The kinetics and thermodynamics of quinone–semiquinone– hydroquinone systems under physiological conditions

Vitaly A. Roginsky," Leonid M. Pisarenko," Wolf Bors *b and Christa Michel b

^a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Kosygin St. 4, 117977 Moscow, Russia

^b Institut für Strahlenbiologie, GSF Forschungszentrum für Umwelt und Gesundheit, D-85764 Neuherberg, Germany

Received (in Cambridge) 1st October 1998, Accepted 16th February 1999

The steady-state concentration of semiquinones (Q^{·-}) determined by EPR in the mixtures of eleven alkyl-, methoxyand chloro-substituted 1,4-benzoquinones as well as 1,4-naphthoquinone (Q) with corresponding hydroquinones (QH₂) in aqueous buffer, pH 7.40, was used to calculate a constant for equilibrium (1) Q + QH₂==Q^{·-} + Q^{·-} + 2H⁺ (k_1 ; $2k_{-1}$; $K_1 = k_1/2k_{-1}$). The rate constants for comproportionation between Q and QH₂, k_1 , were calculated from the combination of K_1 determined in this work and $2k_{-1}$ reported previously. The Nernst equation was applied to calculate the change in one-electron reduction potential $\Delta E_1 = E(Q/Q^{--}) - E(Q^{--}/QH_2)$ in equilibrium (1). The $E(Q^{--}/QH_2)$ values were calculated from ΔE_1 and the values of $E(Q/Q^{--})$ known from the literature. The correlations between $E(Q^{--}/QH_2)$ and $E(Q/Q^{--})$ as well as between $\Delta E_1(k_1)$ and $E(Q/Q^{--})$ are discussed. The values of ΔE_1 and k_1 are suggested to be the key factors governing the autoxidation of QH₂.

Introduction

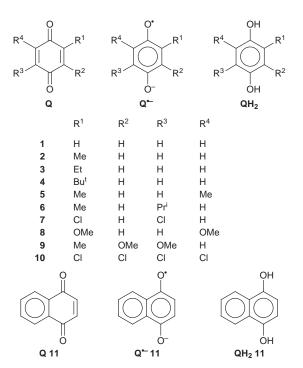
The reactivity and thermodynamic properties of quinones (Q) and their reduced forms, semiquinones (Q⁻) and hydroquinones (QH₂), are related to many biological problems including quinone cytotoxicity,^{1,2} application of quinones as antitumor agents,^{2,3} electron transfer,⁴ and the functioning of the antioxidant defense system.⁵ There are several equilibria involving Q, Q⁻ and QH₂ in chemical and biological systems. The equilibrium (1) and its constituents, disproportionation of Q⁻ (reaction (-1)) and comproportionation between Q

$$Q + QH_2 \xrightarrow{(1)}_{(-1)} Q^{-} + Q^{-} + 2H^+$$
 (1),(-1)

and QH_2 (reaction(1)), are the most fundamental. Knowledge of this equilibrium constant, $K_1 = k_1/2k_{-1}$, along with the rate constants for elementary reactions (-1) and (1), $2k_{-1}$ and k_1 , opens up many opportunities to predict the reactivity of Q, Q⁻⁻, and QH₂ and the behavior of these species in various chemical and biological systems.

The value of $2k_{-1}$ determines to a significant degree the stability of Q⁻⁻ and its steady-state concentration. Other things being equal, the lower $2k_{-1}$ the more significant becomes the role of other reactions with participation of Q^{.-}. Much attention has been given to the determination of $2k_{-1}$, basically using pulse radiolysis combined with UV-Vis spectrophotometry (refs. 6-9 and references therein). Surprisingly, the quantitative information on the disproportionation of substituted 1,4-benzosemiquinones was until recently very restricted though the kinetics of this process with Q⁻⁻ produced from substituted naphthoguinones and anthraguinones and Q with more complex structures have been studied in detail. Our recent work⁹ has partly eliminated this gap. K_1 was previously reported for many Q/QH₂ couples but only a few of them were determined at physiological pH.¹⁰⁻¹³ When K_1 and $2k_{-1}$ are known, this allows us to calculate the rate constant for reaction (1), a parameter which significantly governs the oxidizability of QH_2 by molecular oxygen.¹⁴ Previously a k_1 value has been reported only for the non-substituted 1,4benzoquinone/1,4-hydroquinone couple.¹⁵ Using the Nernst equation, K_1 may be converted into the difference in oneelectron reduction potential in equilibrium (1), ΔE_1 , that represents the combination of $E(Q/Q^{-})$ and $E(Q^{-}/QH_2)$. Eqn. (2) may be used to calculate $E(Q^{-}/QH_2)$ from ΔE_1

$$\Delta E_1 = E(Q/Q^{-}) - E(Q^{-}/QH_2)$$
⁽²⁾

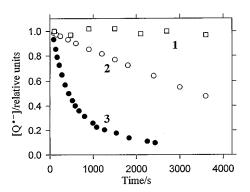

provided that $E(Q/Q^{-})$ is known. While considerable attention was paid to the determination of $E(Q/Q^{-})$, the values of $E(Q^{-}/QH_2)$ in aqueous solutions have been reported only for a few QH_2 .¹⁶ Meanwhile, $E(Q^{-}/QH_2)$ determines to a large extent the reactivity of Q^{-} and QH_2 , and thus this parameter is of vital interest for Q/QH_2 chemistry and biochemistry.

The present work is devoted to the EPR determination of K_1 from a steady-state concentration of Q⁻⁻ in the mixtures of Q and QH₂ for eleven Q/QH₂ couples presented in Scheme 1. These data were used to calculate k_1 , ΔE_1 , and $E(Q^{-}/QH_2)$ and to establish the correlation between various one-electron reduction potentials.

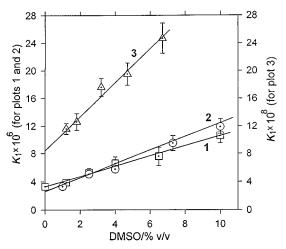
Experimental

The quinones and hydroquinones studied in this work are presented in Scheme 1. Q 1, Q 5, Q 6, Q 7, Q 10, and Q 11 were purchased from Aldrich; Q 2 and QH₂ 2 from Merck; QH₂ 4 and QH₂ 11 from Fluka, Q 8 from Lancaster, Q 9 from Sigma. Q 3 and Q 4 were prepared via the oxidation of QH_2 3 and QH_2 4 with $K_3Fe(CN)_6$ in the 1:1 mixture of benzene and diethyl ether. QH2 1, QH2 5, QH2 6, QH2 7, QH2 8, QH2 9 and QH2 10 were prepared by the reduction of corresponding Q by Zn powder in acetic acid followed by removing the solvent with a rotary evaporator and further extraction of QH₂ with an appropriate organic solvent. Both purchased and synthesized Q and QH₂ were purified by recrystallization, sublimation under vacuum or using a silica gel (40-100 µm) column with CHCl₃ as an eluent. Sodium phosphates, NaH₂PO₄ and Na₂HPO₄, of highest grade used to prepare buffer solutions, were purchased from Merck. Other reagents were of the highest available grade.

Scheme 1 The structures of quinones, hydroquinones and semiquinones studied.


Aqueous solutions were prepared with doubly distilled water. Experiments were performed at 37 °C with 50 mM phosphate buffer, pH 7.40 \pm 0.02, (unless otherwise indicated), which was prepared by mixing fifty millimolar solutions of NaH₂PO₄ and Na₂HPO₄ without adding any acid or base. Solutions of the individual phosphates used for the buffer preparation were purged from traces of transition metals by Chelex-100 resin (Bio-Rad) using a batch method.¹⁷ Stock solutions of Q and QH₂ were prepared, depending on solubility, with water or aqueous dimethyl sulfoxide (DMSO).

Steady-state concentration of Q^{•-} in the mixture of Q and QH_2 used to calculate K_1 was determined by EPR in a flat quartz cell with a Varian E12 spectrometer (Varian, USA) equipped with a TE_{104} dual cavity and temperature controller. Solutions containing Q and corresponding QH₂ were prepared by adding a certain volume of stock solutions of Q and QH₂. Both stock solutions and buffer were argon-bubbled prior to mixing. The reaction mixture was immediately transferred using a microsyringe into a flat EPR cell flushed with argon. 10 µM solution of the aminoxyl stable radical TEMPO in benzene placed into one of the cavities was used as a reference standard for the determination of the absolute concentration. Instrument settings were as follows: microwave power, 5 mW; modulation frequency, 12.5 kHz; modulation amplitude, 0.63 G (for determination of [Q⁻⁻]) or 0.05 G (for determination of hyperfine splitting parameters). The absolute concentration of Q^{-} was calculated by double integrating EPR spectrum of Q^{-} and normalizing the obtained value to the intensity of the standard. The protocol we followed for EPR determinations has been reported in more detail elsewhere.13,18 A standard error in the determination of $[Q^{-}]$ was typically within $\pm 15\%$.


Results and discussion

EPR determination of K₁

When Q and QH₂ were mixed in deaerated buffer, well-resolved multicomponent EPR spectra attributed to Q⁻⁻ were observed. Hyperfine splitting parameters of these spectra were in reasonable agreement with those reported in the literature ^{19,20} and are therefore not reported here. With most Q/QH₂ couples the intensity of the EPR spectrum remained constant for at least

Fig. 1 Time dependence of $[Q^-]$ in 50 mM phosphate buffer, pH 7.40, at 37 °C for the mixtures of 0.5 mM Q 9 and 1 mM QH₂ 9 (plot 1); 25 μ M Q 10 and 60 μ M QH₂ 10 (plot 2); 62 μ M Q 7 and 60 μ M QH₂ 7 (plot 3).

Fig. 2 Plots of K_1 against DMSO concentration for equilibrium (1) determined in the mixtures of Q 2 with QH₂ 2 (plot 1); Q 9 with QH₂ 9 (plot 2); Q 4 with QH₂ 4 (plot 3); in 50 mM phosphate buffer, pH 7.40, at 37 °C.

one hour as is exemplified by plot 1 in Fig. 1. This demonstrates that Q and QH_2 are the only products of Q^{--} disproportionation and thus this reaction is completely reversible. By contrast, the concentration of Q^{--} formed in the Q $7/QH_2$ 7 and Q $10/QH_2$ 10 systems decreased dramatically with time (plots 2 and 3, Fig. 1) suggesting that reaction (-1) in these cases is not the only pathway of Q^{--} decay.

A constant of equilibrium (1), K_1 , was calculated from $[Q^{-}]$ by using eqn. (3), where $[Q]_0$ and $[QH_2]_0$ are initial

$$K_1 = [Q^{-}]^2 / ([Q]_0 - 0.5[Q^{-}]) ([QH_2]_0 - 0.5[Q^{-}])$$
(3)

concentrations of the reagents. Typically, K_1 was determined in four or more separate runs at several concentrations of [Q] and [QH₂]. The K_1 value was found to be independent of [Q] or [QH₂]. With the Q 7/QH₂ 7 couple, the concentration of Q⁻⁻ extrapolated to zero time was used to calculate K_1 . With the Q 10/QH₂ 10 mixture, the starting concentration of Q⁻⁻ was close to the sum of [Q] and [QH₂]; an exact value of K_1 could not therefore be calculated.

In some cases K_1 was determined in aqueous buffer containing a small amount of DMSO that was added to increase the solubility of Q. As is exemplified by Fig. 2, K_1 increased nearly linearly with [DMSO]. The K_1 values presented in Table 1 were determined either in solution without DMSO or by using linear extrapolation of the measured K_1 values to zero concentration of DMSO as shown in Fig. 2. For several Q/QH₂ couples these values may be compared with those reported in ref. 10 (Q 1/QH₂ 1, Q 2/QH₂ 2 and Q 11/QH₂ 11) and ref. 11 (Q 3/QH₂ 3). The reported values differ from those determined in this

Table 1 Parameters of equilibrium (1) $Q + QH_2 = Q^{-} + Q^{-} + 2H^+$ ($K_1 = k_1/2k_{-1}$) determined by EPR (K_1) and pulse radiolysis ($2k_{-1}$) in 50 mM sodium phosphate buffer

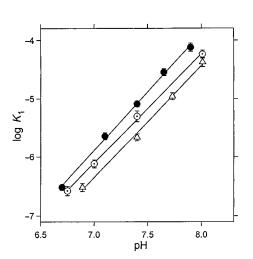
Q/QH ₂ ^a	K_1^{b} at 37 °C, pH 7.4	$\Delta H_{\rm l}/{\rm kJ}~{\rm mol}^{-1c}$	<i>K</i> ₁ at 37 °C, pH 7.4	$2k_{-1}/10^8 \mathrm{M}^{-1} \mathrm{s}^{-1f}$	$k_1/M^{-1} s^{-1}$
1	$(8.1 \pm 1.4) \times 10^{-6}$	$50 \pm 4 (39)$	2.4×10^{-6d}	1.6 ± 0.2	1300 ± 400
2	$(3.3 \pm 0.6) \times 10^{-6}$	$50 \pm 5(49)$	1.1×10^{-6d}	1.35 ± 0.02	450 ± 90
3	$(3.1 \pm 0.7) \times 10^{-6}$	54 ± 6		0.91 ± 0.04	290 ± 80
4	$(8.5 \pm 2.3) \times 10^{-8}$	50 ± 5	2.2×10^{-8e}	0.35 ± 0.17	~3
5	$(4.4 \pm 0.9) \times 10^{-7}$	nd		1.15 ± 0.20	50 ± 20
6	$(7.9 \pm 2.2) \times 10^{-7}$	nd		0.38 ± 0.08	30 ± 14
7	$(5.5 \pm 0.7) \times 10^{-2}$	64 ± 8		nd	nd
8	$(2.6 \pm 0.4) \times 10^{-5}$	46 ± 4		0.32 ± 0.03	800 ± 200
9	$(2.6 \pm 0.5) \times 10^{-6}$	54 ± 5		0.54 ± 0.03	140 ± 35
10	>1	nd		nd	nd
11	$(5.2 \pm 1.4) \times 10^{-6}$	nd (57)	$1.0 \times 10^{-5 d}$	2.76 ± 0.10	1400 ± 400
	. ,				

nd — Not determined. " The structures of Q/QH₂ are given in Scheme 1. ^b Values of K_1 mean ±SD from four or more independent experiments conducted at various concentrations of Q and QH₂. " ΔH_1 in parentheses were reported in ref. 10. ^d Reported in ref. 10 at 25 °C and recalculated to 37 °C using ΔH_1 determined there. " K_1 reported in ref. 11 at 22 °C and pH 7.0 and recalculated to 37 °C and pH 7.4 using $\Delta H_1 = 50$ kJ mol⁻¹ and d(log K_1 /d(pH) = 2. ^f The averaged values determined by pulse radiolysis of Q and QH₂ at room temperature in our previous work ⁹ (see text for more detail).

 $\begin{array}{c}
-4.5 \\
-5.0 \\
-5.5 \\
\hline \hline \hline \\ 0 \\
-6.5 \\
-7.5 \\
3.0 \\
3.1 \\
3.2 \\
10^{3}(T/K)^{-1}
\end{array}$

Fig. 3 Van't Hoff plots of K_1 determined in phosphate buffer, pH 7.40, for the following couples: Q 4/QH₂ 4 (plot 1); Q 9/QH₂ 9 (plot 2); Q 3/QH₂ 3 (plot 3); Q 1/QH₂ 1 (plot 4); Q 8/QH₂ 8 (plot 5).

study typically by a factor of 2–4; this is not too significant a difference, as it corresponds to the difference in absolute concentration of Q^{-} of about 1.5–2 times.


The temperature effect was studied for several Q/QH_2 couples. A steady-state concentration of Q^{-} and thus K_1 increased with increasing temperature (Fig. 3). The determined enthalpies of equilibrium, ΔH_1 , varied within a rather narrow range from 46 to 64 kJ mol⁻¹ (Table 1). With Q^{-1} and Q^{-2} , it was possible to compare the ΔH_1 values determined in this study with those reported in ref. 10; they were in excellent agreement with each other (Table 1). K_1 was found to rise with pH evidently due to the larger contribution of an ionized form of QH_2 , QH^- , to equilibrium (1). The linear plots of log K_1 against pH with slopes of $2.00 \pm 0.04 (Q^{-1})$; $1.93 \pm 0.06 (Q^{-2})$; $1.91 \pm 0.05 (Q^{-9})$ were observed (Fig. 4). The slope of nearly 2 is in agreement with previous works (refs. 11, 12, 15) and predicted by the theory for the case when pH is far from the p K^{16} of QH_2 .

Determination of k_1

The rate constants for reaction (1) between Q and QH₂ were calculated from the combination of the values of K_1 determined in this study and $2k_{-1}$ previously reported, largely in ref. 9.

$$k_1 = K_1(2k_{-1}) \tag{4}$$

The values of k_1 calculated in this way are given in Table 1. With several Q⁻⁻, the $2k_{-1}$ values measured in ref. 9 *via* pulse

Fig. 4 Plots of K_1 against pH determined in phosphate buffer at 37 °C for the following couples: Q $1/QH_2 1 (\bullet)$, Q $2/QH_2 1 (\triangle)$, Q $9/QH_2 9 (\bigcirc)$.

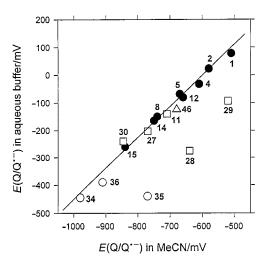
radiolysis experiments with Q and QH₂ solutions were found to be somewhat different. For this reason and because of the fact that both Q and QH₂ are present in the system, $2k_{-1}$ values were averaged for calculations of k_1 . Although the values of $2k_{-1}$ used in these calculations were determined at ca. 22 °C rather than at 37 °C, it is unlikely that the difference in $2k_{-1}$ between 22 °C and 37 °C is significant. Previously k_1 has been reported only for the Q $1/QH_2$ 1 couple (58 M⁻¹ s⁻¹ at 25 °C and pH 7.0).¹⁵ To compare this value of k_1 with that determined in the present work, it has to be recalculated for our conditions. When passing from pH 7.0 to pH 7.4 (with $d(\log k)/d(pH) = 2$, see Fig. 4), k_1 will increase 6.3 times; when passing from 25 °C to 37 °C, k_1 (with $\Delta H = 50$ kJ mol⁻¹ (Table 1)) will increase 2.2 times. Hence, the value of k_1 reported in ref. 15, being recalculated for our conditions, is expected to equal $58 \times$ $6.3 \times 2.2 \approx 800 \text{ M}^{-1} \text{ s}^{-1}$. The latter value is in reasonable agreement with $1300 \pm 400 \text{ M}^{-1} \text{ s}^{-1}$ determined in the present study (Table 1). As seen from Table 1, k_1 in the series of methylsubstituted 1,4-benzoquinones/hydroquinones decreases dramatically with the number of methyl groups, i.e. in the direction of decreasing $E(Q/Q^{-})$; k_1 also decreases with the volume of alkyl substituent (cf. Q 2 with Q 3 and Q 4). However, k_1 increases when methyl groups are replaced by methoxy groups (cf. Q 5 with Q 8) despite the decrease in $E(Q/Q^{-})$.

Calculation of ΔE_1 and mid-point potential $E(Q^{-}/QH_2)$

The change of the one-electron reduction potential in equilibrium (1), ΔE_1 (in mV), was calculated from K_1 using the

Table 2 One-electron reduction mid-point potentials (in mV) in the system $Q-Q^{-}-QH_2$ at 25 °C and pH 7.0

Q/QH ₂ ^a	$\Delta E_1^{\ b}$	$E(Q/Q^{-})^{\circ}$	$E(Q^{-}/Q)$	QH_2) $E(Q^{\prime}/QH_2)^c$
1	-370	+78	+448	+459
2	-391	+23	+414	+460
3	-395	0^d	+395	
4	-485	-3211	+453	$+489^{f}$
5	-443	-80	+363	+430
6	-428	-70^{d}	+358	
7	-147	$+470^{e}$	+617	623 ¹
8	-337	-150^{11}	+187	
9	-399	-110^{g}	~ +290	
10	>0	$+650^{e}$	>+650	$+726^{1}$
11	-380	-140	+240	$+212^{2}$


^{*a*} The structures of Q/QH_2 are given in Scheme 1. ^{*b*} Recalculated from data given in Table 1 using an experimental value of ΔH_1 if available (or $\Delta H_1 = 50$ kJ mol⁻¹ when not available) and assuming that $d(\log K_1)/d(pH) = 2$. ^{*c*} Taken from ref. 16, unless otherwise indicated. ^{*d*} Estimated based on the correlation of $E(Q/Q^{-})$ with the structures of alkyl-substituted 1,4-benzoquinones reported in refs. 16, 21. ^{*e*} Estimated from the correlation of $E(Q/Q^{-})$ in aqueous buffer and that in MeCN²¹ (see below). ^{*f*} Calculated on the basis of data reported in ref. 11. ^{*g*} Estimated from the correlation of $E(Q/Q^{-})$ in aqueous buffer and that in MeCN.²²

$$\ln K_1 = 0.0389 \Delta E_1$$
 (5)

Nernst equation. Eqn. (5) shows ΔE_1 at the standard temperature, 25 °C. The values of ΔE_1 for the standard conditions (25 °C, pH 7.0) are given in Table 2. As mentioned above, ΔE_1 is the difference between two one-electron potentials, E(Q/Q)and $E(Q^{-}/QH_2)$ † (eqn. (2)). If $E(Q/Q^{-})$ is known, eqn. (2) allows us to calculate the second potential $E(Q^{-}/QH_2)$ from ΔE_1 . As a rule, the values of $E(Q/Q^{-})$ applied to calculate $E(Q^{-}/QH_2)$ were taken from ref. 16. The values of $E(Q^{-}/QH_2)$ calculated from ΔE_1 by eqn. (2) are listed in Table 2. While $E(Q^{-}/QH_2)$ for $Q^{-}1$, $Q^{-}7$, and $Q^{-}11$ reported in refs. 16, 23 and those determined in our work were in reasonable agreement, the difference for Q^{-2} , Q^{-4} and Q^{-5} was rather significant (Table 2). It should be noticed that the $E(Q^{-}/QH_2)$ values reported in ref. 23 were calculated using a sophisticated protocol rather than directly. With Q^{-3} , Q^{-6} , Q^{-8} and Q^{-1} 9, the $E(Q^{-}/QH_2)$ was determined in our work for the first time.

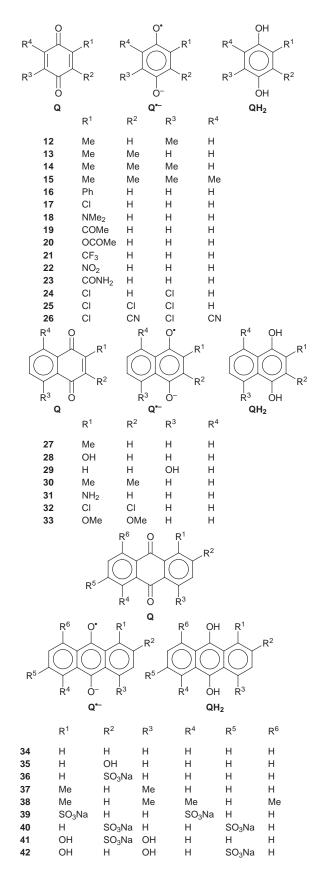
The correlation between various one-electron reduction potentials

By contrast to aprotic organic solvents, direct determination of one-electron reduction potentials, $E(Q/Q^{-})$ and $E(Q^{-}/QH_2)$, in an aqueous medium using a routine electrochemical technique (polarography or potentiometry) is almost impossible because of the instability of O⁻⁻. Under these circumstances, the determination of $E(Q/Q^{-})$ and $E(Q^{-}/QH_2)$ in aqueous solution requires much more complicated non-direct methods, mostly pulse radiolysis and the combination of pulse radiolysis and EPR technique using reference compounds with known reduction potentials. This is probably the reason why the information on $E(Q/Q^{-})$ and especially $E(Q^{-}/QH_2)$ in aqueous solution is much more limited as compared to organic solvents. Thus the approach using various correlations for prediction of unknown one-electron reduction potentials in aqueous solution looks very promising. Wardman²⁴ has drawn attention to an excellent correlation between $E(Q/Q^{-})$ determined for methylsubstituted 1,4-benzoquinones in aqueous buffer and those in aprotic organic solvents and the application of the correlation as a promising way to predict $E(Q/Q^{-})$ in water. As Fig. 5

Fig. 5 The correlation between mid-point potential $E(Q/Q^{-})$ in aqueous buffer, pH 7.0, (SHE as a reference electrode) and $E(Q/Q^{-})$ in acetonitrile (SCE as a reference electrode) for 1,4-benzoquinones (\bigcirc), 1,4-naphthoquinones (\square), 9,10-anthraquinones (\bigcirc) and miscellaneous compounds (\triangle). Data were taken from ref. 14 and 18, respectively. Numbers at symbols represent $Q/Q^{-}/QH_2$ structures as they are given in Schemes 1 and 2.

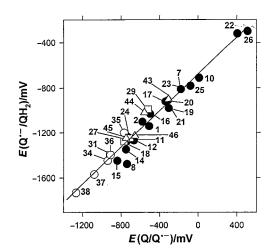
demonstrates, this correlation is also workable for a larger assortment of Q including *tert*-butyl- and methoxy-substituted benzoquinones, several 1,4-naphthoquinones (NQ), and 9,10-anthraquinones (AQ) (see Scheme 2). However, hydroxy-substituted NQ and AQ visibly do not fit this correlation (Fig. 5). Without regard for hydroxy-substituted NQ and AQ, the correlation between $E(Q/Q^{-})$ in aqueous buffer, pH 7.0 (standard hydrogen electrode, SHE, as a reference electrode), $E(Q/Q^{-})_{aq}$, and that in acetonitrile (saturated calomel electrode, SCE, as a reference electrode), $E(Q/Q^{-})_{MeCN}$, is described by the eqn (6). Reduction potentials

$$E(Q/Q^{-})_{aq} = 650 + 1.1 E(Q/Q^{-})_{MeCN}$$
 (6)

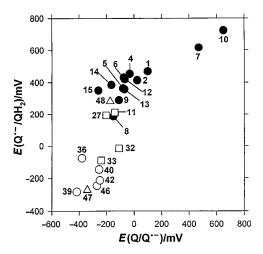

are given in mV. Such a correlation may be very useful in estimating $E(Q/Q^{-})_{aq}$ when $E(Q/Q^{-})_{MeCN}$ is known. Nearly the same correlation may be suggested with $E(Q/Q^{-})$ determined in other organic solvents.

Chambers²¹ reported a linear correlation between $E(Q/Q^{-})$ determined in acetonitrile and the sum of the Hammett substituent constants, $\Sigma\sigma$, for substituted 1,4-benzoquinones and the related correlation for $E(Q^{-}/QH_2)$ for substituted 1,4-hydroquinones. A parallel existence of these two linear correlations suggests a linear correlation between $E(Q/Q^{-})$ and $E(Q^{-}/QH_2)$. The latter is given in Fig. 6. With a few exceptions, the values of $E(Q^{-}/QH_2)$ and $E(Q/Q^{-})$ demonstrate the excellent correlation for various kinds of Q and QH₂ that is described by eqn. (7).

$$E(Q^{-}/QH_2) = -680 + 0.81 E(Q/Q^{-})$$
(7)


From the standpoint of quantum chemistry, the occurrence of this correlation means that, when Q transforms into Q⁻⁻ and Q⁻⁻ transforms into QH₂, an additional electron falls into the same lowest uncoupled molecular orbital (refs. 21, 22 and references therein). Fig. 7 depicts the same correlation for the case of aqueous solution. Although the general tendency remains the same— $E(Q^{--}/QH_2)$ decreases when $E(Q/Q^{--})$ decreases—the quality of the correlation is considerably worse, besides, it becomes non-linear. This is not a surprise since $E(Q^{--}/QH_2)$ depends on a prototropic equilibrium (characterized by pK) which varies significantly from one QH₂ to another; the latter results in a different contribution

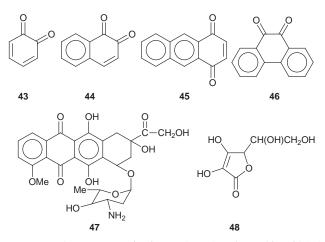
[†] In principle, the form $E(Q^{-}, 2H^+/QH_2)$ should be used instead of the short form $E(Q^{-}/QH_2)$. For simplicity, we use the short form ignoring protonation in the text.



Scheme 2 The structures of quinones, hydroquinones and semiquinones taken into the correlations between various reduction potentials (see Figs. 4–7).

of solvation energy to the reduction potential $E(Q^{-}/QH_2)$. Nevertheless, the correlation presented in Fig. 7 may be useful for a rough estimation of unknown values of $E(Q^{-}/QH_2)$ when $E(Q/Q^{-})$ is available.

Fig. 6 The correlation between $E(Q^{-}/QH_2)$ and $E(Q/Q^{-})$ determined in acetonitrile (SCE as a reference electrode) for 1,4-benzoquinones (\bullet), 1,4-naphthoquinones (\Box), 9,10-anthraquinones (\bigcirc) and miscellaneous compounds (\triangle). Data were taken from ref. 18. Numbers at symbols represent $Q/Q^{-}/QH_2$ structures as they are given in Schemes 1 and 2.


Fig. 7 The correlation between mid-potential $E(Q^{,-}/QH_2)$ and $E(Q/Q^{,-})$ determined in aqueous buffer, pH 7.0, (SHE as a reference electrode) for benzoquinones (\bullet), 1,4-naphthoquinones (\Box), 9,10-anthraquinones (\bigcirc) and miscellaneous compounds (\triangle). Data were taken largely from ref. 14 and partly from Table 2 of the present work. Numbers at symbols represent $Q/Q^{,-}/QH_2$ structures as they are given in Schemes 1 and 2.

Redox potentials and the kinetics of QH₂ autoxidation

Traditionally, the autoxidation of QH_2 is considered to be triggered by the direct interaction of QH_2 with molecular oxygen (eqn. (8)). This is a reason why repeated attempts have

$$QH_2 + O_2 \longrightarrow Q^{-} + O_2^{-} + 2H^+$$
 (8)

been made to correlate the oxidizability of QH_2 with the one-electron potential $E(Q'^-/QH_2)^{1,2}$ and the two-electron reduction potential $E(Q/QH_2)^{2,5}$ These attempts had only moderate success and many QH_2 dropped out of the correlation. Furthermore, reaction (8) is spin-restricted ²⁶ and is thus expected to be extremely slow under physiological conditions. In addition to this theoretical argument against reaction (8) as a triggering step of QH_2 autoxidation, experimental counter arguments can be found in the literature. For many types of QH_2 , *e.g.* 1,4-hydroquinone,¹⁴ 1,4-naphthoquinones,²⁷ and catecholamines,²⁸ QH_2 autoxidation was reported to be a self-accelerated autocatalytic process, with Q being a catalyst. It was shown that the initial step of the oxidation of many QH_2

Scheme 3 The structures of quinones (43–47) and ascorbic acid (48) taken into the correlations between various reduction potentials (see Figs. 4–7).

was accelerated by adding Q.^{14,28} These observations suggest reaction (1) between Q and QH₂ resulting in the formation of Q⁻⁻ to be the main trigger reaction of QH₂ autoxidation. If it is the case, the efficiency of this process may be characterized by either K_1 , *i.e.* the difference $\Delta E_1 = E(Q/Q^{--}) - E(Q^{--}/QH_2)$, or, to be more precise, by k_1 .

To provide support for this view, a correlation between the rate of QH_2 autoxidation and ΔE_1 or k_1 is required. The major problem is the evident shortage in the systematic and comparable kinetic information on the process under consideration. As a rule, we have a chance to correlate the oxidizability of QH_2 determined within a single work only. For this reason we restrict our consideration to a few remarks and specific examples. Doing this, we should take into account that the rate of QH_2 oxidation is expected to depend not only on the rate of reaction (1) but also on other factors including the reactivity of Q^{-1} towards oxygen in the equilibrium (9). If $E(Q/Q^{-1}) > -150$ mV,

$$\mathbf{Q}^{\cdot -} + \mathbf{O}_2 \underbrace{\longrightarrow} \mathbf{Q} + \mathbf{O}_2^{\cdot -} \tag{9}$$

equilibrium (9) is shifted to the left.²⁹ The situation may be altered by adding superoxide dismutase (SOD) that effectively purges the system from $O_2^{\cdot -}$. O'Brien¹ reported the elevated oxidizability of chloro-substituted 1,4-hydroquinones though the values of $E(Q^{-}/QH_2)$ for these QH₂ are very high (Table 2). The non-substituted 1,4-benzoquinone for which $E(Q^{-}/QH_2)$ is also very positive (Table 2) was reported to display rather high oxidizability when SOD was added.¹⁴ The oxidizability of methyl-substituted 1,4-hydroquinones decreases (with adding SOD) with the increase of the number of methyl groups³⁰ although $E(Q^{-}/QH_2)$ becomes less positive in this direction (Table 2). In the meantime, the oxidizability of methylsubstituted 1,4-hydroquinones correlates reasonably with ΔE_1 and k_1 .³⁰ Besides, the elevated oxidizability of QH₂ 8 and QH₂ 11^{1,2} is in line with a rather high value of k_1 (Table 1). Elevated oxidizibility of several other QH2^{1,2} combines, as a rule, with elevated values of ΔE_1 . 1,4,5,8-Tetrahydroxynaphthalene $(\Delta E_1 = -95 \text{ mV}), 2,3$ -dimethoxy-1,4-dihydroxynaphthalene $(\Delta E_1 = -130 \text{ mV})$ and adriamycine $(\Delta E_1 = +70 \text{ mV})$ are examples of this.

This approach probably may be applied to the oxidation of substrates other than QH₂. Ascorbate was reported to oxidize very slowly in the absence of a catalyst and not to display any tendency for autoacceleration of this process.^{17,18} This suggests that the rate of the reaction between ascorbate, AscH⁻ and its oxidized form, dehydroascorbic acid, DAsc, with the formation of the ascorbyl radical, Asc⁻, (an analog of reaction (1)) is

very low. The latter may be roughly estimated. One-electron reduction potentials $E(DAsc/Asc^{-})$ and $E(Asc^{-}/AscH^{-})$ were reported to be -174 mV^{31} and $+282 \text{ mV}^{16}$, respectively; the rate constant for Asc⁻ disproportionation at pH 7.0 is as much as $3 \times 10^6 \text{ M}^{-1} \text{ s}^{-1}$.³² It is possible to calculate from these data $E(DAsc /Asc^{-}) - E(Asc^{-}/AscH^{-}) = -456 \text{ mV}$ and $k_1 = 0.7 \text{ M}^{-1} \text{ s}^{-1}$. Such a low value of k_1 could explain the main features of AscH⁻ autoxidation.

In conclusion, the above observations strongly suggest that the rate of reaction (1) and the value of ΔE_1 are the key factors controlling QH₂ oxidizability.

Acknowledgements

The work was supported by the Volkswagen Stiftung (grant 1/71149), the Deutsche Forschungsgemeinschaft (grant 436Rus 113/245/0) and the Russian Foundation for Fundamental Researches (grant 96-03-00103).

References

- 1 P. J. O'Brien, Chem. Biol. Interact., 1991, 80, 1.
- 2 A. Brunmark and E. Cadenas, Free Radical Biol. Med., 1989, 7, 435.
- 3 G. Powis, Free Radical Biol. Med., 1989, 6, 63.
- 4 P. Rich, Biochim. Biophys. Acta, 1981, 637, 28.
- 5 E. Cadenas, P. Hochstein and L. Ernster, Adv. Enzymol. Relat. Areas Mol. Biol., 1992, 62, 97.
- 6 K. E. O'Shea and M. A. Fox, J. Am. Chem. Soc., 1991, 113, 611.
- 7 I. Wilson, P. Wardman, T.-S. Lin and A. C. Sartorelli, J. Med.
- Chem., 1996, **29**, 1381. 8 M. C. Rath, H. Pal and T. Mukherjee, J. Chem. Soc., Faraday Trans., 1996, **92**, 1891.
- 9 V. A. Roginsky, L. M. Pisarenko, C. Michel, M. Saran and W. Bors, J. Chem. Soc., Faraday Trans., 1998, **94**, 1835.
- 10 A. E. Alegria, M. López and N. Guevera, J. Chem. Soc., Faraday Trans., 1996, 92, 4965.
- 11 J. K. Dohrmann and B. Bergmann, J. Phys. Chem., 1995, 99, 1218.
- 12 E. J. Land, T. Mukherjee and A. J. Swallow, J. Chem. Soc., Faraday Trans., 1983, **79**, 405.
- 13 V. A. Roginsky, G. Bruchelt and H. B. Stegmann, *Biochemistry* (*Moscow*), 1998, **63**, 240.
- 14 P. Eyer, Chem. Biol. Interact., 1991, 80, 159.
- 15 I. Yamazaki and T. Ohnishi, Biochim. Biophys. Acta, 1966, 112, 469.
- 16 P. Wardman, J. Phys. Chem. Ref. Data Ser., 1989, 18, 1637.
- 17 G. R. Buettner, J. Biochem. Biophys. Methods, 1988, 16, 27
- 18 V. A. Roginsky and H. B. Stegmann, *Free Radical Biol. Med.*, 1994, 17, 93.
- 19 K. B. Ulmschneider and H. B. Stegmann, in *Landolt-Börnstein New Series*, ed. H. Fischer and K. H. Hellwege, Springer, Berlin, 1980, 9d1, 93.
- 20 D. Klotz, T. Jülich, G. Wax and H. B. Stegmann, in *Landolt-Börnstein New Series*, ed. H. Fischer, Springer, Berlin, 1989, **17g**, 69.
- 21 J. Q. Chambers, in *The Chemistry of the Quinoid Compounds*, Part 2, ed. S. Patai, 1974, Wiley, London, p. 738.
- 22 M. Knüpling, J. T. Törring and S. Un, Chem. Phys., 1997, 219, 291.
- 23 K. Sugioka, M. Nakano, H. Totsune-Nakano, H. Minakami, S. Tero-Kumota and Y. Ikegami, *Biochim. Biophys. Acta*, 1988, 936, 377.
- 24 P. Wardman, Free Radical Res. Commun., 1990, 8, 219.
- 25 Y. A. Ilan, G. Czapski and D. Meisel, *Biochim. Biophys. Acta*, 1976, 430, 209.
- 26 D. G. Graham, S. M. Tiffany, W. R. Bell and W. F. Gutknecht, *Mol. Pharmacol.*, 1978, 14, 644.
- 27 D. M. Miller, G. R. Buettner and S. D. Aust, *Free Radical Biol.* Med., 1990, 8, 95.
- 28 T. Ishi and I. Fridovich, Free Radical Biol. Med., 1990, 8, 21.
- 29 V. A. Roginsky, T. K. Barsukova, G. Bruchelt and H. B. Stegmann, Z. Naturforsch., Teil C, 1997, **52**, 380.
- 30 V. A. Roginsky, T. K. Barsukova and L. M. Pisarenko, unpublished work.
- 31 G. R. Buettner, Arch. Biochem. Biophys., 1993, 300, 535.
- 32 B. H. J. Bielski, A. O. Allen and H. A. Schwarz, J. Am. Chem. Soc., 1981, 103, 3516.

Paper 8/07650B