides of other alkali or alkaline earth metals, resulted in
various byproducts, and their general applicability was
minimal as other functional groups got affected. For ex-
ample, thioacetic acid in the presence of sodium hydrox-
ide resulted in the decomposition of ethyl cyanoacetate
and no thioamide was observed.

In this paper we report a simple and efficient synthesis of
a wide variety of thioamides which were synthesized from
the corresponding nitriles. The nitrile compounds reacted
with excess thioacetic acid in the presence of calcium hy-
dride at 80 °C to afford good to excellent yields of respec-
tive thioamides within a short reaction time of 1.0–1.5
hours (Table 1).20 In Scheme 2 we had depicted a plausi-
ble mechanism for this reaction. Calcium hydride reacts
with thioacetic acid, resulting in the formation of nucleo-
philic calcium thiolate which attacks the nitrile group.
Subsequent aqueous workup hydrolyzes this intermediate
resulting in the thioamides.

It is worth mentioning that the same process was success-
fully extended to the synthesis of other halo-substituted
thioamide derivatives; for example, halo-substituted ben-
zonitriles reacted smoothly under the specified conditions
to afford excellent yields of 92%, 86%, and 90%, respec-
tively (entries 2–4 Table 1). These halo benzonitriles nor-
mally give rise to halogen-displaced side products with
sulfide reagents. Additionally, substituted benzyl cya-
nides (entries 5–7, 9, and 10) also gave the corresponding
thioamides 2e–g,i,j in good to excellent yields. The pyri-
donitriles (entries 12–14) also gave the corresponding car-
bothioamides in excellent yields. It is interesting to note
that the yields are usually in the range of 50–60% by using
Lawesson reagent21 or by using hydrogen sulfide–triethyl
amine combination over 15–20 hours.21 Similarly,
thiophene-3-carbonitrile also gets converted into
thiophene-3-thioamide 2o (entry 15) in 85% yield. The
methodology is widely applicable to aliphatic moieties as
well. For example, aliphatic nitriles 1r–w gave the corre-
sponding thioamides 2r–w in very good yields. The con-
ditions tolerated easily hydrolyzable groups such as

R CN
MeCOSH, CaH2

S

1 2

R = aryl and alkyl 76–95%

80 °C, solvent-free NH2R
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esters. Ethyl cyanoacetate, for example, afforded a good
yield of ethyl 3-amino-3-thioxopropanoate 2s without af-
fecting the ester group.
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13 2m22f 1.5 90

14 2n22f 1.5 92

15 2o22g 1.0 85

16 2p22h 1.0 92

17 2q22i 1.0 89

18 2r22j 1.0 76

19 2s22k 1.25 88

20 2t (new) 1.0 84

21 2u22l 1.0 80

22 2v (new) 1.0 87

23 MeCN 2w22m 1.0 80c

a Reactions were monitored by LC-MS, GC,c and TLC analysis.
b Yields refer to the isolated pure products after flash chromatogra-
phy.
c Reaction was carried out at 50 °C.
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Entry Nitrile Product Time 
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