Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Synthesis and evaluation of α , α' -disubstituted phenylacetate derivatives for T-type calcium channel blockers

Hyung Kook Lee^{a,b}, Yun Suk Lee^a, Eun Joo Roh^a, Hyewhon Rhim^a, Jae Yeol Lee^b, Kye Jung Shin^{a,*}

^a Life Sciences Division, Korea Institute of Science and Technology, PO Box 131, Cheongyang, Seoul 130-650, Republic of Korea ^b Research Institute for Basic Sciences and Department of Chemistry, Kyung Hee University, Seoul 130-701, Republic of Korea

ARTICLE INFO

Article history: Received 2 April 2008 Revised 4 June 2008 Accepted 11 June 2008 Available online 14 June 2008

Keywords: T-type calcium channel Neuropathic pain Patch-clamp

Voltage-dependent calcium channels have crucial roles in translating electrical signals into biochemical events such as enzyme activity, neurotransmitter release, neuronal excitability, neurite outgrowth, and gene transcription.¹ They are subdivided into two major classes, high-voltage activated (HVA or L-type) and lowvoltage activated (LVA or T-type) calcium channels based on their biophysical and pharmacological properties. Mibefradil (Posicor[®], Hoffman-La Roche) which was launched in 1998 for the treatment of hypertension and angina pectoris,²⁻⁴ blocks T-type calcium channels at concentration lower than that needed to block L-type calcium channels.^{5,6} Unfortunately, the drug was withdrawn from the market due to drug-drug interaction with antihistamine such as astemizole, but this side effect is not related to T-type calcium channel blockade.^{7,8} T-type calcium channels are involved in cardiac pacemaking,⁹ regulation of vascular tone, and secretion of var-ious types of hormones.^{10–13} Thus, T-type calcium channel is now considered to be a novel therapeutic target for the treatment of cardiovascular, neuronal, and endocrine systems.¹⁴ Currently several compounds including Mibefradil analogues¹⁵ have been reported to inhibit T-type calcium channels; however, none of them have shown high potency and selectivity to this channels. In this study, we designed and synthesized compounds with potency and selectivity to T-type calcium channel using the 3D ligand based pharmacophore model, which was generated by hypothesis approach (HipHop) implemented in CATALYST program^{16,17} (Fig. 1). As a result of in vitro inhibition assay, most of compounds showed higher inhibition activities than Mibefradil. Especially,

ABSTRACT

We have synthesized and evaluated α, α' -disubstituted phenylacetate derivatives that were designed as T-type calcium channel blockers. Among them, compound **10e** (IC₅₀ = 8.17 ± 0.48 nM) showed the most potent T-type calcium current blocking activity and higher potency than Mibefradil (IC₅₀ = 1.34 ± 0.49 μ M). The PK profile and subtype selectivity over L-type calcium channel were satisfied for further animal assay using disease model.

© 2008 Elsevier Ltd. All rights reserved.

compound **10e** showed the most potent T-type calcium channel blocking activity and good selectivity over L-type calcium channel.

10a–g and **11a–j** were synthesized via a routine procedure shown in Schemes 1 and 2. Aminobenzimidazole intermediates **5a–c** were prepared from 4-methylaminobutyric acid **1**.¹⁸ Protection of the secondary amine with benzyloxycarbonyl (Cbz) afforded compound **2**, which was then treated with isobutyl chloroformate and *o*-phenylenediamines to provide compounds **3a–c** in 59–94% yields. They were treated with *p*-toluenesulfonic acid in toluene under reflux condition to give cyclized benzimidazoles **4a–c** in 33–77% yields. Deprotection of Cbz group from the secondary amines with 10% Pd/C gave compounds **5a–c** in 69–95% yields.

The methods for the preparation of the title compounds were shown in Scheme 2. Starting from phenylacetic acids **6a–c**, the carboxylic acids were esterified to make esters **7a–c** in 90–95% yields, which were alkylated with *t*-BuOK and isopropyl bromide to give compounds **8a–c**. Compounds **9a–c** were obtained via treating **8a–c** with LDA and dibromopropane in THF under anhydrous condition. The coupling reaction of **9a–c** with previously prepared benzimidazole derivatives **5a–c** and commercially available piperazine derivatives under basic condition (K₂CO₃, EtOH) produced compounds **10a–g** in 20–46% yields and compounds **11a–j** in 47–69% yields, respectively.

In vitro calcium channel blocking activities of **10a–g** and **11a–j** were tested with T-type calcium channels expressed in HEK293 cells (α_{1G}). All the compounds exhibited promising activities on α_{1G} calcium channels expressed in HEK293 cells at 10 μ M concentration by the whole-cell patch-clamp method in a preliminary assay.^{19,20} Then the molar concentrations needed to produce 50%

^{*} Corresponding author. Tel.: +82 2 958 5154; fax: +82 2 958 5189. *E-mail address*: kjshin@kist.re.kr (K.J. Shin).

⁰⁹⁶⁰⁻⁸⁹⁴X/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.bmcl.2008.06.037

Figure 1. Designed structures for T-type calcium channel blocker and mapping result of suggested pharmacophore with 10a.

Scheme 1. Reagents and condition: (i) benzyl chloroformate, NaOH, EtOH/H₂O (1:1), 0 °C to rt, 63%; (ii) isobutyl chloroformate, *o*-phenylenediamines, Et₃N, THF, -15 °C to rt; (iii) *p*-TsOH, toluene, reflux; (iv) H₂, 10% Pd/C, MeOH, rt.

Scheme 2. Reagents and condition: (i) H₂SO₄, MeOH, reflux; (ii) isopropyl bromide, *t*-BuOK, DMF, 0 °C to rt; (iii) LDA, 1,3-dibromopropane, THF, -78 °C to rt; (iv) compound 5, K₂CO₃, EtOH, reflux; (v) 1-substituted piperazine derivatives, Et₃N, Nal, CH₃CN, reflux.

inhibition of peak currents (IC_{50}) were measured and summarized in Tables 1 and 2 with Mibefradil as a positive control for compar-

ison. According to the assay results, most of derivatives exhibited significant inhibitory activities on HEK293 cells and numbers of

Table 1

In vitro calcium channel blocking effects of benzimidazole derivatives

Compound	\mathbb{R}^1	R ²	R ³	R ⁴	Patch-clamp HEK293 c	Patch-clamp HEK293 cell (T-type α_{1G} , $n = 3$) ²¹	
					% Inhibition (10 µM)	IC ₅₀ (μM)	
10a	Н	Н	Н	Et	98.3 ± 0.9	0.25 ± 0.005	
10b	Me	Me	Н	Et	91.4 ± 0.4	0.10 ± 0.01	
10c	Н	Н	OMe	Me	93.5 ± 3.2	0.19 ± 0.001	
10d	OMe	Н	OMe	Me	91.7 ± 1.9	0.88 ± 0.07	
10e	Н	Н	Br	Me	96.9 ± 0.5	8.17 ± 0.48 (nM)	
10f	OMe	Н	Br	Me	94.5 ± 1.2	0.25 ± 0.01	
10g	Me	Me	Br	Me	94.2 ± 0.4 (1 μM)	53.02 ± 4.87 (nM)	
Mibefradil					95.9 ± 1.7	1.34 ± 0.49	

Table 2

In vitro calcium channel blocking effects of piperazine derivatives

11a-j

Compound	R ³	R ⁴	R ⁵	Patch-clamp HEK293 cell (T-type α_{1G} , $n = 3$) ²¹	
				% Inhibition (10 µM)	IC ₅₀ (μM)
11a	Н	Et	4-Methoxybenzyl	96.3 ± 1.7	0.34 ± 0.02
11b	Н	Et	4-Fluorobenzyl	94.0 ± 2.5	0.26 ± 0.03
11c	Br	Me	2-Fluorobenzyl	90.4 ± 3.2	0.74 ± 0.02
11d	Br	Me	3-Fluorobenzyl	89.3 ± 1.6	0.98 ± 0.11
11e	Br	Me	4-Fluorobenzyl	96.5 ± 1.7	1.11 ± 0.05
11f	Br	Me	3-Trifluorobenzyl	93.0 ± 1.5	0.28 ± 0.02
11g	Br	Me	2-Methoxyphenyl	94.1 ± 1.5	95.04 ± 14.78 (nM)
11h	Br	Me	4-Methoxybenzyl	96.0 ± 1.7	0.48 ± 0.08
11i	Br	Me	2,3,4-Trimethoxybenzyl	95.1 ± 1.9	0.32 ± 0.01
11j	Br	Me	3-Methylbenzyl	94.9 ± 1.5	0.39 ± 0.03
Mibefradil				95.9 ± 1.7	1.34 ± 0.49

compounds showed excellent blocking efficacy. Especially, compounds **10e**, **10g**, and **11g** had 14- to 160-fold higher potency than Mibefradil.

Among them, **10e**²² exhibited the most potent T-type calcium current blocking activity (8.17 ± 0.48 nM). Thus, further evaluations of **10e** such as hERG inhibition, pharmacokinetic profile assay, and selectivity test over L-type calcium channel were carried out. According to the hERG inhibition assay, IC₅₀ of **10e** was 178 nM (Table 3).²³ Although the absolute IC₅₀ value of hERG inhibition was low, the relative ratio over two channels was moderately high (hERG IC₅₀/T-type α_{1G} IC₅₀ = 21.8). Moreover, % inhibition value against L-type calcium channel at 1 μ M of **10e** was 0%. It means that **10e** could distinguish T-type and L-type calcium channel effectively and block T-type calcium channel

Table 3	
Selectivity data of compound 10e against hERC and Latype calcium channe	1

Compound	T-type IC ₅₀ (nM)	hERG IC ₅₀ (μM)	% Inhibition of L-type at 1 μM
10e	8.17	0.178	0

Table 4

Plasma and brain pharmacokinetic parameters in mouse obtained via a single oral dose

	10e		
	Brain	Plasma	B/P ^a
Dose ^b (mg/kg)	50	50	
T _{max} (h)	1.0	1.0	
$C_{\rm max} (\rm ng/ml)$	274	1615	0.17
AUC_{0-t}^{c} (h ng/ml)	973	3902	0.25

^a B/P = AUC_{brain}/AUC_{plasma}.

^b The vehicle of PK experiment: DMA/Cremophor EL/PBS (10/10/80 v/v %).

^c Area under curve (AUC) values were calculated by linear trapezoidal rule.

selectively (T-type/L-type > 1000). In order to examine in vivo dynamics, **10e** was subjected to pharmacokinetics analysis in mouse. **10e** was administered as single oral dose (50 mg/kg) and evaluated in the plasma and brain. Based on the pharmacokinetic data, compound **10e** exhibited competitive pharmacokinetic profiles in plasma. It is inferred that **10e** is metabolically stable in liver enzymes ($T_{1/2} = 1$ h) and has comparable absorption in gastrointestinal system. Also, **10e** could penetrate BBB and reach to brain in 25% ratio compared to plasma (Table 4).

In summary, **10a–g** and **11a–j** were designed and synthesized based on pharmacophore mapping study and most of compounds showed higher T-type calcium channel inhibition activities than Mibefradil. Among them, compound **10e** exhibited the most potent T-type calcium current blocking activity and good pharmacokinetic profiles. Furthermore, **10e** showed excellent selectivity over L-type calcium channel. Therefore, the series of title compounds were suggested to elucidate the potential of new therapeutics for T-type calcium channel associated disease such as hypertension, neuropathic pain, and migraine based on the fundamental etiology.

Acknowledgments

The authors express thanks to Prof. Seong-Woo Jeong and Dr. Ki Ho Lee for their contributions to subtype selectivity and PK profiling. This work was financially supported by a grant (2E 20430) from KIST vision 21 program.

References and notes

- (a) Barclay, J. W.; Morgan, A.; Burgoyne, R. D. *Cell Calcium* **2005**, *38*, 343; (b) Zheng, X.; Bobich, J. A. *Brain Res. Bull.* **1998**, *47*, 117; (c) Himpens, B.; Missiaen, L.; Casteels, R. J. *Vasc. Res.* **1995**, *32*, 207; (d) Levi, A. J.; Brooksby, P.; Hancox, J. C. *Cardiovasc. Res.* **1993**, *27*, 1743.
- Van der Vring, J.; Cleophas, T.; Van der Wall, E.; Niemeyer, M. Am. J. Ther. 1999, 6, 229.
- 3. Clozel, J.; Ertel, E.; Ertel, S. J. Hypertens. Suppl. 1997, 15, S17.
- Hermsmeyer, K.; Mishra, S.; Miyagawa, K.; Minshall, R. *Clin. Ther.* **1997**, *19*, 18.
 Masumiya, H.; Kase, J.; Tanaka, Y.; Tanaka, H.; Shigenobu, K. *Res. Commun. Mol.*
- Pathol. Pharmacol. **1999**, 104, 322. 6. Mishra, S.; Hermsmeyer, K. Circ. Res. **1994**, 75, 144.
- Spoendlin, M.; Peters, J.; Welker, H.; Bock, A.; Thiel, G. Nephrol. Dial. Transplant. 1998, 13, 1787.
- 8. Sorelle, R. Circulation 1998, 98, 83.
- 9. Hagiwara, N.; Irisawa, H.; Kameyama, M. J. Physiol. 1988, 395, 233.

- Schourier, A. D.; Wang, H.; Talley, E. M.; Perez-Reyer, E.; Barret, P. Q. Am. J. Physiol. Cell. Physiol. 2001, 280, C265.
- Leuranguer, V.; Monteil, A.; Bourinet, E.; Dayanithi, G.; Nargeot, J. Am. J. Physiol. 2000, 279, H2540.
- 12. Wagner, C.; Kramer, B.; Hinder, M.; Kieninger, M.; Kurtz, A. Br. J. Pharmacol. 1998, 124, 579.
- Bhattacharjee, A.; Whitehurst, R. M., Jr.; Zhang, M.; Wang, L.; Li, M. Endocrinology 1997, 138, 3735.
- 14. Tanaka, H.; Shigenobu, K. J. Pharmacol. Sci. 2005, 99, 214.
- (a) Li, M.; Hansen, B.; Huang, L.; Keyser, B. M.; Taylor, J. T. *Cardiovasc. Drug Rev.* 2005, 23, 173; (b) U.S. Patent Application 2004229908, 2004.
- Doddareddy, M. R.; Choo, H.; Cho, Y. S.; Rhim, H.; Koh, H. Y.; Lee, J. H.; Jeong, S. W.; Pae, A. N. *Bioorg. Med. Chem.* **2007**, *15*, 1091.
- Doddareddy, M. R.; Jung, H. K.; Lee, J. Y.; Lee, Y. S.; Cho, Y. S.; Koh, H. Y.; Pae, A. N. Bioorg. Med. Chem. 2004, 12, 1605.
- 18. U.S. Patent 4808605, 1989.
- 19. Lee, J.-H.; Gomora, J. C.; Cribbs, L. L.; Perez-Reyes, E. *Biophys. J.* **1999**, 77, 3034. 20. Monteil, A.; Chemin, J.; Bourinet, E.; Mennessier, G.; Lory, P.; Nargeot, J. *J. Biol.*
- *Chem.* **2000**, 275, 6090. **21.** Experimental procedure for patch-clamp (electrophysiological recording). For the recordings of α_{1G} T-type Ca²⁺ currents, the standard whole-cell patch-clamp method was utilized. Briefly, borosilicate glass electrodes with a resistance of 3–4 MΩ were pulled and filled with the internal solution contained (in mM): 130 KCl, 11 EGTA, 5 Mg-ATP, and 10 Hepes (pH 7.4). The external solution contained (in mM): 140 NaCl, 2 CaCl₂, 10 Hepes, and 10 glucose (pH 7.4). α_{1G} T-type Ca²⁺ currents were evoked every 15 s by a 50 ms depolarizing voltage step from –100 mV to –30 mV. The molar concentrations of test compounds required to produce 50% inhibition of peak currents (IC₅₀) were determined from fitting raw data into dose–response curves. The current recordings were obtained using an EPC-9 amplifier and Pulse/Pulsefit software program (HEKA, Germany).
- 22. Compound **10e**: ¹H NMR (400 MHz, CDCl₃) δ 7.45 (br s, 2H), 7.39 (d, *J* = 8.6 Hz, 2H), 7.18 (dd, *J* = 6.0, 3.1 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 2H), 3.69 (s, 3H), 3.04 (t, *J* = 6.4 Hz, 2H), 2.48 (t, *J* = 5.8 Hz, 2H), 2.35–2.40 (m, 3H), 2.21 (s, 3H), 2.04–2.10 (m, 1H), 1.89–1.98 (m, 3H), 1.23–1.43 (m, 2H), 0.85 (d, *J* = 6.8 Hz, 3H), 0.74 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 175.0, 155.4, 138.6, 130.7, 130.1, 121.7, 120.5, 59.0, 58.4, 58.2, 51.7, 41.5, 34.6, 33.9, 28.9, 24.2, 22.7, 18.9, 18.0; Anal. (C₂₆H₂₄BrN₃O₂2HCl) Calcd: C, 54.46; H, 6.33; N, 7.33. Found: C, 54.16; H, 6.23; N, 7.61.
- For reviews of the hERG channel and QT interval prolongation, see (a) Finalyson, K.; Witchel, H. J.; McCulloch, J.; Sharkey, J. Eur. J. Pharmacol. 2004, 500, 129; (b) Fermini, B.; Fossa, A. A. Nat. Rev. Drug Discov. 2003, 2, 439.