

0584-8539(93)E0033-S

Semi-empirical and vibrational studies of flavone and some deuterated analogues

L. VRIELYNCK,* J. P. CORNARD and J. C. MERLIN

Laboratoire de Spectrochimie Infrarouge et Raman (CNRS UPR A 2631 L), Université des Sciences et Technologies de Lille, Bâtiment C.5, 59655 Villeneuve d'Ascq Cedex, France

and

M. F. LAUTIE

Laboratoire de Spectrochimie Infrarouge et Raman (CNRS UPR A 2631 T), 2 rue Henri Dunant, 94320 Thiais, France

(Received 16 July 1993; in final form 7 December 1993; accepted 16 December 1993)

Abstract—The infrared solid state, Raman solid state and tetrachloride solution spectra of flavone have been obtained. Assignments of most of the vibrational data have been performed by comparison between the spectra of flavone and three isotopic species, deuterated on the A, B and C rings, respectively. The vibrational frequencies for all the investigated compounds have been calculated from the conformational analysis of flavone using the semi-empirical AM1 method and compared with experimental values. The correlation is more or less satisfactory; however, for some vibrational modes, the calculated isotopic shifts agree better with experiment than do the frequencies themselves. Specific vibrational modes which retain a benzene ring monosubstituted and ortho-distributed character have been recognized in the spectra, according to literature data, isotopic frequency shifts and graphic representation of the atomic displacements.

INTRODUCTION

FLAVONE (2-phenyl-4H-1-benzopyran-4-one) is the basic molecule of the group of flavonoid compounds which are widely distributed in the plant kingdom. These natural products exhibit various interesting biological activities [1, 2]. Flavone consists of two rings (A and B) joined together by a three-carbon link which is formed into a γ -pyrone ring, also called the C ring (Fig. 1). Apart from several studies on the infrared (IR) absorption behaviour of the carbonyl group [3–7], no attempt has been made before to assign precisely the vibrational spectral data of the flavone molecule. In a previous paper discussing the physical structure of the flavone molecule, the aromatic nature of the A and B ring systems was clearly suggested [8]. Because of this, we may expect to notice in the IR and Raman spectra of flavone, some bands which can be described as vibrational modes of individual rings.

In the present investigation, we intend to ascribe most of the experimental frequencies by combined use of (i) some vibrational results [7, 9-12] on mono-substituted and orthodi-substituted benzene derivatives which characterize the aromatic properties of A and B rings; (ii) the isotopic shifts observed for three deuterated flavones: flavone 3-d, flavone 5, 6, 7, 8-d4 and flavone 2', 3', 4', 5', 6'-d5; and (iii) the harmonic vibrational frequencies and the potential energy distribution (P.E.D.) obtained from semi-empirical calculations.

EXPERIMENTAL

Compounds

The flavone studied was an Extrasynthèse product, used without further purification. Flavones selectively deuterated on each ring have already been synthesized and studied by NMR and mass spectrometry [13-15]. The authors used two different methods to obtain the species

^{*} Author to whom correspondence should be addressed.

Fig. 1. Chemical structure and skeletal numbering of the flavone molecule.

labelled on benzene [16] or pyran [15] rings. We have chosen the first pathway [16] for the three isotopomers but ortho-benzoyloxyacetophenone was converted into (2-hydroxybenzoyl)-benzoylmethane by means of NaH in DMSO [17] instead of KOH in pyridine. The deuterated starting materials were obtained in the following manner.

(a) Flavone 2', 3', 4', 5', 6'-d5. The required benzoyl-d5 chloride was prepared by carbonation of Grignard reagents of bromobenzene-d5 [18] followed by reaction of the deuterated benzoic acid with $SOCl_2$.

(b) Flavone 5, 6, 7, 8-d4. The required ortho-hydroxyacetophenone-d4 was obtained from phenol. In a dry box, 0.5 g of sodium was carefully added to 12 cm^3 of heavy water followed by 0.7 g of aluminium-nickel catalyst. When gas evolution had ceased, 7 g of purified phenol was dissolved and the well-stirred mixture was heated at 100°C for 55 h with exclusion of atmospheric moisture. After cooling, the catalyst was filtered and washed with ether. The aqueous solution was acidified by 6 N HCl and extracted several times with ether. After drying the ethereal solution on Na₂SO₄, the solvent was evaporated. After four exchanges, deuterated phenol was acetylated by Schotten-Baumann reaction with acetic anhydride [19]. The pentadeuterophenylacetate (97% D) was subjected to Fries rearrangement [20]: 3.8 g of AcO (Ph-d5) was added to 3.6 g AlCl₃ dissolved in 17 ml of dried 1,2-dichloroethane. The mixture was magnetically stirred at 95°C for 24 h. After the usual work-up, ortho-hydroxyacetophenone-d4 containing some starting material was obtained and benzoylated, as described by WHEELER [16]. The overall yield for transposition and benzoylation was 40%.

(c) Flavone 3-d. GUIDUGLI et al. [15] obtained 3-deuteroflavone by oxidation of 3,3'dideuteroflavanone. We prefered to use the modified method of WHEELER [16, 17]. After exchange of acidic hydrogen in (2-hydroxybenzoyl)-benzoylmethane with ethanol-OD, cyclization in acetic-d with deuterated sulfuric acid yielded flavone 3-d.

Isotopic purity of the deuterated flavones was determined by NMR spectroscopy more than 97% D was found in all the compounds.

Instrumental

The IR spectra were recorded on a Brucker FT-IR IFS113 spectrophotometer in the 1700–500 cm⁻¹ range with a spectral resolution of 2 cm^{-1} . Flavones were studied in potassium bromide matrix (2%).

The FT-Raman spectra of investigated compounds in solid state and in carbon tetrachloride solution were recorded in the $3500-500 \text{ cm}^{-1}$ range with a spectral resolution of 4 cm^{-1} . They were obtained with the FRA106 accessory of the Brucker FT-IR IFS88 spectrophotometer. Sample excitation was achieved with 1.06 μ m radiation from a YAG laser with about 400 mW power.

The Raman spectra were also recorded with an XY instrument (Dilor, France). This instrument has an excitation at 514.5 nm, allowing performance of polarization measurements.

Calculations

First of all, the geometry of the flavone molecule was model-built from standard geometrical parameters and optimized with PC Model program (version 3.2) using the SCF method. This PCM

version used the MMX force field method developed by J. J. GAJEWSKI and K. E. GILBERT which is based on Allinger's MM2 mechanic program with some extensions [21, 22]. Secondly, the optimized geometry (bond lengths, bond angles and dihedral angles) obtained by MMX calculation was set as the input data for an AM1 semi-empirical treatment. The semi-empirical optimized energy minimization and the vibrational frequencies were computed with a MOPAC (version 5.01) program package and were carried out on an IBM 3090 (CIRCE CNRS, Orsay). For the three isotopic products, the force field calculations were performed from the AM1 output data of flavone. The graphic representations of the atom displacements were obtained with a self-made program. They allowed us on the one hand, to recognize some specific modes that imply only one of the three rings and to localize them in the experimental spectra; and on the other hand, to stress the fact that many couplings occur between the different ring systems which essentially explain the great complexity of the spectra.

RESULTS AND DISCUSSION

For the four flavones mentioned above, semi-empirical AM1 calculations were performed and harmonic vibrational frequencies were computed from the optimized geometries. It should be noted that the semi-empirical methods are well suited to reproducing geometrical conformations of isolated molecules since no intermolecular interaction is taken into account (molecules are assumed to be in the gas phase). In the crystal packing, bond lengths are systematically smaller. It is also well known, in solid state, that the intermolecular forces can strongly reduce dihedral angles [23] such as the torsion angle C3-C2-C1'-C6' (\sim 28°) of flavone. That is the reason why it appeared reasonable to use the calculated data only for the treatment of the spectra of flavones in solution. The force constants obtained from the geometry optimization are generally overestimated and give calculated frequencies higher than the expected values, and it is essential to make some scaling. Some studies of analogous molecules clearly suggest that the calculated frequencies must be multiplied by an empirical factor 0.89 to approximately correct the combined errors due to neglect of electron correlation and anharmonicity, both of which tend to lower the frequencies [24, 25].

The FT-IR and FT-Raman spectra in solid state, FT-Raman spectra in CCl₄ solution of flavone and investigated deuterated analogues are shown on Figs 2–4, respectively, in the range 1700–500 cm⁻¹. The FT-Raman spectra are similar in wavenumbers to those obtained with the conventional instrument. The low depolarization ratio ($0.25 < \rho < 0.5$) obtained for all the observed lines is consistent with a C₁ symmetry for the molecule and only A modes are observed. Table 1 presents the experimental and scaled calculated frequencies together with their tentative assignment for the four investigated molecules. WILSON's notation [26] is used for the modes which involve only one ring and retain their benzene mode character. However, as the substitution of the aromatic ring produces mode changes, this nomenclature, adapted from WILSON's notation, is used only for description purposes.

For some vibrations, deuteration implies a more or less important frequency shift of the absorption and diffusion bands of the unsubstituted flavone molecule. As a result, when only one ring system is involved, it is easy to ascribe a band to a specific chromophore unequivocally even if the mode that occurs is not a well-known characteristic mode of substituted aromatic rings. Moreover, the P.E.D. allows us to confirm this assignment and to localize other vibrational modes. The examination of Table 1 shows a rather good correlation between theoretical and experimental values for some wavenumbers. A better correlation could perhaps be obtained by using a specific scaling factor for stretching, in-plane bending and out-of-plane bending vibrations [27] but the use of different factors should not be suitable for mixed modes which involve more than one motion type. However, for the modes which exhibit a significant discrepancy in frequencies, the calculated and observed isotopic shifts are in good agreement. From these considerations, some characteristic modes can be discussed. The vibrations arising below 500 cm^{-1} have not been investigated.

Fig. 2. Solid state FT-IR spectra of flavone (a), flavone-3d (b), flavone-d4 (c) and flavone-d5 (d).

The carbonyl stretching mode

The carbonyl stretching frequency $\nu(C=O)$ is located at 1652 cm^{-1} in the solution Raman spectrum [3–7] even if the calculated value is overestimated; it appears as a large and strong band. By taking into account the experimental spectral resolution, the different isotopic substitutions do not bring about very sensitive frequency shifts, as was expected. A shift towards the higher frequencies is noticed in the Raman spectrum (1652 cm⁻¹) of flavone in solution in comparison with the corresponding solid state one (1634 cm⁻¹). This may be explained by an increase in the π conjugation between the B phenyl ring and the pyrone part through the inter-ring bond. Indeed, as has been previously shown [8], the torsion angle between the side phenyl group and the rest of the molecule strongly influences the π electrons' distribution. In solid state, the dihedral angle (~0°) is smaller than in solution (~28°) because of constraints induced by effective intermolecular interactions in the crystal, which results in a stronger π electron delocalization. The frequency shift of 16 cm⁻¹ between the IR and the Raman bands obtained from the solid state may come from the interaction with potassium bromide, often observed using the pellet technique [3, 28].

Ring systems vibrational modes

In-plane skeletal vibrations: ν (C–C). In the solid state Raman spectrum, the band observed at 1619 cm⁻¹ can be associated with the C2–C3 stretching vibration that occurs

Fig. 3. Solid state FT-Raman spectra of flavone (a), flavone-3d (b), flavone-d4 (c) and flavone-d5 (d); excitation: 1.06 μm.

as a shoulder on the IR spectrum. In the CCl₄ Raman spectrum, this line appears at 1624 cm⁻¹. This assignment (in relative accordance with the calculation) is strengthened by the fact that no sensitive shift is detected with isotopic substitutions as for the carbonyl stretching mode. The corresponding Raman frequency in solution is observed to be a little higher than in the solid state. This fact enhances the hypothesis of a stronger conjugation between the B and C rings through the C2-C1' linkage in solid state. Then, the decreased double bond character of the C2-C1' linkage in solid state. Then, the decreased double bond character of the C2-C1' bond normally involves a decrease in the corresponding stretching vibration. The frequency calculations and the graphic representation of the atom displacements shown on Fig. 5a tend to confirm this assignment. The 8a and the 8b modes of the A and B ring systems occur between 1610 and 1570 cm^{-1} [9-12]. The deuteration affects the respective frequencies only slightly since only skeletal vibrations are involved. Nevertheless, it appears very difficult to locate precisely the 8b mode of the A ring and 8a mode of the B ring in the flavone and in the flavones-d4 and -d5 spectra. Because of this, we assume there exists either a mechanical coupling between both A and B ring systems or the two vibrations mentioned above are too close to be distinguished from each other. The 19a and 19b modes of the A and B ring systems are observed in the 1500–1445 cm^{-1} range [9–12]. As far as the A ring is concerned, for the flavone-d4 molecule, it appears difficult to estimate precisely the spectral shifts from the calculated values but we suggest including the corresponding mode in the 1349 cm^{-1} band which is relatively broad. As far as the B ring is concerned, the 1395 cm^{-1}

Fig. 4. FT-Raman spectra of flavone (a), flavone-3d (b), flavone-d4 (c) and flavone-d5 (d) in carbon tetrachloride solution (the solvent line has been subtracted).

frequency is presumably due to the 19a vibration in the flavone-d5 spectra, but the 19b mode cannot be obviously recognized. The 14 mode of the A ring appears near 1336 cm⁻¹[9, 11]. The 14 mode of the B ring could not be picked out from the substituted flavone-d5 spectra. In fact, either one may be implied in some mechanical couplings, or the IR and Raman intensities are too small to make it clearly appear in the 1330–1200 cm⁻¹ range. We also expect to find in the 1400–1200 cm⁻¹ range the C–O–C stretching modes of the chromone moiety. These bands are usually very strong [7]. In flavone, the only bands of appreciable strength in this region are located at 1378 and 1260 cm⁻¹ in the IR spectrum [3]. In the solid state Raman spectrum, we notice two appreciable lines at 1377 and 1267 cm⁻¹ whereas in carbon tetrachloride, they appear at 1374 and 1253 cm⁻¹, respectively. As will be mentioned later, the band near 1260 cm⁻¹ mostly involves the inter-ring bond stretching mode of the pyrone oxide function, especially since it does not seem to depend on the flavone physical state and does not present a significant shift with isotopic substitutions.

For this spectra range analysis, it is clear that the use of the nearest calculated wavenumber band of flavone is not convenient for a correct assignment. As the isotopic shifts are not significant, the use of the mode type performed by P.E.D. is more adapted.

Inter-ring stretching vibration: v(C2-C1'). Several observed bands should involve the C2-C1' inter-ring stretching mode. Coupling effects with deformations lead to a rather bad correlation with calculated wavenumbers. However, we suggest from the P.E.D. that the band which rises near 1260 cm⁻¹ in the solid state IR and Raman spectra involves the main participation of the inter-ring bond stretching mode coupled nevertheless with all parts of the molecule (Fig. 5b). This assignment is partly confirmed by the frequency shift of -14 cm^{-1} in the Raman spectrum obtained from CCl₄ solution. Indeed, this band seems to be sensitive to the conformational structure of flavone which is different depending on whether the molecule lies in solution (with a twisted structure) or in solid state (with a planar structure) [8].

Radial skeletal vibrations: Δ (C-C). The band at 1000 cm⁻¹ which appears in the Raman spectra of the flavone molecule is typically characteristic of the linear combination of the 1 and 12 'breathing' modes of the B ring. The spectra of flavone-3d and flavone-d4 still contain this band while the spectra of the derivative -d5 show the corresponding shifted components at 959 cm⁻¹. The frequencies pertaining to the 6b and 6a vibrations of the A and B rings lie in the 630-500 cm⁻¹ region [9-12]. The 6b mode of the B ring appears in the IR and Raman spectra at 619 cm⁻¹ even if the IR absorption band is very weak. It may be expected at 592 cm^{-1} in the flavone-d5 spectra. The 6a and 6b modes of the A ring have been respectively recognized at 577 and 511 cm⁻¹ in the solid state Raman spectra of the flavone molecule (at 577 and 509 cm⁻¹ in CCl₄ solution). Indeed, the disappearance of these two bands in the flavone-d4 Raman spectra tends to assume that they imply only one ring system. Although no corresponding frequencies could be found for the analogue -d4, they are probably located below 500 cm⁻¹. As for other vibrational modes in the $1200-1300 \text{ cm}^{-1}$ spectral range, it is difficult to find the corresponding mode in the spectra of deuterated analogues. Indeed, the deuteration can entirely modify the normal modes.

Out-of-plane skeletal vibration: $\Gamma(C-C)$. The strong IR band at 688 cm⁻¹ is ascribed to the 4 mode of the B ring [9, 11, 12]. This mode is not observed in the Raman spectra maybe because of the weakness of its intensity. The 4 mode of the A ring is expected near 700 cm⁻¹ [9–11] but in spite of the deuterated products spectra, no assignment has been tempted.

C-H vibrational modes

C-H stretching modes: ν (C-H). The corresponding components appear at 3071 cm⁻¹ as a rather large spectral band in the Raman spectra of flavone. We simultaneously note the presence of two bands close to 3070 and 2295 cm⁻¹ in each spectrum of the deuterated analogues. Frequency calculations and graphic outputs show that C-H stretching vibrations are specific of each ring (no coupling is expected—Fig. 5c) and occur in a small frequency range. Such information could explain the appearance of both experimental bands noted above which are in a ratio of about 1.34, i.e. not very far from $\sqrt{2}$.

C-H in-plane bending vibrations: δ (C-H). For this kind of vibration, it is well known that the use of a scaling factor of 0.89 is not suitable, and it is evident that a bad correlation between observed and calculated wavenumbers is obtained. However, the relative observed isotopic shifts are in quite good agreement with the calculated ones. The 15 modes of the B and A rings (or 9a with Varsanyi's notation) are observed at 1159 and 1148 cm⁻¹, respectively in the Raman spectrum (Fig. 5d) [9-12]. We assume that the first one shifts close to 840 cm⁻¹ in the flavone-d5 spectra and the other near 850 cm⁻¹ in the flavone-d4 spectra. The 9a mode of the B ring (Fig. 5e) that lies near 1193 cm⁻¹ in the solid state IR and Raman spectra of flavone is observed at 876 cm⁻¹ for flavone-d5 [9, 11]. The 1132 cm⁻¹ Raman band and the 1129 cm⁻¹ IR component are believed to pertain to the 9b mode of the A ring [9, 11]. This apparent frequency shift may be partly

rated analogues				v(C=O)		v(C2-C3)		v(C-C)		v(C-C)	v(C-C)		(C-C)	v(C-C)	$\tilde{0}$	v(C-0-C)	v(C-C)		ð(C-H)	δ(C-H)	v(inter-ring)	i		
one and deute		Tentative	assignment				8b (A)	+	8a (B)	8b (B)	8a (A)	19a (B)	19b (A)	19a (A)	19b (B)		14 (A)	14 (B)	3 (B)	3 (A)		(B)	x *	Û
ents for flav		R	sol.	1645	1629	1616	1604		1571	1538	1571	1395	1475	1469	1326	1381	1334		1004	1278			1227	1205
assignme	one-d5	nan	sol.	1634		1617	1604		1571	1539	1571	1396	1475	1468	1325	1396	1335		1007	1279	1257		1227	
tentative	Flav	Rar	ซื	1651		1621	1609		1574					1467		1395					1250		1224	
Cl4), and			Cal.	1812		1656	1580		1584	1559	1573	1444	1467	1423	1352	1333	1232	1210	914	1151	1281			
ution (C(I	R	sol.	1644	1629	1612			1590	1574	1551	1495	1349	1349	1451	1382	1325		1285	1015				1204
) and soli	ne-d4	man	sol.	1631		1615			1600	1575	1553		1349	1349	1453	1383	1325	1325	1280		1265	1235		
olid (sol.	Flavo	Rai	ซื	1652		1619	1602			1575	1557		1347	1347		1385		1322	1282		1248		1225	
1 - 1) for s			Cal.	1811		1656	1584		1580	1566	1570	1438	1465	1423	1395	1344	1218	1227	1173	916	1290			
)-500 cm		R	sol.	1642	1629	1614	1604		1604	1579	1570	1497	1476	1469	1447	1370	1339		1282	1282			1227	
cies (170	ne-3d	nan	sol.	1628		1616	1604		1604	1562	1562		1475	1468	1449	1370	1340	1322	1290	1283		1237	1225	
frequence	Flavo	Rai	ซื	1648		1618	1610			1565	1565		1478	1465	1449	1364	1335		1291			1235	1223	
rimental			Cal.	1811		1651	1584		1580	1566	1575	1452	1471	1435	1396	1346	1234	1227	1173	1151	1302			
I.), expe		R	sol.	1650	1627	1619	1607		1598	1579	1570	1496	1475	1465	1448	1378	1336		1283	1283	1260	1235	1225	1204
lated (Ca		nan	sol.	1634		1619	1603		1603	1570	1570		1474	1469	1451	1377	1336	1325	1280		1267	1236	1228	
l. Calcul	e	Rar	ซี	1652		1624	1607		1603	1572			1475	1466	1451	1374	1331		1282		1253	1234	1224	
Table]	Flavon		खुं	1812		1657	1584		1581	1566	1575	1452	1471	1435	1396	1349	1230	1221	1173	1151	1302			

្តី
Da
la
ĕ
a a
ute
qe
ģ
аг
e
٥Ņ
<u>l</u> a,
E
s fe
nt
щ
ŝ
ŝ
8
İVE
tat
ED1
1 te
ğ
, a
R
8
Š
ō
Ħ
sol
Ŋ.
ar
<u>-</u>
ß
p
<u>io</u>
r s
З,
f.
E
0
20
9
8
C
es
nci
ne
5
£
tal
en
Ē
Ē
Ř
e.
(j
ථ
ýp
ĕ
ula
<u>l</u>
Ű
<u>.</u>
[]
lde I
Ë

al out-of-plane	ling and skelets	plane bend	H out-of-	ions, C-	al vibrat	al skelet	ing, radi	ine bend	-H in-pla	ching, C	y to stret	spectively	refer re	γ and Γ	ν, δ, Δ, The des	notation a modes	The
∆(C-C)	6b (A)		511		552				546		509		557		511	203	555
∆(C-C)	6a (A)		575								577	577			577	577	1
	~	601								9 <u>0</u> 9				608	9 <u>9</u>	608	
A(C-C)	6b (B)	592	593		562	618	619	620	585	618	618	620	585	620	619	619	585
		654	655			653	655			650	652			652	650	650	
~	~	672								672	674	673		673	674	673	
r(c-c)	4 (B)	601				685				688				68 8			
y(C-H)	11 (A)	757	744		730	580			572	760	744		728	760	748	744	732
γ(C-H)	11 (B)	536	538		614	771	111		725	771	767		72	769	11		725
	(¥)	775								775				781			
											836	832		84 8	838	835	
v(C3-H)		856	852		832	852	851	852	830	803	803		759	853	852	850	830
v(C-H)	17b (A)	206	908 806		874				735	906 906	8 6	6 6	874	8	30 8	3 08	874
v(C-H)	17b (B)	743	744		733	926			857	925			857	924			857
v(C-H)	17a (B)	757			742	959			882	996			882	959	996		882
v(C-H)	5 (B)	801			<i>L6L</i>	974	777		66 8	974	779		66 8	973	975		66 8
∆(C-C)	1+12(B)	959	959	996	870	1000	1000	1001	872	1000	1000	1001	888	1001	1000	1001	8 85
	~					1015	1018	1018		1013	1016	1018		1011	1013	1014	
δ(C-H)	18a (B)	840 048	842		765	1028			985	1031	1031	1030	986	1028	1030		983
	~	1042				1028				1031				1044			
δ(C-H)	18b (B)	830	830		761	1076	1080	1082	1046	1080	1080		1044	1079	1080		1046
~	~		1096				1090							1101	1092	1089	
δ(C-H)	9b (A)	1126	1131		1053	856	851	852	802	1128			1053	1129	1132	1127	1055
ð(C-H)	15 (A)	1148	1150		1070	856	851	852	764	1146	1146		1070		1148	1148	1070
ð(C-H)	15 (B)		842		772		1159	1160	1066		1161	1160	1066		1159	1159	1066
δ(C-H)	9a (B)	876	876		789	1193	1193	1188	1100	1193	1195	1189	1099	1192	1193	1185	1101

observed vibrational lines are tabulated.

Semi-empirical and vibrational studies

Fig. 5. Some graphic representations of calculated atomic displacements (multiplied by a factor of 3 for a better visualization): (a) the C2–C3 linkage stretching mode; (b) the C2–C1' inter-ring stretching mode coupled with a vibration of the γ -pyrone part; (c) the C3–H stretching mode; (d) a typical δ (C–H) mode localized on the A ring: the 15 mode; (e) a typical δ (C–H) mode localized on the B ring: the 9a mode; (f) a typical vibrational mode which involves the whole molecule, not assigned in this study. The observed frequency in the Raman spectrum of flavone in CCl₄ solution is given for a, b, c, d and e illustrations.

explained by the KBr matrix effect as previously noted for the carbonyl stretching vibration. This mode may shift towards lower frequencies in the flavone-d4 spectra near 850 cm^{-1} and thus may be superposed with the C-H out-of-plane deformation of the pyrone group, which will be discussed later. The 3 modes of the A and B ring systems respectively appear near 1280 cm^{-1} in the solid state IR spectrum of the flavone molecule [9–12]. For the deuterated molecule -d5, the 3 mode of the A ring does not move, whereas that of the B ring shifts to 1004 cm^{-1} . For the flavone-d4, the isotopic substitution involves a frequency shift of the band corresponding to the 3 mode of the A ring (1015 cm^{-1}). This shift, less important than expected, is probably due to a mechanical coupling with vibrational modes of the rest of the molecule. The 18a and 18b vibrations of the B ring system presumably appear in the solid state IR spectrum at 1028 and 1079 cm^{-1} , respectively [9, 11, 12]. We suggest that they shift towards 840 and 830 cm⁻¹ in the flavone-d5 spectra [9] which present many weak and thin bands in this spectral range.

C-H out-of-plane bending vibrations: λ (C-H). As previously mentioned for in-plane bending modes, these vibrations are assigned mainly with the help of P.E.D. and isotopic shifts.

The 973 cm^{-1} weak IR band possibly corresponds to the 5 mode of the B ring system [9, 11], since such a vibration normally occurs in this spectral range and because it appears in all the deuterated spectra apart from the flavone-d5 spectrum, where it

possibly corresponds to the very weak line at 801 cm⁻¹ [9]. The spectral IR components at 955 and 924 cm⁻¹ may respectively belong to the 17a and 17b modes of the B phenyl ring [9, 11, 12]. Such assignment is supported by the fact that they appear for both flavone-3d and flavone-d4 whereas they disappear for flavone-d5. These bands possibly shift near 750 cm⁻¹. A medium IR band and a very weak Raman component at 908 cm⁻¹ may be ascribed to the 17b mode of the A ring [9, 11] since they both disappear in the flavone-d4 spectra, but the attempt made to recognize these bands was not decisive. The bands near 770 cm^{-1} in the Raman and IR spectra come from the 11 vibrations of the B ring [9, 11, 12]. If the corresponding spectral component is strong and rather broad for the IR absorption, it appears as a weak band in the Raman spectra. The 536 cm^{-1} band in the spectra of flavone-d5 may be characteristic of the substitution pattern on the B ring [9]. The band at 760 cm^{-1} in the IR absorption is supposed to represent the 11 mode of the A ring system whose frequency shifts to $580 \,\mathrm{cm}^{-1}$ in the flavone-d4 spectrum [9, 11]. In a previous study [3], it has been shown that many chromone and flavone derivatives present a strong band near 850 cm⁻¹ in IR spectra which may be ascribed to the C-H pyrone out-of-plane deformation mode. In flavone, the 853 cm⁻¹ band, which is strong in IR absorption but very weak in Raman diffusion, may be assigned to this vibration. In addition, this frequency occurs in the flavone-d5 and flavone-d4 spectra and has a lower value (803 cm^{-1}) for the flavone-3d molecule.

Note

A relevant assignment has not been made for a certain number of infrared bands because they probably involve more than one ring of the flavone molecule. However, if we exclude the fact that some of them are native mechanical couplings, we can imagine that a majority results in overtones which could explain the apparent complexity of the infrared spectra.

CONCLUSION

The aim of this work was to obtain a better understanding of the structure of flavone. Even if some discrepancies are observed, the structural parameters obtained with the AM1 method give a satisfactory agreement with the vibrational spectra.

(i) The calculated wavenumbers are located in the same spectra range and almost in the same order as those observed in the experimental data.

(ii) For stretching modes, a good correlation between experimental and calculated values are obtained.

(iii) For bending modes for which the calculated wavenumber is far from the experimental ones, the calculated isotopic shifts are of the same order of magnitude as those observed in the spectra.

Analysis of the atomic displacement confirms that some vibrational modes retain their benzene ring character and we could assign some specific modes for rings A, B and C:

(i) ν (C-C) vibrations that gather the characteristic modes of substituted benzene 8a, 8b, 19a, 19b and 14 are located on the range 1600-1400 cm⁻¹.

(ii) The inter-ring stretching vibration is strongly coupled with all parts of the molecule even if it mainly contributes to a specific vibrational mode. It is interesting to notice the frequency shift from the solid state to solution which stresses the conformational difference of the flavone molecule depending on its physical state.

(iii) $\Gamma(C-C)$ vibrations imply the modes number 4 and 16 of Wilson's notation. However, only the 4 mode of the B ring could have been located in the 700–500 cm⁻¹ range.

(iv) As far as δ (C-C) vibrations are concerned, we found several bands characteristic of the 6 modes. We also noticed a Raman component at 1000 cm⁻¹ which is rather weak

and sharp in the IR spectrum of flavone and which corresponds to a linear combination of 1 and 12 modes of mono-substituted aromatic systems.

(v) ν (C-H) vibrations which appear in the Raman spectra near 3070 cm⁻¹ as a large non-resolved band seem, to imply individual rings according to calculations and deute-rated products spectra.

(vi) γ (C-H) vibrations which occur in the 900-700 cm⁻¹ range are generally specific of only one ring system.

(vii) δ (C-H) vibrations are also well-recognized at typical frequencies of mono- and ortho-di-substituted benzene derivatives of the 1200-1000 cm⁻¹ range.

We also assigned experimental bands to vibrators of the γ -pyrone part of the molecule such as the stretching vibrations of the groups C=O, C2-C3 and the out-of-plane bending vibration of the group C3-H. But we also had some difficulties in analysing the spectral region 1300-1200 cm⁻¹ which is very complex and entirely modified with the deuteration (Fig. 5f). Thus, we assume it involves many mechanical couplings between C-H bending and C-C stretching vibrations.

The knowledge of the spectroscopic properties of flavone, which is the simplest structure of the flavonoids group, will be useful as a basis for the study of the vibrational spectra of flavonoid parent compounds.

Acknowledgements—The authors wish to thank Dr B. Sombret for his technical assistance in the recording of the FT-Raman spectra. We are also grateful to Professor P. Bopp and Dr D. Bougeard for their help with the calculations.

REFERENCES

- J. B. Harborne and T. J. Mabry (Eds), The Flavonoids: Advances in Research. Chapman & Hall, London (1982).
- [2] V. Cody, E. Middleton, J. B. Harborne and A. Beretz (Eds), Plant Flavonoids in Biology and Medicine II: Biochemical, Cellular and Medicinal Properties. A. R. Liss, New York (1988).
- [3] J. H. Looker and W. W. Hanneman, J. Org. Chem. 27, 381 (1962).
- [4] B. L. Shaw and T. H. Simpson, J. Chem. Soc. 655 (1955).
- [5] C. I. Jose, P. S. Phadke and A. V. Raman Rao, Spectrochim. Acta 30A, 1199 (1974).
- [6] P. H. Lebreton and J. Chopin, Spectrochim. Acta 19, 2099 (1963).
- [7] L. J. Bellamy, The Infrared Spectra of Complex Molecules. Wiley, New York (1958).
- [8] L. Vrielynck, J. P. Cornard, J. C. Merlin and P. Bopp, J. Molec. Struct. 297, 227 (1993).
- [9] G. Varsanyi, Assignments for Vibrational Spectra of 700 Benzene Derivatives, Vol. 1. Adam Hilger, Budapest (1974).
- [10] M. Brigodiot and J. M. Lebas, J. Chim. Phys. 62, 347 (1965).
- [11] R. R. Randle and D. H. Whiffen, Report on Molecular Spectroscopy Conference, p. 111. Institute of Petroleum, London (1954).
- [12] D. Steele and E. R. Lippincott, J. Molec. Spectrosc. 6, 238 (1961).
- [13] P. Joseph-Nathan, J. Mares, Ma. C. Hernandez and J. N. Shoolery, J. Magn. Reson. 16, 447 (1974).
- [14] F. H. Guidugli, M. J. Pesthanker, J. Kavka and P. Joseph-Nathan, Org. Mass Spectrom. 19, 502 (1984).
- [15] F. H. Guidugli, C. E. Ardanaz, J. Kavka, M. E. Garibay and P. Joseph-Nathan, Org. Mass Spectrom. 21, 117 (1986).
- [16] T. S. Wheeler, Org. Synth. Coll. 4, 478 (1963).
- [17] I. Hirao, M. Yamaguchi and M. Hamada, Synthesis 1076 (1984).
- [18] A. Murray and D. L. Williams, Org. Synth. Isotopes III, 1281 (1958).
- [19] A. I. Vogel, Practical Org. Chem. 669 (1964).
- [20] Y. Ogata and H. Tabuchi, Tetrahedron 20, 1661 (1964).
- [21] J. Kao and N. L. Allinger, J. Am. Chem. Soc. 99, 975 (1977).
- [22] N. L. Allinger, J. Am. Chem. Soc. 99, 8127 (1977).
- [23] A. Almenningen, O. Bastiansen, L. Fernhold, B. N. Cyvin, S. J. Cyvin and S. Samdal, J. Molec. Struct. 128, 59 (1985).
- [24] J. A. Pople, H. B. Schelgel, R. Krishnan, D. J. Defrees, J. S. Binkely, M. J. Fish, R. A. Whiteside, R. F. Hout and W. J. Hehre, Int. J. Quantum Chem. S15, 269 (1981).
- [25] D. M. Chipman and M. F. Prebenda, J. Phys. Chem. 90, 557 (1986).
- [26] E. B. Wilson, Phys. Rev. 45, 706 (1934).
- [27] P. Craezar, A. Craezau, A. Somogyi, Z. Dinya, S. Holly, M. Gal and J. E. Boggs, Spectrochim. Acta 42A, 473 (1986).
- [28] A. W. Boker, J. Phys. Chem. 61, 450 (1957).