azidothiophosphate in 5 ml of benzene. Immediately after adding the first drops of the azide a yellor color appears (formation of the triazene) and nitrogen is evolved vigorously. At the end of reaction the volatiles were vacuum-distilled and the residue was distilled to give 3.1 g of imidophosphate (IX).

CONCLUSIONS

1. Diphenoxythiophosphorylimidophosphorus trichloride undergoes thermal isomerization to diphenyl (dichlorothiophosphorylimido)chlorophosphate.

2. The reactions of diphenoxythiophosphorylimidophosphorus trichloride with phenol and dimethylamine were studied.

LITERATURE CITED

- 1. A. A. Khodak, V. A. Gilyarov, and M. I. Kabachnik, Izv. Akad. Nauk SSSR, Ser. Khim., <u>1981</u>, 1137.
- 2. A. Ya. Yakubovich, I. M. Filatova, E. L. Zaitseva, and A. P. Simonov, Zh. Obshch. Khim., <u>39</u>, 2213 (1969).
- 3. V. A. Shokol, G. A. Golik, Yu. N. Levchuk, Yu. P. Egorov, and G. I. Derkach, Zh. Obshch. Khim., <u>43</u>, 267 (1973).
- 4. A. V. Kirsanov and I. M. Zhmurova, Zh. Obshch. Khim., 28, 2478 (1958).
- 5. A. A. Khodak, V. A. Gilyarov, and M. I. Kabachnik, Izv. Akad. Nauk SSSR, Ser. Khim., 1981, 1117.

REGIOSELECTIVE SYNTHESES

OF α -FUNCTIONALLY SUBSTITUTED KETONES

UDC 542.91:547.841

S. I. Zav'yalov, G. I. Ezhova, T. K. Budkova, O. V. Dorofeeva, and O. K. Taganova

 α -Functionally substituted ketones (FK) serve as important syntheses for obtaining heterocyclic compounds. The most widely used method for synthesizing FK is based on the α -halogenation of ketones. A serious disadvantage of this method is the formation of mixtures of α -halo derivatives in the case of unsymmetrical ketones [1].

In the present paper we studied regioselective paths for the synthesis of FK using Meldrum's acid (I) [2].

N. D. Zelinskii Institute of Organic Chemistry, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 468-471, February, 1982. Original article submitted August 13, 1981.

The nitrosation of (I) with HNO₂ as described in [3] gives 2,2-dimethyl-4,6-dioxo-5-hydroxyimino-1,3dioxane (II), the reduction of which with Zn in an AcOH/Ac₂O mixture leads to 2,2-dimethyl-4,6-dioxo-5acetamido-1,3-dioxane (III). The structure of the latter was proved by the PMR spectrum and by hydrolytic cleavage to N-acetylglycine. The attempted C-acylation of (III) with AcCI or EtCOCl in the presence of pyridine (Py) as described in [4] in order to subsequently convert the C-acylation product (IV) to N-acetyl- α -aminoketones (V) proved unsuccessful. The attempted C-nitrosation of the C-acyl derivatives (VIa, b), obtained by the reaction of (I) with RCOCl in the presence of Py as described in [4] with HNO₂ also proved unsuccessful. The chlorination of (VIa, b) with SO₂Cl₂ in CH₂Cl₂ gives the 5-chloro derivatives (VIIa, b), which in aqueous AcOH undergo cleavage and decarboxylation to chloromethyl alkyl ketones (VIIIa, b). The latter were identified by conversion to 1-phthalimido-2-butanone (IX) and the 2,4-dinitrophenylhydrazone of ketone (VIIIb).

The acylation of (I) with the acid chlorides of N-phthaloylglycine (Xa) and N-phthaloyl- α -alanine (Xb) respectively gave the 5-(N-phthaloylglycinyl)- and 5-(N-phthaloyl- α -alanyl)-2,2-dimethyl-4,6-dioxo-1,3-dioxanes (XIa, b). The cleavage of (XIa, b) with either aqueous HCl or aqueous AcOH leads either to hydrochlorides of the aminoketones (XIIIa, b) or the N-phthaloyl derivatives (XIIa, b).

As a result, the use of Meldrum's acid (I) permits running a two-step conversion of the acid chlorides of carboxylic acids to FK with a fixed position of the functional substituents.

EXPERIMENTAL

The IR spectra were measured as a KBr pellet on a UR-20 spectrometer, and the PMR spectra were measured on a Tesla BS-497 instrument (100 MHz, internal standard=HMDS).

<u>2,2-Dimethyl-4,6-dioxo-5-hydroxyimino-1,3-dioxane (II)</u> was obtained as described in [3] with some modifications. To a solution of 12 g of Meldrum's acid (I) [2] in 60 ml of water were gradually added 12 g of Na₂CO₃ and then 4 g of NaNO₂, after which the mixture was cooled with ice and with stirring, dilute HCl solution (1:1) was added in drops until the red color changed to pale yellow. The precipitate was filtered, washed with chilled water, and dried in the air. We obtained 2 g of (II) with mp 107-109°C. The aqueous mother liquor was treated with excess Na₂CO₃, kept for 3 h at 5°, and the red precipitate of the Na salt of (II) was filtered and then, with stirring and cooling with ice, was added to a mixture of 6 ml of conc. HCl and 20 ml of water. The (II) precipitate was filtered, washed with chilled water, and dried in the air. We obtained an additional 7.3 g of (II) with mp 107-109°. The total yield of (II) was 9.3 g (64%).

2,2-Dimethyl-4,6-dioxo-5-acetamido-1,3-dioxane (III). With stirring, to a solution of 3 g of oxime (II) in 20 ml of AcOH was gradually added 3 g of Zn dust, the mixture was stirred for another hour at 20°, 20 ml of Ac₂O was added, the mixture was stirred for 0.5 h, let stand in the air to evaporate the AcOH and Ac₂O, the residue was treated with water and dilute HCl solution (1:1), and the precipitate was filtered, washed with water, and dried in the air. We obtained 1.2 g (34%) of (III), mp 143-145° (decompn.) (from alcohol) [5]. PMR spectrum (Py, δ , ppm): 1.58 s (2CH₃), 1.98 s (CH₃CO). A mixture of 1 g of (III), 5 ml of AcOH, and 5 ml of water was heated for 1.5 h at 80-90°, then evaporated in vacuo, the residue was treated with chilled water, and the precipitate was filtered and dried in the air. We obtained 0.46 g (80%) of N-acetylglycine, mp 206-208° [6].

<u>1-Chloro-2-butanone (VIIIa)</u>. With stirring and cooling, to a solution of 8.6 g of (I) in 20 ml of CH_2Cl_2 were added in succession 10 ml of Py and 6 ml of EtCOC1, the mixture was kept for 40 min at 5° and for 40 min at 20°, treated with water and dilute HCl solution (1:1), and the organic layer was separated, dried over Na₂SO₄, and evaporated in vacuo. The obtained 2,2-dimethyl-4,6-dioxo-5-propionyl-1,3-dioxane (VIa) (8.8 g) was used as such in the next step. With stirring, to 8.8 g of (VIa) was added in drops 4 ml of SO₂Cl₂ and the mixture was let stand overnight. We obtained 2,2-dimethyl-4,6-dioxo-5-chloro-5-propionyl-1,3-dioxane (VIIa) as an oil, which was dissolved in a mixture of 6 ml of AcOH and 10 ml of water, heated for 1.5 h at 80-85°, cooled, diluted with water, extracted 3 times with ether, and the extract was washed with NaHCO₃ solution and evaporated. After a double fractional distillation of the residue we obtained 1 g (21%) of (VIIIa), bp 128-131°, n_D^{20} 1.4340 [7]. PMR spectrum (CDCl₃, δ , ppm): 1.12 t (CH₃, J=0.8 Hz), 2.60 q (CH₂CH₃, J=0.8 Hz), 4.20 s (ClCH₂CO).

A mixture of 1 g of (VIIIa) and 2 g of K phthalimide in 7 ml of DMF was stirred for 12 h at 20°, and then it was diluted with water, kept for 5 h at 20°, and the precipitate was filtered and subjected to low-temperature recrystallization from ether. We obtained 1.5 g (75%) of 1-phthalimido-2-butanone (IX), mp 106-107° [8]. PMR spectrum (CDCl₃, δ , ppm): 1.05 t (CH₃, J=0.7 Hz), 2.50 q (<u>CH₂CH₃, J=0.7 Hz</u>), 4.43 s (NCH₂CO), 7.50-7.90 m (aromatic ring).

<u>1-Chloro-2-pentanone (VIIIb)</u>. The same as described above, from 2,2-dimethyl-4,6-dioxo-5-n-butyryl-1,3-dioxane (VIb) [4], via the intermediate 2,2-dimethyl-4,6-dioxo-5-n-butyryl-5-chloro-1,3-dioxane (VIIb) (oil), we obtained (VIIIb) in 20% yield, bp 150-152°, n_D^{20} 1.4370 [9]. PMR spectrum (CDCl₃, δ , ppm): 1.10 t (CH₃, J=0.8 Hz), 1.45 m (CH₂), 2.62 m (COCH₂), 4.20 s (ClCH₂CO). 2,4-Dinitrophenylhydrazone of (VIIIb), mp 138-139° [9].

The mixed melting point of the obtained 2,4-dinitrophenylhydrazone with an authentic sample [9] was not depressed.

2,2-Dimethyl-4,6-dioxo-5-(N-phthaloylglycyl)-1,3-dioxane (XIa). With cooling and stirring, to a solution of 3.5 g of (I) in 7 ml of CH_2Cl_2 and 6 ml of Py was gradually added a solution of 3.3 g of the acid chloride of N-phthaloylglycine (Xa) [10] in 7 ml of CH_2Cl_2 , the mixture was kept for 3 h at 20°, evaporated in vacuo, the residue was treated with water and dilute HCl solution (1:1), and the precipitate was filtered, washed with water, and dried in the air. We obtained 3 g (67%) of (XIa), mp 237-238° (decompn.) (from alcohol). Infrared spectrum (ν , cm⁻¹): 1648, 1712, 1775; soluble in dilute KOH solution.

<u>Phthalimidoacetone (XIIa)</u>. A mixture of 1.5 g of (XIa), 5 ml of AcOH, and 5 ml of water was heated until the CO_2 evolution ceased (3 h, 80-90°), and then it was diluted with water, kept for 12 h at 5°, and the precipitate was filtered, washed with water, and dried in the air. We obtained 0.8 g (92%) of (XIIa) with mp 121-123° [11]. The mixed melting point of the obtained (XIIa) with an authentic sample [11] was not depressed.

Aminoacetone Hydrochloride (XIIIa). A mixture of 1 g of (XIa) and 20 ml of 1:1 HCl solution was refluxed for 7 h, evaporated in vacuo to small volume, the phthalic acid was filtered, and the mother liquor was evaporated in vacuo to dryness. We obtained 0.3 g of (XIIIa) as a slowly crystallizing oil [12]. The obtained (XIIIa) was identified by conversion as described in [12] to 4,5-methylimidazolin-2-one, mp 195-197°.

<u>3-Phthalimido-2-butanone (XIIb)</u>. The same as described above, from 3 g of (I) and 3 g of the acid chloride of N-phthaloyl- α -alanine (Xb) [10] we obtained the crude 2,2-dimethyl-4,6-dioxo-5-(N-phthaloyl- α -alanyl)-1,3-dioxane (XIb), which on hydrolysis with aqueous AcOH gave 1.8 g (40%) of (XIIb) with mp 84-86° [10]. The mixed melting point of the obtained (XIIb) with an authentic sample [10] was not depressed.

<u>3-Amino-2-butanone Hydrochloride (XIIIb)</u>. The hydrolysis of (XIb) with HCl solution gave (XIIIb) [12] in 60% yield, which was identified by conversion as described in [12] to 4,5-dimethylimidazolin-2-one, mp 290° (decompn.).

CONCLUSIONS

1. The reduction of 2,2-dimethyl-4,6-dioxo-5-hydroxyimino-1,3-dioxane with Zn in an AcOH/Ac₂O mixture gives 2,2-dimethyl-4,6-dioxo-5-acetamido-1,3-dioxane, the cleavage of which with aqueous AcOH leads to N-acetylglycine.

2. The chlorination of the 5-acyl derivatives of Meldrum's acid with SO_2Cl_2 and subsequent hydrolytic cleavage of the intermediate 2,2-dimethyl-4,6-dioxo-5-chloro-5-acyl-1,3-dioxanes by aqueous AcOH give chloromethyl alkyl ketones.

3. The hydrolytic cleavage of the 2,2-dimethyl-4,6-dioxo-5-(N-phthaloyl- α -aminoacyl)-1,3-dioxanes by either aqueous AcOH or HCl leads to either α -phthalimido- or α -aminoketones.

LITERATURE CITED

- 1. K. Buhler and D. Pearson, Organic Syntheses, Coll. Vol. 2 [Russian translation], Mir, Moscow (1973), p. 437.
- 2. D. Davidson and S. A. Bernhard, J. Am. Chem. Soc., 70, 3428 (1948).
- 3. S. I. Zav'yalov, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, 1961, 2185.
- 4. Y. Oikawa, K. Sugano, and O. Yonemitsu, J. Org. Chem., 43, 2087 (1978).
- 5. M. Regitz and D. Stadler, Ann. Chem., <u>687</u>, 214 (1965).
- 6. Weigand-Hilgetag, Experimental Methods in Organic Chemistry [Russian translation], Khimiya, Moscow (1969), p. 451.

- 7. R. M. Evans and L. N. Owen, J. Chem. Soc., 1949, 239.
- 8. E. Kolshorn, Ber., <u>37</u>, 2475 (1904).
- 9. R. D. Haworth, H. K. Pindred, and P. R. Jefferies, J. Chem. Soc., 1954, 3617.
- 10. S. Gabriel, Ber., 46, 1319 (1913).
- 11. S. Gabriel, Ber., 35, 3806 (1902).
- 12. S. I. Zav'yalov, M. P. Unanyan, G. V. Kondrat'eva, and V. V. Filippov, Izv. Akad. Nauk SSSR, Ser. Khim., 1967, 1974.

He(I) PHOTOELECTRONIC SPECTRUM

OF CYCLOPENTADIENYLMERCURY CHLORIDE

V. N. Baidin, M. M. Timoshenko, Yu. V. Chizhov, R. B. Materikova, and Yu. A. Ustynyuk UDC 535.243:543.422: 547.1'13:546.49

Intramolecular rearrangements are characteristic for the η^{1} -cyclopentadienyl compounds of the transition and nontransition elements via the 1,2-shifts of the heteroorganic groups along the ring (1,5-sigmatropic rearrangements) [1-3].

In the absence of other substituents in the ring the process represents a degenerate carbon-carbon metallotropism and frequently proceeds so rapidly that all of the ¹H and ¹³C atoms appear in the NMR spectra as being equivalent. As a result, these compounds represent one of the classes of "stereochemically nonrigid" or "fluctuating" molecules [2]. Based on the parameters of the NMR spectra, which are averaged due to the rapid exchange process, they resemble the sandwich η^5 -cyclopentadienyl compounds with delocalized metal-ligand bonds, which makes a determination of the type of structure difficult in a number of cases. In particular, the structure ofdicyclopentadieneylmercury and the cyclopentadienylmercury halides was a subject of discussion [4, 5], and only a detailed study of the low-temperature NMR spectra [6] and IR spectra [7] conclusively proved the presence of a localized C-Hg bond in these molecules.

A study of the structure and rearrangement mechanism of the η^1 -cyclopentadienyl compounds of the nontransition elements employing quantum chemical methods [8-12] leads to the conclusion that the main reason for the high lability of the element—carbon bond in these compounds is the σ,π conjugation, which leads to a noticeable delocalization of the electron pairs of the carbon—element bond on the adjacent π system. The migration rate of the organoelement groups MR_n correlates eith the perturbation value $b_1(\pi)$ of the orbital of the cyclopentadienyl ring in η^1 -C₅H₅MR_n. This effect was observed when studying the photoelectronic spectrum (PES) of silylcyclopentadiene [9]. It is also distinctly manifested in the PES of the allyl compounds of Hg [12]. In the present paper we studied the He(I) photoelectronic spectrum of cyclopentadienylmercury chloride, which enabled us to quantitatively estimate the degree of σ, π conjugation in this molecule.

Cyclopentadienylmercury chloride was obtained and purified as described in [13]. The PES were recorded on the apparatus described in [12]. The He (I) photoelectronic spectrum of C_5H_5HgCl is shown in Fig.1.

To obtain information on the upper occupied MO in the given compound we will compare it with the PES of cyclopentadiene [14] and alkylmercury chlorides [15].

The first band in the cyclopentadiene spectrum (PI=8.57 eV) corresponds to the ionization of the $1a_2(\pi)$ orbital. It correlates with the first band in the C_5H_5HgCl spectrum. An intense band with a maximum at 10.77 eV (see Fig. 1) corresponds to the ionization of the "unshared pairs" of chlorine (n_{Cl}).

A. N. Nesmeyanov Institute of Heteroorganic Compounds, Academy of Sciences of the USSR, Moscow. Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 2, pp. 471-474, February, 1982. Original article submitted July 17, 1981.