Die asymmetrische Synthese von cis-1R,2R- und cis-1S,2S-2-Arylcyclohexanaminen

Corina M. Nachtsheim und August W. Frahm*)

Institut für Pharmazeutische Chemie der Universität, Kreuzbergweg 26, D-5300 Bonn

Eingegangen am 11. April 1988

Die asymmetrische Synthese von optisch aktiven cis-2-Arylcyclohexanaminen 4 wird in einem dreistufigen Verfahren beschrieben: Durch Kondensation der razemischen 2-Arylcyclohexanone 1 mit den chiralen Hilfsaminen R-(+)- bzw. S-(-)-1-Phenylethylamin werden Imin-Isomerengemische 2 erhalten, die nach Hydrierung über Raney-Nickel ein einziges cis-konfiguriertes sekundäres Amin 3 liefern. Hydrogenolyse über Pd/C führt zu den optisch aktiven primären cis-2-Arylcyclohexanaminen 4. Die relative Konfiguration sowie die Konformation wurde durch ¹H-NMR-Spektroskopie, die absolute Konfiguration der hochgradig enantiomerenreinen Verbindungen 4 mit ¹Hilfe der CD-Spektroskopie bestimmt.

Asymmetric Reductive Amination of Cycloalkanones,VII: Asymmetric Synthesis of cis-1R,2R- and cis-1S,2S-2-Arylcyclohexanamines

The asymmetric synthesis of cis-2-arylcyclohexanamines 4 by a three-step procedure is reported: condensation of racemic 2-arylcyclohexanones 1 with the chiral auxiliary R-(+)- or S-(-)-1-phenylethylamin, respectively, leads to a mixture of the imin isomers 2. Upon hydrogenation with Raney-Nickel just one secondary amin of type 3 is obtained, which is hydrogenolized to the optically active primary cis-2-arylcyclohexanamines 4. The relative configuration as well as the conformation were derived from ¹H-NMR data. The absolute configuration of the highly enantiomerically pure compounds 4 was determined by CD spectra.

Einleitung

Optisch aktive cis-2-Arylcyclohexanamine stellen wertvolle Bausteine für die Synthese von optisch aktiven, pharmakologisch interessanten Heterocyclen¹⁻⁴⁾ dar. Zum anderen aber sollten diese Verbindungen aufgrund der darin enthaltenen Phenylethylaminstruktur selber pharmakologische Wirkung im Neurotransmitterbereich besitzen und sind daher als Modellverbindungen für systematische Struktur-Wirkungs-Untersuchungen von Bedeutung. Razemische cis-konfigurierte 2-Arylcyclohexanammoniumsalze zeigen Acetylcholinesterasehemmung⁵⁾. Darüberhinaus ist über catecholaminerge, wie z.B. die dopaminergen Wirkungen entsprechend oxigenierter, enantiomerenreiner cis-2-Arylcyclohexanamine bisher wenig ^{2,3,5)} bekannt.

Wir berichten hier über den Zugang zu diesen Verbindungen durch asymmetrische reduktive Aminierung von razemischen 2-Arylcyclohexanonen 1, die bereits erfolgreich zur Darstellung von 2-Alkylcycloalkanaminen^{6,7)} angewendet wurde.

Synthese der cis-2-Arylcyclohexanamine

Die 2-Arylcyclohexanamine 4 (Schema 1) werden in einer dreistufigen Synthese mit R(+)- bzw. S(-)-1-Phenyl-ethylamin als chiraler Hilfskomponente in chemischen

Ausbeuten bis zu 80% dargestellt. Durch Kondensation der razemischen Ketone 1 mit dem Hilfsamin werden Imin-Isomerengemische 2 erhalten, die nach Hydrierung über Raney-Nickel ein einziges sekundäres Amin 3 liefern, das in das Hydrochloridsalz überführt wird. Die Hydrierzeiten betragen 5-6 d und sind damit entscheidend länger als bei den 2-Alkylcycloalkaniminen^{6,7)}. Dies liegt zum einen an der sterischen Hinderung durch den Arylsubstituenten und zum anderen daran, daß das Imin mit der Enamin-Form in Gleichgewicht steht und nur das Imin hydriert wird⁶⁾. Durch Hydrogenolyse erhält man die cis-konfigurierten primären Aminhydrochloride 4, deren Konformation aus den Halbbandenbreiten der H-1- und H-2-Protonen-NMR-Signale abgeleitet wird. Bevorzugt ist das Konformer mit axialer Aminogruppe.

Die auf diese Weise dargestellten cis-2-Arylcyclohexanamin-hydrochloride 4 sind hochgradig enantiomerenrein. Die optische Reinheit wurde nach Derivatisierung mit *Moshers* Reagenz chromatographisch mit Hilfe der HPLC bestimmt. Durch Vergleich mit dem Retentionsverhalten des (-)cis-2-Phenylcyclohexanamins kann für die (-)cis-2-Arylcyclohexanamine 4 1R,2R-Konfiguration abgeleitet werden. Diese Ergebnisse werden durch CD-Korrelation bestätigt.

^{*)} Meinem verehrten akademischen Lehrer Herrn Professor Felix Zymalkowski mit Glückwünschen zum 75. Geburtstag gewidmet.

Schema 1: Asymmetrische Synthese der cis-2-Arylcyclohexamine

Die Ausgangsketone

Die Auswahl der substituierten 2-Phenylcyclohexanone 1 richtet sich nach pharmakologischen Gesichtspunkten. Dabei wurden Anzahl und Ringposition der aromatischen Etherfunktionen variiert.

Zur Darstellung der monomethoxylierten 2-Arylcyclohexanone eignet sich die Methode von Newman und Farbman⁸⁾ (Schema 2). Durch Umsetzung von 2-Chlorcyclohexanon⁹⁾ mit dem entspr. 2- Anisylmagnesiumbromid zu 2-Chlor-1-anisylcyclohexanol und anschließende Umlagerung erhält man 2-(2-Anisyl-)cyclohexanon **1b**.

Für die Umlagerung wird ein Überschuß des Grignard-Reagenzes eingesetzt, wobei im Gegensatz zu Angaben von Hussey und Herr¹⁰ vergleichbare oder bessere Ausbeuten auch bei Verwendung von weniger als 2 Equivalenten an Grignard-Reagenz erzielt werden können. Hier scheint eine generelle Überprüfung der Reaktionsbedingungen notwendig zu sein. Wir haben 2-(3-Methoxyphenyl)cyclohexanon (1c) in 53proz. Ausbeute erhalten. Die Reaktionsbedingungen unterscheiden sich weiterhin aufgrund unterschiedlicher Wanderungsgeschwindigkeiten der Arylsubstituenten. Mit Ausnahme von 1b konnte gezeigt werden, daß elektronenschiebende Gruppen in Bezug auf C-1' die Wanderungsgeschwindigkeit erhöhen¹¹.

Obwohl mesomere Effekte in den beiden Verbindungen 1b und 1d gleiche Auswirkungen haben sollten, verläuft die Umlagerung des 2-Anisylderivats erstaunlicherweise wesentlich schwerer als die des 4-Anisylderivats. Dies ist zum einen auf die sterische Hinderung ¹¹⁾ und zum anderen auf die Stabilität und damit die Trägheit des Chlorhydrins zurückzuführen. Das 2-Chlor-1-(2-Anisyl)cyclohexanol (5b) kann im Gegensatz zu der 4- Anisylverbindung über eine Wasserstoffbrückenbindung einen stabilen 6-Ring ausbilden (Schema 2). Erst nach 12stdg. Erhitzen unter Rückfluß in Toluol konnte das entspr. Keton 1b erhalten werden, das im Gemisch mit 2-(2-Hydroxyphenyl)cyclohexanon vorliegt. Nach Methylierung mit Dimethylsulfat wird das Keton schließlich rein isoliert.

Die dioxigenierten 2-Phenylcyclohexanone **1e-g** sind nach diesem Verfahren nicht herzustellen, da die benötigten *Grignard*-Verbindungen nicht aus den entspr. Halogeniden dargestellt werden können. Auch der Versuch, Veratryllithium¹²⁾ mit 2-Chlorcyclohexanon analog umzusetzen, führte nicht zum Erfolg. Es wurde ein Gemisch erhalten, aus dem das entspr. Keton nicht isolierbar ist.

Die dioxigenierten Phenylcyclohexanone **1e-g** wurden schließlich nach Wildman¹³⁾ (Schema 3) dargestellt.

Ausgehend von den entspr. substituierten Benzaldehyden 6e-h wurden in einer Aldolkondensation mit Nitromethan die trans- ω -Nitrostyrole 7e-h erhalten, die mit Butadien nach *Diels-Alder* zu den entspr. trans-4-Nitro-5-arylcyclohexenen 8e-h umgesetzt werden konnten. Die Nitroverbindungen 8e-h wurden in die Natriumsalze überführt und in einer *Nef*-Reaktion ^{14,15} sauer zu den entspr. Ketonen 9e-h hydrolysiert.

Sowohl bei der Salzbildung als auch bei der eigentlichen Nef-Reaktion wurden die verwendeten Lösungen vorher entgast und unter N₂-Atmosphäre verarbeitet ¹⁶.

Schema 2: Synthese der Ketone 1a-d

Aus der 2,5-dimethoxysubstituierten Verbindung 8h konnte das Keton 9h nicht isoliert werden. Wahrscheinlich liegt hier eine sterische Hinderung bei der sauren Hydrolyse vor.

Die Arylcyclohexenone **9e-g** wurden schließlich über 10proz. Pd/C unter Normalbedingungen zu den 2-Arylcyclohexanonen **1e-g** hydriert, die als Ausgangsketone für die angestrebten Synthesen dienten.

Die Imine

Die Darstellung der Imine 2 erfolgte durch Kondensation der Ketone 1 mit R-(+)- oder S-(-)-1-Phenylethylamin in äquimolaren Mengen mit p-Toluolsulfonsäure als Katalysator. Das bei der Reaktion entstehende Wasser wird mit Toluol azeotrop entfernt. Bis zur Beendigung der Wasserabscheidung werden in der Regel 8-15 h benötigt.

Die NMR-Untersuchung des vorher destillierten Imins 2a deutet auf das Vorhandensein verschiedener Isomeren. Setzt man razemisches Arylcyclohexanon 1 z.B. mit (R)-(+)-1-Phenylethylamin um, so können die folgenden vier Imin-Diastereomere gebildet werden:

Z-SR

Aufgrund der beiden sperrigen Phenylsubstituenten sind die E-Formen bevorzugt. Zusätzlich beobachtet man aufgrund der Konjugation mit dem Aromaten in 2-Stellung ein Imin-Enamin Gleichgewicht (Schema 5).

Z - RR

Im ¹H- sowie ¹³C-NMR-Spektrum werden daher auch jeweils fünf Signalsätze beobachtet, wobei die der beiden Z-Formen nur schwach vorhanden sind.

Im 300-MHz-¹H-NMR-Spektrum von **2a** erkennt man drei große sowie zwei kleine Dubletts für die β -CH₃-Gruppen. Bei den großen Signalen handelt es sich um die der beiden E-Isomeren (δ 1.40/1.42) sowie der Enaminform (δ 1.20). Die kleineren Signale sind den beiden Z-Isomeren (δ 1.18/1.46) zuzuordnen.

Im Gegensatz zu den Ketonen liegt hier das H-2-Proton equatorial. Das Aufspaltungsmuster mit ausschließlich kleinen Kopplungen läßt sich dann durch die beiden vicinalen Kopplungen (J_{ex}, J_{oe}) zu den H-3-Protonen sowie durch die beiden W-Kopplungen zu den equatorialen Protonen H-4 und H-6 erklären. Aufgrund der sterischen Wechselwirkung der beiden sperrigen Phenylringe ist das Iminkonformer 2 mit axialer 2-Phenylgruppe bevorzugt.

Die sekundären Amine

Die Iminrohgemische 2 werden ohne weitere Reinigung über Raney-Nickel zu den sekundären Aminen 3 hydriert und diese anschließend als Hydrochloride charakterisiert. Ausbeuten, physikalischen Daten sowie Elementaranalysen sind in Tab. 1 zusammengefaßt. Über die Synthese des sekundären Amins 3b wird gesondert berichtet.

Nach Hydrierung zeigen die 13 C-NMR-Spektren jeweils nur einen Signalsatz, deren δ -Werte eindeutig den sekundären cis-Amin-hydrochloriden 3 zugeordnet werden können. Trans-Amin wird nicht gebildet. Die Diastereoselektivität läßt sich in Analogie zu *Hutchins*¹⁷⁾ gemäß Schema 5 veranschaulichen. Aufgrund der Abstoßung zwischen Arylgruppe und Imin-Stickstoff ist das Konformer mit axialem Arylrest bevorzugt. Die Hydrierung erfolgt verständlicherweise von der weniger behinderten Seite unter bevorzugter Bildung eines cis-Produkts. Geht man von razemischem Keton 1 und (R)-(+)-1-Phenylethylamin aus, so wird das 2R-konfigurierte Imin 2 diastereoselektiv von der Si-Seite unter Bildung des sekundären 1R,2R-cis-Amins 3 angegriffen, dessen Konfigurationsbestimmung durch CD-Spektroskopie erfolgte.

Da die chemischen Ausbeuten der sekundären Aminhydrochloride 3 über 50% liegen, muß in diesem Fall eine Epimerisierung des 2-S-konfigurierten E-Imins 2 am C-2 erfolgt sein, die über ein Imin-Enamin-Gleichgewicht

Schema 5: Stereoselektive Hydrierung der E-Imine 2a mit R-konfiguriertem C-a-Atom

verlaufen kann ¹⁸⁾. Das entstehende 2-R-Epimer **2** wird gleichfalls unter like-Induktion hydriert. Nach der Nomenklatur von *lzumi* ¹⁹⁾ ist diese Reaktion als Kombination einer "diastereoface differentiation reaction" und "diastereomer differentiation reaction" mit vorgelagerter thermodynamischer Transformation 1. Ordnung eines der beiden diastereomeren E-Imine zu bezeichnen.

Zur Untersuchung sowohl der relativen Konfiguration als auch der Konformation der Hydrierprodukte wurden insbesondere die ¹H-MR-Spektren herangezogen (Tab. 2).

Tab.1: Physikalische Daten und Elementaranalysen der sekundären Aminhydrochloride 3

Verb.	R ¹	R ²	Schmp.	$[\alpha]_D^{20+)}$
3a.r++)	Н	н	219-25°	-24.6
3a.s ⁺⁺⁾	**	**	219-25°	+25.1
3c.r	н	3-OCH ₃	210-19°	-41.7
3c.s	**	••	210-19°	+41.9
3 d .r	н	4-OCH ₃	124-30°	+12.1
3d.s	**	,,	124-30°	-10.2
Зе.г	2-OCH ₃	3-OCH ₃	206-11°	-24.9
3e.s	,,	"	205-10°	+24.5
3 f .r	3-OCH ₃	4-OCH ₃	230-31°	-23.5
3f.s	"	**	233-34°	+24.7
3g.r	3-O-CH2-C	D-4	260-66°	+3.7*
3g.s	,,	"	260-65°	-3.5*

⁺⁾ (c=1.5; Ethanol) ⁺⁺⁾ Mit r bzw. s codierte Verbindungen werden aus R- bzw. S-1-Phenylethylamin gewonnen. *) (c=1.5; Methanol)

Fortsetzung von Tab.1: Physikalische Daten und Elementaranalysen der sekundären Aminhydrochloride 3

Verb.			%C		%н		%N	
	Summenformel	Molm.	ber.	gef.	ber.	gef.	ber.	gef.
3a.r	C20H26NC1	315.9	- 76.1	75.3	8.30	8.56	4.4	4.4+
3a.s	**	"	**	75.4	,,	8.46	"	4.4+
3c.r	C ₂₁ H ₂₈ NOCI	345.9	72.9	73.1	8.16	8.28	4.1	4.0
3c.s	**	**	**	72.9	**	8.13	••	3.9
3d.r	**	"	**	71.9	"	7.92	••	4.2
3d.s	**	••	"	72.3	"	8.19	"	4.4
Зе.г	C22H30NO2Cl	375.9	70.3	70.2	8.04	8.01	3.7	3.7
3e.s	**	.,	••	69.9	**	8.15	••	3.8
Bf.r	••	**	"	70.0	"	8.01	"	3.7
Bf.s		**	"	69.9	"	7.76	"	3.7
3g.r	C ₂₁ H ₂₆ NO ₂ Cl	359.9	70.1	70.1	7.28	7.33	3.9	3.9
Bg.s		"	,,	70.0	,,	7.28	"	4.1

⁺⁾ Die Elementaranalysen wurden bereits vorweg veröffentlicht¹⁸⁾

H-1 des Cyclohexanrings ist im Vergleich zu den anderen cycloaliphatischen Protonen tieffeldverschoben und erscheint als Multiplett (W1/2 = 13 Hz) bei ~3.3 ppm, so daß eine equatoriale Lage angenommen werden muß.

Die Zuordnung der Protonen H-1 und H-2 wurde am Beispiel von 3c durch Vergleich mit dem Spektrum der freien Base überprüft (Abb. 1). H-1 wird durch die Protonierung erwartungsgemäß stark beeinflußt ($\Delta\delta \sim 0.3$), während H-2 ($\delta \sim 2.9$) keine Veränderung erfährt. Wie aus der Feinstruktur der H-1- und H-2-Signale ersichtlich ist, ist sowohl bei den freien Basen als auch bei den Hydrochloriden das Konformer mit axialem Aminrest bevorzugt.

Tab. 2: ¹H-NMR-Daten der sekundären Aminhydrochloride 3 (300 MHz,CDCl₃, δ in ppm)

Verb. R ¹ R ²	3a +) H H	3с 3-ОСН ₃ Н	3d ⁺⁾ 4-OCH ₃ H	3e 2-OCH ₃ 3-OCH ₃	3f 3-OCH ₃ 4-OCH ₃	3g 3-0 ≥CH ₂ 4-0
⊕ N-H I	9.66	9.54	9.6	9.7	9.6	9.73
H	8.66	8.86	8.66	8.33	8.78	8.72
aromat.	7.2-	6.8-	6.9-	6.92-	6.5-	6.73
Н	7.82	7.68	7.68	7.73	7.73	7.58
R ¹	-	3.95	3.87	3.83	3.95	
		S	s	S	s	6.01/6.05
						AB 2Hz
R ²	-	-	-	3.73	3.89	
				S	s	
cyclo-	1.1-	1.1-	1.1-	1.2-	1.2-	1.14-
aliph.H	2.7	2.7	2.7	2.4	2.64	2.7
H-1	3.35	3.29	3.26	3.4	3.26	3.28
Δ1/2	11Hz	14Hz	*	11Hz	11 Hz	12Hz
H-2	2.95	2.9	2.9	3.2	2.85	2.82
Δ1/2	*	*	*	20Hz	*	20Hz
α-H	2.95	2.9	2.9	2.98	2.85	3.1
₿-CH3	1.8	1.8	1.8	1.76	1.78	1.82
	d 7Hz	d 7Hz	d 7Hz	d 7Hz	d 7Hz	d 7Hz
H-3 _{ax}	x	3.15	x	2.98	3.15	3.1

⁺⁾ 60 MHz *) $\Delta 1/2$ aufgrund von Überlagerung nicht zu ermitteln x) bei 60MHz nicht zu identifizieren

Die Signale der H-2- und H- α -Protonen überlappen, so daß eine Bestimmung ihrer Halbbandenbreiten nicht möglich ist. Nur in Verbindung **3e** ist die H-2-Signalgruppe separiert, da sie durch die 2'-Methoxygruppe tieffeldverschoben ist ($\Delta\delta \sim 0.3$).

Die ¹H-entkoppelten ¹³C-NMR-Spektren bestätigen die ¹H-NMR-Befunde, daß bei der Hydrierung des Imingemisches 2 nur *ein* Diastereomer gebildet wird.

Im cycloaliphatischen Bereich sind die an den Stickstoff gebundenen Kohlenstoffe erwartungsgemäß am weitesten

Abb. 1: Die ¹H-NMR-Spektren (Ausschnitte) des sekundären Aminhydrochlorids und der freien Base von 3c (300 MHz, CDCL₃, δ in ppm)

tieffeldverschoben. C- α absorbiert bei 61.4 ppm und wird durch die unterschiedliche Substitution im 2-Arylrest nicht beeinflußt. C-1 des Cyclohexanrings erscheint bei 59.4 ppm, während C-2 bei 44.9 ppm Resonanz zeigt. Eine starke Tieffeldverschiebung erfahren C-1 ($\Delta\delta$ -2) und C-2 ($\Delta\delta$ -6) durch die 2'-Methoxygruppe in **3e**. Die Signale der Kerne C-3 bis C-6 sind selbst bei unterschiedlicher Substitution im 2-Aryl-Teil lagekonstant. Hingegen sind die chemischen Verschiebungen der 2-Aryl-Kohlenstoffe naturgemäß vom Substitutionsmuster abhängig. Am weitesten tieffeldverschoben (δ 147-160) sind die methoxylierten Kohlenstoffkerne.

Die primären Amine

Durch hydrogenolytische Abspaltung des 1-Phenylethylrestes aus den sekundären Aminhydrochloriden 3 erhält man die entspr. primären Aminhydrochloride 4 unter milden Reaktionsbedingungen (5 bar, 45 °C, 10proz. Pd/C) nach etwa 20 h, deren chemische Ausbeuten, physikalische Daten und Elementaranalysen in Tab. 3 zusammengefaßt sind. Über die Synthese des primären Amins 4b wird gesondert berichtet.

Anhand der ¹H-NMR-Verschiebungen sowie der Halbbandenbreiten der H-1 und H-2-Protonen kann die cis-Konfiguration von 4 abgeleitet werden (Tab. 4).

Die Signale der Protonen H-1 ($\delta \sim 3.5$) und H-2 ($\delta \sim 2.9$) sind von den cycloaliphatischen Signalen separiert und liegen im üblichen Bereich cis-konfigurierter Verbindungen ²⁰⁾. Da die Halbbandenbreiten der H-1-Signale durchweg kleiner sind als die der H-2-Protonen, muß wie bei den sekundären Aminhydrochloriden 3 das Konformer mit axialer Aminogruppe überwiegen ²¹⁾. Dieses Ergebnis läßt sich auch durch das Aufspaltungsmuster der Signale von H-1 und H-2 im 300- MHz-Spektrum von **4f** bestätigen. H-1 zeigt drei kleine vicinale Kopplungen (~3 Hz), während H-2 eine große diaxiale (12.8 Hz) und zwei kleine vicinale Kopplungen (~3Hz) besitzt.

Die ¹³C-Spektren der Aminhydrochloride 4 zeigen, wie erwartet, jeweils nur einen Signalsatz.

Tab. 3: Chemische Ausbeuten, physikalischen Daten und Elementaranalysen der primären Aminhydrohalogenide 4

Verb.	R ¹	R ²	Ausb.% *)	Schmp. °C	$[\alpha]_D^{20++)}$	ee ^{x)}
						[%]
4a.r	Н	Н	68	248-50	-106.7°	99.3
4a.s	**	,,		248-50	+106.0°	98.9
4c.r	3-OCH ₃	н	42	182-90	-93.8°	98.2
4c.s	**	"		186-88	+91.4°	99.7
4d.r	4-OCH ₃	н	58	260-62	-84.5°	100.0
4d.s	"	"		260-62	+84.2°	98.5
4e.r	2-OCH ₃	3-OCH ₃	32	100-6+)	-63.4°	96.6
4e.s	"	"		99-101	+68.4°	98.7
4f.r	3-OCH ₃	4-OCH ₃	20	117-18	-79.5°	98.1
4f .s	"	,,		116-17	+74.2°	97.5
4g.r	3-O-CH2-0	D-4	81	200-1	-86.4°	96.3
4g .s	,,	"		208-10	+87.5°	99.7

*) bezogen auf Ausgangsketon +) HBr-Salz x) bestimmt mittels HPLC ++) (c = 1.5; Ethanol)

				700		70 П		7011	
Verb. Summenformel		Molm.	ber.	gef.	ber.	gef.	ber.	gef.	
4c.r	C ₁₃ H ₂₀ NOCl	241.8	64.6	65.0	8.34	8.45	5.8	5.7	
4c.s	**	"	"	64.7	**	8.53	,,	5.6	
4d.r	**	"	"	64.4	**	8.25	**	5.8	
4d .s	**	"	"	64.5	**	8.19	17	6.2	
4e.r	C ₁₄ H ₂₂ NO ₂ Br	316.2	53.2	53.2	7.01	7.19	4.4	4.7	
4e.s	"	"	,,	52.3	,,	7.32	"	4.3	
4g.r	C ₁₃ H ₁₈ NO ₂ Cl	255.7	61.1	61.1	7.09	7.20	5.5	5.6	
4g.s	33	,,	,,	60.9	**	7.08	**	5.5	

Tab. 4: ¹H-NMR-Daten der primären Aminhydrohalogenide 4 (60 MHz, CDCl₃, δ in ppm)

Verb. R ¹ R ²	4a H H	4с 3-ОСН ₃ Н	4d 4-OCH ₃ H	4e 2-OCH ₃ 3-OCH ₃	4f ⁺ 3-OCH ₃ 4-OCH ₃	4g 3-O 4-O ⊃CH ₂
NH [⊕]	8.0	7.91	-	7.95	7.76	7.99
aromat.	7.3	6.6-	6.85-	6.77-	6.83	6.64-
н		7.45	7.5	7.0		6.8
\mathbb{R}^1	-	3.8	3.82	3.82	3.91	
		S	S	\$	S	5.85/5.91 AB 2 Hz
R ²	-	-	-	3.84 s	3.83 s	
H-1	3.54	3.54	3.63	3.6	3.6	3.48
Δ1/2	9 Hz	9 Hz	10 Hz	15 Hz	15 Hz	13 Hz
H-2	2.92	2.9	3.05	3.26	2.94	2.82
Δ1/2	17 Hz	18 Hz	18 Hz	22.5 Hz	24 Hz	20 Hz
cyclo-	1.1-	1.1-	1.1-	1.2-	1.2-	1.14-
aliph.H	2.7	2.7	2.7	2.4	2.64	2.7

+) 300 MHz

Bestimmung der optischen Reinheit

Die Enantiomerenreinheit wurde indirekt nach Derivatisierung mit S-(+)- α -Methoxy-trifluormethyl-phenylessigsäurechlorid (*Moshers* Reagenz²²) durch HPLC bestimmt.

In Tab. 5 sind die HPLC-Daten der Amidtrennung und die aus den Flächenverhältnissen der diastereomeren Amide ermittelten Enantiomerenüberschüsse (ee%) der korrespondierenden Amine zusammengefaßt.

Die Enantiomerenüberschüsse der Amine 4 liegen alle über 96% und sind, bis auf Ausnahmen, sogar höher als bei den eingesetzten R- bzw. S-1-Phenylethylaminen. Diese bereits bekannte Beobachtung⁷ ist auf einen zusätzlichen Reinigungseffekt durch Umkristallisation zurückzuführen.

Tab. 5: HPLC-Daten der Mosher-Amide der primären Amine 4 sowie deren ee%

eing. Amin	t _{R1}	t _{R2}	a**)	ee ^{x)}	
	[min]	[min]		[%]	
R(+)-PEA ⁺⁾	15.28	12.52	1.23	98.8	
S(-)-PEA ⁺⁾	12.03	15.58	1.23	95.6	
4a .r	4.68	5.47	1.17	99.3	
4a .s	5.47	4.68	1.17	98.9	
4c .r	8.53	12,81	1.5	98.2	
4c .s	12.57	8.17	1.53	99.7	
4d .r	8.87	-	-	100.0	
4d.s	12.96	8.93	1.45	98.5	
4e .r	12.44	20.21	1.62	96.6	
4e .s	19.62	12.43	1.58	98.7	
4f.r*)	2.54	3.20	1.26	98.1	
4f.s*)	3.22	2.54	1.27	97.5	
4g .r	10.42	13.15	1.26	96.3	
4g .s	13.96	10.37	1.35	99.7	

t_{R1}: Hauptisomer t_{R2}: Nebenisomer; i-Octan/Ethylacetat (15:1), 2 ml/min. LiChrosorb Si60 7 μ m, 250 x 4 mm (Stahlsäule) ⁺⁾ i-Octan/EtOAc 30:1 ^{*)} i-Octan/EtOAc/EtOH 91/7.5/1.5 ^{••} s. Lit. 18 ^{x)} ee bezogen auf die ermittelten Flächenverhältnisse, unkorrigiert

Bestimmung der absoluten Konfiguration

Knupp⁶⁾ konnte bei Mosher-Amiden chiraler 2-substituierter Cyclohexanamine zeigen, daß ein Zusammenhang zwischen absoluter Konfiguration und chromatographischem Verhalten besteht. Durch Vergleich der Retentionszeiten der Mosher-Amide von 4a.r und der 2-Arylcyclohexanamine 4 läßt sich so deren absolute Konfiguration ableiten. Die 1S-(+)-konfigurierten Verbindungen besitzen längere Retentionszeiten als die 1R-(-)-konfigurierten.

Die absolute Konfiguration konnte mit Hilfe der CD-Spektroskopie bestätigt werden. Die CD-Spektren der durch Razematspaltung bereits erhaltenen Enantiomeren des cis-2-Phenylcyclohexanamins²⁰⁾⁶⁾⁺⁾ und des cis-2-(3,4-Dimethoxy-phenyl)cyclohexanamins²⁴⁾ wurden zu Vergleichszwecken herangezogen.

Die CD-Spektren der (-)-cis-2-Arylcyclohexanamine 4.r, zeigen mit Ausnahme von cis-2-(4-Methoxyphenyl)cyclohexanamin (4d) und von cis-2-(2,3-Dimethoxyphenyl)cyclohexanamin (4e) synchronen Kurvenverlauf. Bei letzteren Verbindungen kehrt sich das Vorzeichen bei einer bzw. Bande(n) um. Die molaren Absorptionsdifferenzen $\Delta \varepsilon$ sowie die molaren Elliptizitäten Θ sind in Tab. 6 aufgeführt.

Tab. 6: CD-Daten der mit Hilfe von R-(+)-1-Phenylethylamin dargestellten (-)cis-2- Arylcyclohexanaminbasen 4.r (MeOH)

Verb.	$[\alpha]_{0}^{20+)}$	$[\lambda_{max}]$	Δε		θ	
	5			gem.	Lit. ⁶⁾	
4a.r	-106.7	216.5	-3.5677	-11774	-11480	
		254	+0.2318	+765	+790	
		260	+0.3476	+1147	+1190	
		267	+0.2897	+956	+990	
4c.r	-93.8	229	-0.9516	-3140		
		268	+0.4392	+1449		
		271	+0.5490	+1812		
		279	+0.4026	+1329		
4d .r	-84.5	223	-1.0365	-3421		
		(266	+0.0415	+137)		
		275	-0.0726	-239		
4e.r	-63.4*)	229	+3.1590	+10425		
		276	-0.1626	-537		
4f.r	-79.5	239	-0.8558	-2675		
		275	+0.4504	+1864		
4g.r	-86.4	234	-0.6730	-2221		
-		239	-0.6480	-2139		
		280.5	+0.4736	+1563		
		286.5	+0.4985	+1645		

+) c 1.5/EtOH/HCl-Saiz *) HBr-Salz

Diese Abweichungen sind wahrscheinlich auf eine durch die unterschiedliche Substitution bedingte Konformationsänderung zurückzuführen, die an anderer Stelle diskutiert wird. Eine zweifelsfreie Konfigurationszuordnung mit Hilfe der CD- Spektroskopie gelang nach Cyclisierung der 2-Arylcyclohexanamine zu den entspr. Octahydrophenanthridinen²⁵⁾.

Wir danken dem Fonds der Chemischen Industrie, der BASF Ludwigshafen und der DEGUSSA, Frankfurt a.M. für die großzügige Unterstützung dieser Arbeit durch Sachmittel und Chemikalien, Frau *M. Schneider* für die sorgfältigen NMR-Messungen.

Experimenteller Teil

Schmp. (unkorrigiert): Schmelzpunktgerät nach Tottoli (Büchi). –IR: IR 298 Perkin Elmer, –¹-H-NMR: EM 360 und XL 300 (Varian).- ¹³C-NMR: CFT 20 und XL 300 (Varian). –optische Drehung: Polarimeter 241 Perkin Elmer. –Elementaranalysen: Anal. Lab. des Inst. f. org. Chemie und Biochemie der Universität Bonn.- HPLC: Modell 204 der Firma Waters. –CD-Spektren: Dichrograph III Roussel-Jouan-Paris.

Die Ausgangsketone 1

Synthese der einfach arylsubstituierten 2-Phenylcyclohexanone la-d nach $^{8)}$ (Tab. 7).

¹H-NMR-Daten s. Tab. 8, ¹³-C-NMR-Daten s. Tab. 9

Das Keton 1b konnte nur nach Rückflußerhitzen des stabilen 1- Chlor-2-(2-anisyl)cyclohexanols (5b) erhalten werden.

5b: Ausb. 28.3 g (78.6%) –Schmp.: 70-72 °C (Lii¹⁰): 75-76 °C).–¹H-NMR(60 MHz,CDCl₃,TMS, δ): 6.68-7.7 (4H,m,aromat.H), 5.15 (1H,t,H-

⁺⁾Die absolute Konfiguration des durch asymmetrische Synthese gewonnenen (-)-cis-2-Phenylcyclohexanamins ist durch-Röntgenbeugung bestimmt worden ²³⁾. 2), 3.85 (3H,s,- OCH₃), 2.94 (1H,br.s,-OH), 1.3-2.36 (8H,m,cycloaliph.H).-

¹³ C-NMR	(20 MHz	.CDCl ₂	.TMS.	δ):

C-1	C-2	C-3	C-4	C-5	C-6	C-1'
75.67	66.20	32.46	25.99	20.55	36.02	133.53
S	d	t	t	t	t	S
C-2'	C-3'	C-4'	C-5'	C-6'	-OCH ₃	
155.64	112,66	126,76	120.5	128.83	55.11 [°]	
s	d	d	d	d	q	

Synthese der zweifach arylsubstituierten 2-Phenylcyclohexanone **1e-g** nach ¹³⁾.

I) trans- ω -Nitrostyrole 7 nach ²⁶⁾ (Tab. 10). II) trans-4-Nitro-5-aryl-cyclohex-1-ene 8 nach ¹³⁾ aus 7 (Tab. 11,12,13). III) 6-Aryl-3-cyclohexen-1-one 9 nach¹³⁾ unter N₂ ¹⁶⁾ aus 8 (Tab. 14,15,16). IV) 2-Arylcyclohexanone 1e-g nach¹³⁾ aus 9 (Tab. 17). ¹H-NMR-Daten s. Tab. 8, ¹³C-NMR-Daten s. Tab. 9

Allgemeine Arbeitsvorschrift zur Darstellung der cis-2-Aryl-N-

1-phenylethylcyclohexanaminhydrochloride 3

A) Synthese der Imine

50 mmol Keton 1 werden mit 6.05 g (50 mmol) R(+)- oder S(-)-1-Phenylethylamin in 60 ml Toluol unter Zugabe einer Spatelspitze

Tab. 7: Ausbeuten und physikalische Daten der 2-Aryl-cyclohexanone la-d

p-Toluolsulfonsäure etwa 18 h am Wasserabscheider erhitzt. -Anschlie-Bend wird das Toluol i.Vak. abdestilliert und das Imin ohne weitere Reinigung nach B) weiter verarbeitet.

B) Hydrierung

Das Rohimin 2 wird über 8 g ethanolfeuchtem Raney-Nickel in 75 ml absol. Ethanol bei 5 bar und Raumtemp. bis zur Beendigung der Wasserstoffaufnahme (4-6 d) hydriert. Danach wird der Katalysator abfiltriert und mit Ethanol gewaschen. Das Filtrat wird mit HCl- Gas gesättigt und zur Trockene eingeengt.- Zur Entfernung von 1-Phenylethylamin-HCl wird über Kieselgel mit Ethylacetat chromatographiert. Das eingeengte Eluat wird anschließend in Wasser aufgenommen und mit n-Hexan/Ether (5:1) extrahiert. Die wäßrige, ketonfreie Phase wird mit N KOH alkalisch gemacht und mit Ether extrahiert. Nach Trocknung der Etherphase mit Magnesiumsulfat wird das Filtrat mit HCl-Gas gesättigt. Nach scharfer Trocknung erhält man die sekundären Aminhydrochloride 3, die ohne weitere Reinigung zur Hydrogenolyse eingesetzt werden.

Ausbeuten, physikalische Daten und Elementaranalysen s. Tab. 1; ¹H-NMR-Daten s. Tab. 2.

Allgemeine Arbeitsvorschrift zur Darstellung der cis-2- Arylcyclohexanaminhydrohalogenide 4

1g Pd/C (10%) wird in 50 ml Ethanol bei 5 bar vorhydriert. Nach etwa 15 min gibt man 20 mmol sekundäres Amin-HCl 3, gelöst in etwa 20 ml Ethanol, zu und hydrogenolysiert bei 5 bar und 45 °C bis zur Beendigung der Wasserstoffaufnahme (etwa 20-24 h, DC-Kontrolle). Danach wird der

Keton		Ausb. %		Sdp.[°C]		Schm	Schmp.[°C]		IR (cm ⁻¹)
	Lit.	gef.	Lit.	gef.	Lit.	gef.++)	Lit.*)	Reagenz ^{x)}	$\nu_{c=0}$
1 a	10)	54	60	136-7 (5mm)	150-55 (13mm)	54-56	58-60	1.6	1700
1b	27)	82+	50	99-110 (0.07mm)	103-4 (0.1mm)	/	99-100	2	1705
1c	28)	53	29	120-30 (0.2mm)	124-27 (0.2mm)	/	/	1.3	1710
1d	28)	57	51	120-40 (0.3mm)	134-40 (0.4mm)	80-83	80-85	2	1700

+) Gemisch mit 2-(2-Hydroxyphenyl)cyclohexanon ++) Petrolether/Ether *) Petrolether x) [Molequivalente]

Tab. 8: ¹H-NMR-Daten der Ketone **1** (60 MHz, CDCl₃, δ in ppm)

Verb.		1a	1c	1d	1e	1f	1g
R ¹		н	3-OCH ₃	4-OCH ₃	2-0CH3	3-OCH ₃	3-0 \
R ²		н	н	н	3-OCH ₃	4-OCH ₃	4-0 ^{CF}
Aryl H	m	7.3	6.7-	6.7-	6.6-	6.6-	6.4-
			7.9	7.6	7.5	7.3	6.9
H-2	m	3.6	3.4-	3.4-	3.7-	3.3-	3.3-
			3.6	3.8	4.2	3.9	3.8
Δ1/2		18Hz	22Hz	*	*	*	20Hz
Cycloaliph.	m	1.5-	1.6-	1.6-	1.4-	1.5-	1.4-
Н		2.8	2.6	2.7	2.7	2.7	2.7
R ¹	s	/	3.8	3.75	3.85	3.85	
							5.9
R ²	s	/	1	/	3.85	3,85	

*) wegen Überlagerung nicht zu ermitteln

Tab. 9: ¹³C-NMR-Daten der Ketone 1 (20 MHz, CDCl₃, δ-Werte in ppm)

Verb.	1a	1b	1c	1d	1e	1f	1g
\mathbb{R}^1	н	2-OCH ₃	3-OCH ₃	4-OCH ₃	2-OCH ₃	3-OCH ₃	3-0
R ²	н	н	н	Н	3-OCH ₃	4-OCH ₃	4-0 - ^{CH} 2
C-1	209.57 s	206.48 s	209.76 s	210.25 s	209.63 s	210.26 s	209.88 s
C-2	56.87 d	50.97 d	57.01 d	56.22 d	50.92 d	55.54 d	56.65 d
C-3	34.66 t	29.41 t	34.64 t	35.0 t	33.69 t	34.89 t	35.02 t
C-4	27.38 t	25.95 t	27.46 t	27.57 t	27.00 t	27.50 t	27.40 t
C-5	24.84 t	25.95 t	24.94 t	25.07 t	25.18 t	25.02 t	25.00 t
C-6	41.73 t	29.41 t	41.86 t	41.86 t	41.80 t	41.85 t	41.78 t
C-1'	138.48 s	129.27s+	140.06 s	130.66 s	132.86 s	131.09 s	132.31 s
		(123.78)	(139.38)	(130.38)	(124.68)	(131.28)	
C-2'	127.86 d	157.65s+	114.25 d	129.17 d	146.53 s	111.16*d	108.63*d
		(158.06)	(113.16)	(128.76)	(143.36)	(114.06)	
C-3'	128.16 d	111.26d+	159.29 s	113.51 d	153.14 s	148.50°s	147.25°s
		(113.56)	(158.36)	(113.46)	(143.66)	(143.66)	
C-4'	126.39 d	132.44d+	111.86 d	158.19 s	110.90 d	148.68°s	148.68°s
		(127.29)	(111.69)	(156.59)	(112.59)	(141.89)	
C-5'	-	120.38d+	128.96 d	-	120.54°d	110.95*d	107.72*d
		(120.06)	(129.06)		(120.35)	(114.36)	
C-6'		129.70d+	120.60 d	-	123.35*d	120.16 d	121.14 d
		(128.76)	(119.76)		(120.66)	(120.66)	
C-7'	-	55.36 q	54.82 g	54.92 q	60.11 q	56.57 g	100.56 t
C-8'	-	•	· · ·	-	55.31 q	56.57 q	-

+ Zuordnung über HETCOR-Spektrum, Berechnete Werte in Klammern *)0) austauschbare Signale

Tab. 10: Ausbeuten und physikalische Daten der trans-w-Nitrostyrole 7

Verb.	Lit.	R^1R^2	Ausb.%		Schm	p.[°C]	$IR(cm^{-1})$	
			gef.	Lit.	gef.	Lit.	$\tilde{\nu}_{as} NO_2$	$\bar{\nu}_s NO_2$
7e	26)	2,3-OCH ₃	81	60	84-5	84-5	1500	1350
7f	16)	3,4-OCH ₃	60	60-70	142-44	144-45	1500	1340
7g	29)	$3,4 = O_2 CH_2$	62	93	152-55	158	1500	1370
7h	30)	2,5-OCH ₃	61	1	116	119-20	1500	1350

Tab. 11: Ausbeuten und Daten der trans-4-Nitro-5-aryl-cyclohex-1-ene 8

Verb.	Lit.	R ¹ R ²	Ausb.%		Schmp.[°C]		IR[cm ⁻¹]	
			gef.	Lit.	gef.	Lit.	$\tilde{\nu}_{as} NO_2$	$\bar{\nu}_s NO_2$
8e	13)	2,3-OCH3	82	100	79-80	81-2	1550	1370
8f	31)	3,4-OCH3	82	67	110-12	116.5-	1520	1340
8~	32)		50		02.02	117.5	1540	1100
og Sh	1	$3,4 = 0_2 C \Pi_2$	50 76	10	92-93	97-99	1540	1380
8h	1	2,5-OCH₃	76	/	94-95	1	1550	1370

Katalysator abfiltriert, mit heißem Ethanol gewaschen und das Filtrat i.Vak. zur Trockene eingeengt. Umkristallisation aus Ether/Ethanol liefert die primären Aminhydrochloride 4.

Ausbeuten, physikalische Daten und Elementaranalysen s. Tab. 3, $^1\mathrm{H-}$ NMR-Daten s. Tab. 4.

Allgemeine Derivatisierungsvorschrift der primären Amine 4 mit S-(+)-2-Methoxy-2-(trifluormethyl)phenyl- essigsäurechlorid für die HPLC-Untersuchung

Herstellung der freien Basen

0.15 mmol der Aminhydrohalogenide 4 werden mit ca. 2 ml N NaOH versetzt und 3x mit 1 ml Ether extrahiert. Die Etherphase wird über

Na₂SO₄ getrocknet, filtriert und eingeengt. – Je 0.15 mmol der freien Base des primären Amins 4 werden in 8-10 Tropfen absol. CCL₄ gelöst und mit 6 Tropfen absol. Pyridin versetzt. Danach gibt man 30 µl (0.15 mmol, $\rho = 1.3$) S-(+)-2-Methoxy-2-(trifluormethyl)phenylessigsäurechlorid zu und läßt die Reaktionsmischung über Nacht (18 h) stehen. Zur Aufarbeitung wird mit 3 ml Wasser verdünnt und 3x mit je 3 ml Ether extrahiert. Die vereinigten org. Phasen werden 3x mit je 5 ml N-HCl, 3x mit je 5 ml gesättigter Na₂CO₃-Lösung und anschließend mit Wasser neutral gewaschen. Die org. Phase wird über Magnesiumsulfat getrocknet, abfiltriert und i.Vak. eingeengt. Zur HPLC-Untersuchung wird der Rückstand in Ethylacetat gelöst. Es werden 2-5 µl einer 5-10proz. Lösung injiziert.

Die Retentionszeiten sowie die aus den Flächen bestimmten Enantiomerenüberschüsse sind in Tab. 5 zusammengefaßt.

Tab. 12: ¹H-NMR-Daten der trans-4-Nitro-5-aryl-cyclohex-1-ene 8 (60 MHz,CDCl₃, δ in ppm)

Verb. R ¹ R ²		8e 2-OCH ₃ 3-OCH ₃	8f 3-OCH ₃ 4-OCH ₃	8g 3-O 4-O >CH₂	8h 2-OCH ₃ 5-OCH ₃
Aryl H	m	6.6-7.3	6.6-7.3	6.68	6.7-7.3
olefin.H	m	5.64-5.84	5.64-5.85	5.60-5.80	5.62-5.82
H-4 _{ax}	ddd ^{x)}	5.17	4.90	4.90	5.30
R ¹		3.88 s	3.88 s		3.78 s
				5.59-5.79 t	
R ²		3.82 s	3.82 s		3.71 s
H-5 _{ax}	ddd ^{xx)}	3.90	3.40	3.30	3.70
cycloaliph. H		2.2-3.2	2.2-3.2	2.2-2.9	2.3-3.1

^{x)} J(11/7.5/7.5) ^{xx)} J(11/6.5/9.5)

Tab. 13: ¹³C-NMR-Daten der trans-4-Nitro-5-aryl-cyclohex-1-ene 8 (20 MHz, CDCl₃, δ in ppm)

Verb. R ¹ R ²	8e 2-OCH 3-OCH	[3 [3	8f 3-OCH ₃ 4-OCH ₃		8g 3-O 4-O ⊃CH₂		8h 2-OCH ₃ 5-OCH ₃	
C-1	126.70	d	126.71	d .	126.21	d	126.69	đ
C-2	124.08	d	124.08	d	122.36	d	122.3	d
C-3	32.46	t	32.46	ŧ	32.95	t	30.77	t
C-4	85.69	d	85.69	d	87.26	d	84.83	d
C-5	38.14	d	38.14	d	43.70	d	39.97	d
C-6	31.24	t	31.24	t	30.94	t	30.77	t
\mathbb{R}^1	60.71	q	60.71	q			55.89	q +
					100.82	t		
R ²	55.47	q	55.47	q			55.43	q +
C-1'	133.41	s	133.41	s	133.54	s	129.01	s
C-2'	147.02	s	111.31	d	107.29	d	151.41	s
C-3'	152.64	s	152.64	S	147.64	S	115.41	d
C-4'	111.31	d	147.02	S	146.66	S	112.16	d
C-5'	118.94	d	118.94	d	108.20	d	153.55	s
C-6'	122.30	d	122.30	d	120.48	d	115.10	d

+ austauschbar

Tab. 14: Ausbeuten und Daten der 6-Aryl-3-cyclohexen-1-one 9

Verb.	R ¹ R ²		Aus	b.%	Sch	IR	
	Lit.		gef.	Lit.	gef.	Lit.	ν _{c=o}
9e	13)	2,3-OCH ₃	68.3	83	95-96	94-96	1705
9f	16)	3.4-OCH ₃	59	95	69-70	73.5-75	1715
9g	32)	$3,4 = O_2 C H_2$	63	1	67-70	/	1720

Säule: Hibar-Lichrosorb Si-60, 7 µm Elutionsmittel: n-Hexan/Ethylacetat 15/1 (V/V) Durchflußgeschwindigkeit: 2 ml/min.

Literatur

- 1 6. Mitt.; F. Omar und A.W. Frahm, Arch. Pharm. (Weinheim) 321, 111 (1988).
- 2 J. Hellerbach (Hoffmann-LaRoche und Co.), Swiss 542, 848 30. Nov. 1973, Appl. 916865.30J; C.A. 80: 70720k (1974).

Verb. 9e 9f 9g 3-0 4-0 >CH₂ R1 2-OCH₃ 3-OCH₃ R² 3-OCH₃ 4-OCH₃ Агуі Н 6.6-7.3 6.7-7.3 m 6.4-6.9 olefin.H 5.90 5.85 5.88 m H-6 t⁺⁾ 4.10 t 3.80 t 3.80 t \mathbb{R}^1 3.81 s 3.86 s 5.90 s \mathbb{R}^2 3.72 s 3.86 s

⁺⁾ J = 7.5 Hz

cycloaliph.H

Tab. 16: ¹³C-NMR-Daten der 6-Aryl-3-cyclohexen-1-one 9 (20 MHz, CDCl₃, δ in ppm)

2.5-3.2

2.6-3.1

Verb. R ¹ R ²	9e 2-OCH ₃ 3-OCH ₃		9f 3-OCH ₃ 4-OCH ₃		9g 3-0 4-0 >CH₂
C-1	208.32	s	208.33	s	208.04 s
C-2	40.23	t	39.63	t	39.66 t
C-3	126.93	d	126.34	d	126.28 d
C-4	124.21	d	124.25	d	124.29 d
C-5	32.29	t	33.10	t	33.19 t
C-6	48.48	d	53.63	d	53.70 d
R ¹	60.00	q +	55.60	q	100 (0
R ²	55.36	q +	55.60	q	100.09 1
C-1'	132.27	s	130.23	S	131.44 s
C-2'	146.67	s	111.05	ď ×	107.94 d [*]
C-3'	152.23	s	148.65	s°	147.44 s°
C-4'	111.23	d	147.93	s °	146.39 s °
C-5'	123.48	đ	111.48	d ×	108.39 d ^x
C-6'	120.73	d	119.92	d	121.13 d

+,x,o) austauschbare Kohlenstoffe

Tab. 17: Ausbeuten und physikalische Daten der 2-Arylcyclohexanone 1e - g

Verb.		R ¹ R ²	Ausb. %		Sci	IR[cm ⁻¹]	
	Lit.		gef.	Lit.	gef.	Lit.	$\tilde{\nu}_{c=o}$
1e	13)	2,3-OCH3	56	92-98	68-70	70.5-71.5	1705
lf	16)	3,4-OCH ₃	76	70	60-62	65	1710
lg	32)	$3,4 = O_2 CH_2$	75	56	91-92	92-93	1710

3 F. Hoffmann-LaRoche und Co. Belg. 628.614 Aug.19.1963 Swiss Appl. Feb. 19 1962 19pp; C.A. 61: 646 (1964).

- 4 G. Streissle, A.A. Ali, M.A. Ramadan, D. Beutner und A.W. Frahm, unveröffentlichte Ergebnisse.
- 5 J.W. Lewis und M.J. Readhead, Ger. Offen. 2.328.896; C.A. 80 82362h (1974).
- 6 G. Knupp, Diss. Bonn 1982.
- 7 W. Wiehl, Diss. Bonn 1985.
- 8 S. Newman und D. Farbman, J. Am. Chem. Soc. 66, 1550 (1944).
- 9 M. S. Newman und M.D. Farbman, Org. Synth. 25, 22 (1945).
- 10 A.S. Hussey und R.R. Herr, J. Org. Chem. 24, 843 (1959).

Nachtsheim und Frahm

2.5-3.1

Tab. 15: ¹H-NMR-Daten der 6-Aryl-3-cyclohexen-1-one 9 (60 MHz, CDCl₃, δ in ppm)

Asymmetrische reduktive Aminierung

- 11 R.L. Huang, J. Org. Chem. 19, 1363 (1954).
- 12 W.J. Gensler und J.E. Stouffel, J. Org. Chem. 23, 908 (1958).
- 13 W.C. Wildman und R.B. Wildman, J. Org. Chem. 17, 581 (1952).
- 14 M.F. Hawthorne, J. Am. Chem. Soc. 79, 2510 (1957).
- 15 W.E. Noland, Chem. Reviews 55, 137 (1955).
- 16 M. Shamma und H.R. Rodriguez, Tetrahedron 24, 6583 (1968).
- 17 R.O. Hutchins, W.Y. Su, R. Sivakumar, F. Cistone und Y.P. Stercho, J. Org. Chem. 48, 3412 (1983).
- 18 A.W. Frahm und G. Knupp, Chem. Ber. 117, 2076 (1984).
- 19 Y. Izumi und A. Tai, "Stereo-differentiating Reactions", S. 248, Academic Press, New York, London 1977.
- 20 L. Verbit und H.C. Price, J. Am. Chem. Soc. 94, 5143 (1972).
- 21 W.F. Trager, F.F. Vincenzi und A.C. Huitric, J. Org. Chem. 27, 3006 (1962).
- 22 J.A. Dale, D.L. Dull und H.S. Mosher, J. Org. Chem. 34, 2543 (1969).
- 23 G. Knupp, A.W. Frahm und A. Kirfel, Acta Crystallogr. C41, 468 (1985).

- 24 A.E. Weber, Diss. Washington 1974.
- 25 C.M. Nachtsheim, Diss. Bonn 1988; C.M. Nachtsheim und A.W. Frahm, Arch. Pharm. (Weinheim) 8. Mitt. im Druck.
- 26 C.B. Gairaud und G.R. Lappin, J. Org. Chem. 18, 1 (1953).
- 27 R. Fusco, F. Tenconi, C. Pirola und M. Riva, Farmaco (Pavia) Ed. Sci. 20, 393 (1950).
- 28 W.E. Bachmann, G.I. Fujimoto und L.B. Wicke, J. Am. Chem. Soc. 72, 1995 (1950).
- 29 E. Knoevenagel und L. Walter, Ber. Disch. Chem. Ges. 37, 4502 (1904).
- 30 H.G. Padeken, O. von Schickh und A. Segnitz in Houben Weyl, Methoden der organischen Chemie, X/1, 4. Aufl. S. 345, Thieme- Verlag Stuttgart 1971.
- 31 J. Sauer, Angew. Chem. 79, 76 (1967).
- 32 L.H. Mason und W.C. Wildman, J. Am. Chem. Soc. 76, 194 (1954).

[Ph510]