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Abstract: Preparation and porcine pancreatic lipase (PPL)-cata-
lyzed enantiotope selective acetylation of the prochiral 2-benzo-
yloxy-1,3-propanediol (1a) is described. The reaction with PPL and
vinyl acetate gave monoacetate (2a) of 96 % e.e. 
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Chiral glycerol derivatives are considered to be useful C3

building blocks for the preparation of homochiral biolog-
ically active molecules such as phospholipids1, phospho-
lipase A2 inhibitors2, PAF (platelet-activating factor)3,
and many others4. 

Biocatalytical preparation of these chiral C3 units were
carried out either by enantiomer selective or enantiotope
selective manner. The kinetic resolution of racemic glyc-
erol derivatives such as glycerol acetonide5,6 , glycerol-
2,3-carbonate 7 provided moderate selectivity and 50%
theoretical limit of the desired enantiomer. On the other
hand, enantiotope selective transformation of prochiral
1,3-propanediols (1) or their diacyl derivatives (3) provide
theoretically 100% of a single enantiomer (2 or ent-2).

Enzyme-catalyzed acylation of several 2-O-alkylglycerol
derivatives (1, R1,R2= O-alkyl, H), such as the 2-O-meth-
yl-,8,9  2-O-ethyl-, 8,9 or 2-O-benzylglycerol8 gave optical-
ly active monoacetates (2). Hydrolyses of the
corresponding diacyl compound (3, R1, R2= OBn, H) with
different enzymes under various conditions were also per-
formed.11-15 In the case of the 2-O-alkyl substituents, the
lipase-catalyzed process proved to be pro-S selective.
Consequently, acylation of the 2-O-benzylglycerol (1, R1,
R2= OBn, H) provided (S)-1-O-acetyl-2-O-benzylglycer-
ol (2, R1= H, R2= OBn) 11 and hydrolyses of the corre-
sponding diacyl derivative (3, R1= H, R2= OBn) gave the
(R)-enantiomer (ent-2, R1= OBn, R2= H).11,12 The slow ra-

(a) cat. cc. H2SO4, RT, 4 h, 28%; (b) BzCl (1.1 eq.), Et3N (1.2 eq.), cat.
DMAP, CH2Cl2, RT, 2 h, 96 %; (c) H2, cat. 10 %Pd/C, EtOAc, RT, 8
h, 73 %.

Scheme 1

* According to TLC data, most of the diol 1a was converted to
diacetate.
(a) 1a (300 mg), enzyme, vinyl acetate (1 ml), THF (3 ml), hexane
(3 ml), RT

Scheme 2
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cemisation (ca. 2 %/h) found when optically active (S)-1-
O-acetyl-2-O-benzylglycerol (2, R1= H, R2= OBn) was
incubated in phosphate buffer pH 7 without enzyme is the
drawback of the hydrolytic method.11

Although the enantiotope selective biotransformations of
2-O-alkylglycerol derivatives (1 or 3, R1,R2= O-alkyl, H)
are well documented, no example of enzymic enantiotope
selective acylation of 2-O-acylglycerol derivatives (1, R1,
R2= O-acyl, H) was found.

It is worthwile noting that two compounds of this family
(2, R1, R2= O-acyl, H), namely 1-O-acetyl-2-O-(16-meth-
yl)heptadecanoyl- and 1-O-acetyl-2-O-(18-methyl)nona-
decanoylglycerol, were isolated from Nicotina
benthamiana.16

As a part of our interest in exploring new stereoselective
biocatalytic methods, we decided to investigate the lipase-
catalyzed acetylation of the 2-O-acylglycerol derivatives
(1, R1,R2= O-acyl, H). Hence, 2-O-benzoyloxyglycerol
(1a, R1=OBz, R2=H) was selected as a representative of
this class.

Preparation of the desired diol (1a) was straightforward
(Scheme 1). Condensation reaction 17 of glycerol (4) and
benzaldehyde (5) provided cis-5-hydroxy-2-phenyl-1,3-
dioxane (6).18 Consequent benzoylation and deprotection
of the benzylidene protected intermediate (8)19 by catalyt-
ic hydrogenation yielded the desired diol (1a)20 in pure
crystalline form.

With the desired prochiral diol (1a) in hand, the enan-
tiotope selectivity of acetylation by several commercially
available lipases was tested (Scheme 2). 

Among the enzymes investigated, lipase from porcine
pancreas (PPL) proved to be the most selective providing
almost enantiomerically pure product (2a)21 in good yield
(Entry 7). The enantiomeric purity of the product (2a) was
determined from the 1H-NMR signals of its MTPA ester.22

The composition of the solvent in this reaction catalyzed
by PPL played an important role. Since the crystalline diol
(1a) is poorly soluble in apolar solvents, the reaction was
slow in hexane. Enzymatic acetylations using vinyl ace-
tate as acylating agent in more polar solvents like chloro-
form, ethyl acetate or vinyl acetate gave decreased
enantiotope selectivity compared to that obtained in the
best solvent system (THF:hexane 1:1).

Prediction of the sense of enantiotopic selectivity seemed
to be not obvious for lipase-catalyzed acylation of this
new class of prochiral 1,3-propanediols. The lipase-cata-
lyzed acylation of 2-O-alkyl-1,3-propanediols (1, R1, R2=
O-alkyl, H) proved to be pro-S selective. In the case of 2-
alkyl-1,3-propanediols (1, R1, R2= alkyl, H) bearing apo-
lar substituent at position 2, enantiotope preference is in-
verted in a geometrical sense, although as a result of the
sequence rules, the affected group is still labelled pro-S.23

Acetylation of the diol bearing 2-N-benzyloxycarbonyl
group by PPL was found to be pro-R.11

The absolute configuration of our product (2a) was deter-
mined by chemical correlation (Scheme 3.).

(a) BzCl (1.1 eq.), Et3N (1.2 eq.), THF, 0-20oC, 2 h, 88 %.

Scheme 3

The    optical   rotation   of   our   dibenzoyl   compound
(9)24  ([a]D= -2.78;  c = 0.78,  methanol)  comparing   to
the literature data for (S)-(9) ([a]D= -0.8; c = 0.13, metha-
nol) 25proved its (S)-configuration, and therefore (R)-con-
figuration of our enzymic product (2a).
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