residue flash chromatographed on silica gel eluting with 2.7:1 hexanes/ethyl acetate to afford $613 \mathrm{mg}(77 \%)$ of 9 a , yellow needles from ethyl acetate/hexanes: mp $103-104.5^{\circ} \mathrm{C} ; 300-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.27(\mathrm{t}, 3 \mathrm{H}, J=6.9 \mathrm{~Hz}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{dd}, 1 \mathrm{H}$, $J=15.6$ and 6.3 Hz), $2.87(\mathrm{dd}, 1 \mathrm{H}, J=15.6$ and 7.2 Hz), 3.23 (dd, $1 \mathrm{H}, J=16.8$ and 7.2 Hz), 3.69 (dd, $1 \mathrm{H}, J=16.8$ and 9.6 $\mathrm{Hz}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=6.9 \mathrm{~Hz}), 5.24(\mathrm{~m}, 1 \mathrm{H}), 6.75$ (d, $1 \mathrm{H}, J=7.5 \mathrm{~Hz}$), 7.30-7.50 (m, 2 H), 11.35 (s, 1 H); IR (film) $3005,1730,1610,1390,1310,1220,1150,1080 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR 14.37 , $32.50,38.38,41.09,56.22,60.64,78.87,105.40,114.75,115.08,116.26$, $118.56,124.94,128.62,146.79,154.03,157.72,170.40,201.11 \mathrm{ppm} ;$ MS, $m / e 344,270,257,241$; HRMS, m / e calcd 344.12599 , found 344.1259.
trans-Ethyl [1-Hydroxy-9-methoxy-1-methyl-5,10-dioxo-3,4,5,10-tetrahydronaphtho[2,3-c]pyran-3-yl]acetate (10a). To a solution of $9(613 \mathrm{mg}, 1.78 \mathrm{mmol})$ in 40 mL of acetonitrile at ambient temperature was added ceric ammonium nitrate (2.36 $\mathrm{g}, 4.30 \mathrm{mmol}$) in 8.5 mL of water. The reaction mixture was stirred 30 min at ambient temperature and poured into 50 mL of water containing 5 mL of a pH 7.5 phosphate buffer, and the layers were separated. The aqueous phase was extracted twice with $30-\mathrm{mL}$ portions of methylene chloride, and the organic extracts were combined, washed with water, and dried over magnesium sulfate. The solvents were removed in vacuo and the residue was crystallized from methylene chloride/hexanes to afford 553 mg (91%) of 10 a as yellow needles: $\mathrm{mp} 153-154{ }^{\circ} \mathrm{C} ; 300-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.2 \mathrm{~Hz}), 1.73(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{dd}, 1 \mathrm{H}$, $J=18.7$ and 11.1 Hz), $2.64(\mathrm{dd}, 1 \mathrm{H}, J=15.6$ and 6.6 Hz), 2.76 (dd, $1 \mathrm{H}, J=15.6$ and 6.6 Hz), 2.88 (dd, $J=18.7$ and 2.7 Hz), 3.87 (br s, 1 H$), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.48$ (m, 1 H), $7.32(\mathrm{dd}, 1 \mathrm{H}, J=8.1$ and 0.9 Hz$), 7.64-7.80(\mathrm{~m}, 2 \mathrm{H})$; IR $\left(\mathrm{CHCl}_{3}\right) 3600-3400,3010,1730,1655,1585,1270 \mathrm{~cm}^{-1} ;{ }^{13} \mathrm{C}$ NMR
$14.02,27.64,28.23,40.09,56.71,60.69,65.00,94.30,118.34,119.06$, $120.01,133.97,135.27,140.35,146.33,159.84,170.19,182.02,182.18$ ppm; MS, $m / e 342,296,268,244,229,201$; HRMS, m / e calcd 360.12091 , found 360.12032 .
cis-Ethyl [9-Methoxy-1-methyl-5,10-dioxo-3,4,5,10-tetra-hydro-1H-naphtho[2,3-c]pyran-3-yl]acetate (11a). To a solution of 10 a ($102 \mathrm{mg}, 0.30 \mathrm{mmol}$) in 15 mL of methylene chloride at $-78^{\circ} \mathrm{C}$ was added trifluoroacetic acid ($0.14 \mathrm{~mL}, 1.8 \mathrm{mmol}$), and the resulting slurry was stirred at $-78^{\circ} \mathrm{C}$ for 15 min . To the slurry was added triethylsilane ($0.29 \mathrm{~mL}, 1.8 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$. The reaction mixture was slowly warmed to ambient temperature over 3 h . The resulting yellow solution was concentrated in vacuo and the residue crystallized from diethyl ether/hexanes to afford 93 mg (95%) of 11 a as yellow needles: $\mathrm{mp} 118-119{ }^{\circ} \mathrm{C}$ [lit. ${ }^{2 \mathrm{c}} \mathrm{mp}$ $113-115{ }^{\circ} \mathrm{Cl} ; 300-\mathrm{MHz}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.29(\mathrm{t}, 3 \mathrm{H}, J=7.2$ Hz), $1.52(\mathrm{~d}, 3 \mathrm{H}, J=6.6 \mathrm{~Hz}$), 2.28 (ddd, $1 \mathrm{H}, J=18.1,10.5$, and 3.7 Hz), 2.60 (dd, $1 \mathrm{H}, J=15.6$ and 7.5 Hz), $2.70(\mathrm{dd}, 1 \mathrm{H}, J=$ 15.6 and 7.5 Hz), 2.83 (apparent dt, $1 \mathrm{H}, J=18.1,2.5$, and 2.5 $\mathrm{Hz}), 3.93(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{q}, 2 \mathrm{H}, J=7.2 \mathrm{~Hz}), 4.87$ $(\mathrm{m}, 1 \mathrm{H}), 7.28(\mathrm{br} \mathrm{d}, 1 \mathrm{H}, J=8.4 \mathrm{~Hz}), 7.64(\mathrm{t}, 1 \mathrm{H}, J=7.8 \mathrm{~Hz}$), 7.73 (dd, $1 \mathrm{H}, J=7.8$ and 0.9 Hz); IR (film) 2980, 1730, 1660, 1585, $1270 \mathrm{~cm}^{-1}$; MS, $m / e 344,298,270,257,240 ;$ HRMS, m / e calcd 344.12599 , found 344.1255 .

Acknowledgment. We thank the National Institutes of Health (Grant GM 34342) for financial assistance. M.T.M. thanks the CSIC for a postdoctoral fellowship.

Supplementary Material Available: Experimental conditions and spectral data for compounds in the deoxyfrenolicin series ($7 \mathbf{b}, 9 \mathrm{9b}, 10 \mathrm{~b}$, and 11b) (7 pages). Ordering information is given on any current masthead page.

Stereospecific Arylation of Alkenylsilanes with Arylpalladium Acetates

Kazutoshi Ikenaga*
Department of Industrial Chemistry, Kumamoto Institute of Technology, Ikeda, Kumamoto 860, Japan
Kiyoshi Kikukawa* and Tsutomu Matsuda
Department of Organic Synthesis, Faculty of Engineering, Kyushu University, Hakozaki, Higashi-ku,
Fukuoka 812, Japan

Received September 2, 1986

Abstract

Alkenyltrimethylsilanes ((E) - and $(Z)-\mathrm{RCH}=\mathrm{CHSiMe}_{3}: \mathrm{R}=\mathrm{H}, \mathrm{Ph}, n-\mathrm{C}_{6} \mathrm{H}_{13}$, and $\mathrm{CH}_{3} \mathrm{OCH}_{2}$) stereospecifically reacted at $40^{\circ} \mathrm{C}$ or room temperature with in situ generated phenylpalladium acetate to produce $\mathrm{R}(\mathrm{Ph}) \mathrm{C}=\mathrm{CHSiMe}_{3}$ and $\mathrm{RCH}=\mathrm{C}(\mathrm{Ph}) \mathrm{SiMe}_{3}$ with inversion of their geometry. The arylation of $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$ with arylpalladium acetates gave $(E) \cdot \mathrm{ArCH}=\mathrm{CHSiMe}_{3}\left(\mathrm{Ar}=\mathrm{XPh} ; \mathrm{X}=\mathrm{H}, 4-\mathrm{Me}, 4-\mathrm{MeO}, 4-\mathrm{Br}, 4-\mathrm{I}, 4-\mathrm{EtOCO}\right.$, and $\left.4-\mathrm{NO}_{2}\right)$ in good yields.

Stereospecific transformations of alkenylsilanes by a variety of electrophiles have been developed and utilized in organic synthesis. ${ }^{1}$ However, little is known concerning the reaction of alkenylsilanes with transition-metal organometallics or salts whose catalysis has an important role in $\mathrm{C}-\mathrm{C}$ coupling of main group organometallics with car-bon-based electrophiles. ${ }^{2}$
Reactions of $(E)-\mathrm{PhCH}=\mathrm{CHSiMe}_{3}$ or $(E)-\mathrm{PhCH}=$ CHSiF ${ }_{5}{ }^{2-}$ with palladium salts have been reported to give $(E)-\mathrm{PhCH}=\mathrm{CHPd}$ intermediates through an addition-

[^0]
elimination ${ }^{3}$ or transmetalation ${ }^{4}$ mechanism. Palladiumcatalyzed reactions of $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$ with aryl iodides yield aryl-desilylated products, $\mathrm{ArCH}=\mathrm{CH}_{2} .{ }^{5}$ Recently
(3) Weber, W. P.; Flex, R. A.; Willard, A. K.; Koenig, K. E. Tetrahedron Lett. 1971, 4701.
(4) Yoshida, J.; Tamao, K.; Yamamoto, H.; Kakui, R.; Uchida, T.; Kumada, M. Organometallics 1982, 1, 542.
(5) Hallberg, A.; Westerlund, C. Chem. Lett. 1982, 1993.

Table I. Palladium-Catalyzed Stereospecific Phenylation of Alkenylsilanes 1

entry	1	source of $\mathrm{PhPdOAc}{ }^{\text {a }}$	yields, ${ }^{\text {b }}$ \%	products composition, ${ }^{\text {c }}$ \%				regioselectivity $1-\mathrm{Ph} / 2-\mathrm{Ph}$
				$2(E / Z)$	$3(E / Z)$	$4(E / Z)$	5	
1	(E)-1a	A	69^{d}	42 (5/95)	33	$12(83 / 17)$	13	54/46
2	(E)-1a	B	66	53 (5/95)	35	12		53/47
3	(E)-1a	C	58^{d}	56 (5/95)	34	10		56/44
4	(Z)-1a	A	67^{d}	66 (95/5)	27	6 (99/1)	1	72/28
5	(Z)-1a	B	60	60 (95/5)	30	10		60/40
6	(Z)-1a	C	70^{d}	56 (95/5)	19	25		56/44
7	(E) -1 b	A	$78^{\text {d }}$	6 (0/100)	62 (95/5)	0	32	6/94
8	(E)-1b	B	73	$5(0 / 100)$	60 (98/2)	0	35	5/95
9	(E)-1b	C	46	3 (0/100)	75 (97/3)	0	22	3/97
10	(Z)-1b	A	56^{d}	$44(86 / 14)$	44 (36/64)	2	10	46/54
11	(Z)-1b	B	65	$35(94 / 6)$	57 (30/70)	0	8	35/65
12	(Z)-1b	C	34	43 (86/14)	$39(44 / 56)$	0	18	43/57
13	(E)-1c	A	55^{d}	$10(20 / 80)$	$88(7 / 93)$	0	2	10/90
14	(Z)-1c	A	$64^{\text {d }}$	$45(87 / 13)$	$52(88 / 12)$	2	1	47/53

${ }^{a} \mathrm{PhPdOAc}$ was prepared in situ from the following sources: method $\mathrm{A}, \mathrm{PhN}(\mathrm{NO}) \mathrm{COCH}_{3}, \mathrm{Pd}(\mathrm{dba})_{2}$, and an alkenylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ at 40 ${ }^{\circ} \mathrm{C}$ for 2 h ; method $\mathrm{B}, \mathrm{Ph}_{3} \mathrm{Sb}, \mathrm{Pd}(\mathrm{OAc})_{2}$, and an alkenylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$ for 2 h ; and method $\mathrm{C}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{Pd}(\mathrm{OAc})_{2}$, and an alkenylsilane in $\mathrm{CH}_{3} \mathrm{CN}$ at $40^{\circ} \mathrm{C}$ for $2 \mathrm{~h} .{ }^{b} \mathrm{GLC}$ yields based on $\mathrm{PhN}(\mathrm{NO}) \mathrm{COCH}_{3}(\operatorname{method} \mathrm{~A})$ or on $\mathrm{Pd}(\mathrm{OAc}){ }_{2}$ (method B and C). ${ }^{\text {c Determined by }}$ GLC. ${ }^{d}$ Isolated yields.
we reported a facile aryl desilylation of (E)- and (Z)$\mathrm{RCH}=\mathrm{CHSiMe}_{3}$ with arylpalladium tetrafluoroborates ($[\mathrm{ArPd}]^{+} \mathrm{BF}_{4}^{-}$) generated from $\mathrm{ArN}_{2} \mathrm{BF}_{4}$ and bis(dibenzylidenacetone) palladium $(0)\left(\mathrm{Pd}(\mathrm{dba})_{2}\right)^{.6-8}$ Both E and Z isomers give $(E)-\mathrm{RCH}=\mathrm{CHAr}$ and $\mathrm{R}(\mathrm{Ar}) \mathrm{C}=\mathrm{CH}_{2}$ (Scheme I).
In contrast to these desilylating reactions, herein we report a stereospecific and nondesilylating arylation of (E)and (Z) - $\mathrm{RCH}=\mathrm{CHSiMe}_{3}$ with arylpalladium acetates (ArPdOAc) generated from various sources. ${ }^{9}$

Results

Phenylation of (E) - and (Z) $-\mathrm{RCH}=\mathrm{CHSiMe}_{3}$ with PhPdOAc. The following three methods were employed to generate PhPdOAc because of their mild conditions and availability of starting materials (eq 1-3). With respect
method A^{10}
$\mathrm{PhN}(\mathrm{NO}) \mathrm{COCH}_{3}+\mathrm{Pd}(0)(\mathrm{dba})_{2} \rightarrow \mathrm{PhPdOAc}+\mathrm{N}_{2}$
method B^{11}
$\mathrm{Ph}_{3} \mathrm{Sb}+\mathrm{Pd}^{\mathrm{II}}(\mathrm{OAc})_{2} \rightarrow \mathrm{PhPdOAc}+\mathrm{Ph}_{2} \mathrm{Sb}(\mathrm{OAc})$
method C^{12}

$$
\begin{equation*}
\mathrm{Ph}_{3} \mathrm{P}+\mathrm{Pd}^{\mathrm{I}}(\mathrm{OAc})_{2} \rightarrow \mathrm{PhPdOAc}+\mathrm{Ph}_{2} \mathrm{P}(\mathrm{OAc}) \tag{3}
\end{equation*}
$$

to palladium, method A is catalytic, whereas methods B and C are stoichiometric. Irrespective of the method of generation, PhPdOAc easily reacted with (E) - and (Z)$\mathrm{RCH}=\mathrm{CHSiMe} 3_{3}\left(\mathrm{R}=\mathrm{Ph}(\mathbf{1 a}), n-\mathrm{C}_{6} \mathrm{H}_{13}\right.$ (1b), and $\mathrm{CH}_{3} \mathrm{O}-$ $\left.\mathrm{CH}_{2}(1 \mathrm{c})\right)$ at $25^{\circ} \mathrm{C}$ or $40^{\circ} \mathrm{C}$ for 2 h . The structure of 1 does not affect the rate, therefore the generation of PhPdOAc may determine the rate of phenylation. In contrast to the reactions with $[\mathrm{PhPd}]^{+} \mathrm{BF}_{4}^{-}$, either E or

[^1]Z isomers stereospecifically produced phenylated alkenylsilanes 2 and 3 as major products (eq 4 and Table I). (E) - or $(Z)-\mathrm{RCH}=\mathrm{CHSiMe}_{3}+\mathrm{PhPdOAc} \rightarrow$
\[

$$
\begin{gather*}
\mathrm{RCH}=\stackrel{\mathrm{C}(\mathrm{Ph}) \mathrm{SiMe}_{3}}{2 \mathrm{a}-\mathrm{c}(\mathrm{Ph}) \mathrm{C}=\mathrm{CHSiMe}_{3}+} \\
\mathrm{RCH}=\mathrm{CHPh}+\mathrm{Ra}\left(\mathrm{c}(\mathrm{Ph}) \mathrm{C}=\mathrm{CH}_{2}\right. \\
4 \mathrm{a}-\mathbf{c}
\end{gather*}
$$
\]

$$
\mathbf{a}, \mathrm{R}=\mathrm{Ph} ; \mathbf{b}, \mathrm{R}=n-\mathrm{C}_{6} \mathrm{H}_{13} ; \mathbf{c}, \mathrm{R}=\mathrm{CH}_{3} \mathrm{OCH}_{2}
$$

The exact isomer ratio of $\mathbf{2 a}$ could not be determined because the retention time of (Z)-2a on GLC was very close to that of 3a. After separation of the isomers by medium pressure column chromatography (silica gel-hexane), the ${ }^{1} \mathrm{H}$ NMR spectra of (E)-2a did not show the resonance of (Z)-2a and vice versa. The geometry of the starting silanes were inverted in the products, although the stereospecificity considerably varied with the structure of alkenylsilanes. In the case of (E)-1b and (E)-1c, 2 -phenylated products 3 and 5 were selectively produced, whereas 1a, $(Z)-1 \mathbf{b}$, and (Z)-1c yielded comparable amounts of 1 - and 2-phenylated products.
Arylation of $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$ with ArPdOAc. The present results prompted us to examine the synthesis of substituted styrylsilanes by the arylation of $\mathrm{CH}_{2}=$ CHSiMe_{3} (6) with ArPdOAc. Since a variety of substituted N -nitroso- N -arylacetamides ($\mathrm{ArN}(\mathrm{NO}) \mathrm{COCH}_{3}, 7 \mathrm{a}-\mathrm{g}$) are easily available, ${ }^{13}$ method A was employed to generate ArPdOAc. All substituents on 7 examined here could be successfully used in this arylation and (E)-ArCH= $\mathrm{CHSiMe}_{3}(8 \mathrm{a}-\mathrm{g})$ were obtained as the main products (eq 5 and Table II). Pure $8 \mathbf{a}-\mathbf{g}$ were easily separated from the reaction mixture in good yields by medium pressure column chromatography (silica gel-hexane). Generally an electron-withdrawing group on 7 gave good results.

a. $A r=P h ; b, A r=4-\mathrm{MePh} ; c, A r=4-\mathrm{MeOPh} ; \mathrm{d}, \mathrm{Ar}=4-\mathrm{BrPh}$; e, $A r=4-I P h ; f, A r=4-E t O C O P h ; \theta, A r=4-\mathrm{NO}_{2} \mathrm{Ph}$
(13) Carcia, J.; Gonzales, J.; Segura, R.; Urpi, F.; Vilarrasa, J. J. Org. Chem. 1984, 49, 3322.

Table II. Palladium-Catalyzed Arylation of $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}$ (6) with $\mathrm{ArN}(\mathrm{NO}) \mathrm{COCH}_{3}$ (7a-g)

entry	Ar in 7	$\mathrm{Pd}(\mathrm{dba})_{2}, \mathrm{~mol} \%$	reactn time, h	yields, ${ }^{a} \%$	products composition, ${ }^{\text {b }}$ \%		
							$\mathrm{ArCH}=\mathrm{CH}_{2}$
$15^{\text {c }}$	Ph (7a)	2	1.0	79	(E)-89 (94)	9a (6)	f
$16^{\text {c }}$	7a	10	2.0	80	(E) $\mathbf{8} \mathbf{a}$ (96)	9 a (4)	f
$17^{\text {d }}$	7a	20	0.3	82^{e}	(E)-8a (92)	9 a (5)	10a (3)
$18^{\text {c }}$	4-MePh (7b)	10	1.5	50	(E)-8b (94)	9 b (4)	10 b (2)
19^{d}	7b	10		54	(E)-8b (92)	9 b (5)	10b (3)
$20^{\text {c }}$	4-MeOPh (7c)	10	1.0	56	(E)-8c (92)	9 c (5)	10c (3)
$21^{\text {d }}$	$4-\mathrm{BrPh}(7 \mathrm{~d})$	10	2.0	81	(E)-8d (94)	9 d (5)	10d (1)
$22^{\text {d }}$	4-IPh (7e)	10	1.5	75	(E)-8e (76)	9 e (5)	$10 \mathrm{e}(19)^{\text {g }}$
$23^{\text {d }}$	$4-\mathrm{NO}_{2} \mathrm{Ph}(7 \mathrm{f})$	10	1.5	75	(E) $\mathbf{8 f}$ (88)	9 f (8)	10 f (4)
$24^{\text {c }}$	7 f	20	2.0	56^{e}	(E)-8f (83)	9 f (9)	10 f (8)
25^{d}	4-EtOCOPh (7g)	10	1.0	83	(E)-89 (91)	9g (6)	$10 \mathrm{~g}(3)^{\mathrm{g}}$

${ }^{a}$ Isolated yields based on 7. ${ }^{b}$ The mol \% compositions of the products were determined by direct GC analysis of the crude mixture. ${ }^{\circ}$ Employed 6 equivalent to 7 . 'Used 3 mol of 6 to 1 mol of 7 . ${ }^{e} \mathrm{GC}$ yields based on 7 . ${ }^{f}$ Not detected. ${ }^{8}$ Involved unknown products.

Discussion
The stereochemistry of the present reactions can be easily explained in terms of syn addition of ArPdOAc and syn elimination of HPdOAc as in the Heck arylation (Scheme II). ${ }^{14}$

The marked difference between the reactions with [ArPd] ${ }^{+} \mathrm{BF}_{4}^{-}$and ArPdOAc can be accounted for by the difference in the elimination pathway from the adducts formed by the syn addition of the ArPd species for each reaction (Scheme III). In the adduct 15, the cationic nature of the palladium and the presence of $\mathrm{BF}_{4}{ }^{-}$may facilitate the elimination of the $\mathrm{Me}_{3} \mathrm{Si}$ group. ${ }^{6,7}$ On the contrary, the tighter coordination of OAc^{-}to palladium in the adduct 11 may promote the syn elimination of HPdOAc.

[^2]Deuteriated (E)- and (Z) $-n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}=\mathrm{CDSiMe}_{3}((E)$ and (Z)-16) were used to get more information about the stereochemistry of the present arylation (eq 6 and 7).

Since the minor products 18,19 , and 21 could not be isolated in pure form, the deuterium contents shown in parentheses in the equations were determined by ${ }^{1} \mathrm{H}$ NMR measurements of the product mixture. Thus the deuterium contents have considerable experimental errors. It can be concluded that (i) the deuterium in 16 was virtually retained in 17, 20, 22, and 24 and was virtually lost in 18, 19, and 23 and (ii) some of the deuterium was lost in 21. The reaction pathways described in Scheme II clearly explain the loss of deuterium in 19 and 23.

The stereospecific formation of 20 from $(E)-16$ and that of 24 from (Z)-16 are noticeable. The following two processes can be considered for the formation of desilylated products: (i) protodesilylation from 17 (or 22) and (ii) the direct elimination of $\mathrm{Me}_{3} \mathrm{SiPd}(\mathrm{OAc})$ moiety from the ad-
duct 25 and 26. The desilylation of 17 (or 22) was very slow under the present reaction conditions. The product ratios described in eq 6 and 7 were virtually constant during the reactions. Furthermore, protodesilylation generally proceed with retention of the geometry. ${ }^{1}$ Therefore 20 and 24 must directly arise from the adduct 25 and 26, respectively, as shown in Scheme IV.

The regiochemistry of the arylation depends on the substituents and the geometry of 1 . The electronic and steric factors of substituents on olefins affect the orientation of the addition of ArPdX. The aryl group of ArPdX usually binds to the carbon atom possessing the less bulky and more electron-donating group. ${ }^{14}$ The order of elec-tron-donating effect of 2-substituents on $1\left(n-\mathrm{C}_{6} \mathrm{H}_{13}>\right.$ $\mathrm{CH}_{3} \mathrm{OCH}_{2}>\mathrm{Ph}$) and the bulkiness ($\mathrm{Ph}>n-\mathrm{C}_{6} \mathrm{H}_{13} \approx$ $\mathrm{CH}_{3} \mathrm{OCH}_{2}$) easily account for the order of regioselectivity for 2-phenylation in the substrates of the same geometry, i.e., $\mathbf{l b} \gtrsim 1 \mathbf{c}>1$ a. At present, there is no clear-cut explanation for the remarkable difference in the regioselectivity between the E and Z substrates. The steric factor of the substituents on 1 seems to be a principal reason for the difference. Usually the steric effect works more effectively in E isomers than Z isomers in the coordination of olefins to palladium(II). ${ }^{15}$ Since, the $\mathrm{Me}_{3} \mathrm{Si}$ group is the most bulky substituent in 1, its steric effect, giving 2-phenylated products, may be more effective in (E)-1a-c than (Z)-1a-c.

Since 7 with various substituents are easily available from aniline derivatives, the present arylation with 7 provides a convenient procedure for preparation of 8 a bearing polar functional group. The chemoselective formation of the halo-substituted 8 showed the high reactivity of N -nitrosoamide group to zero-valent palladium.

Experimental Section

IR and ${ }^{1} \mathrm{H}$ NMR spectra were measured by using JASCO Model IR-E spectrometer and Hitachi R24B NMR spectrometer using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as the internal reference, respectively. GLC analyses were performed with a Shimazu GC-8A chromatography (FID) using a 2,1 , or $0.6 \mathrm{~m} \times 4 \mathrm{~mm}$ column (5% SE- 30 or 5% Thermon 1000). GLC yields were determined by using diamyl ether and dioctyl ether as internal standards.

Materials. Acetonitrile was distilled from phosphorus pentoxide (twice) and calcium hydride under nitrogen. Arylamines and triphenylantimony were obtained commercially. Liquid arylamines were distilled before use. ArNHCOCH 3 were prepared from ArNH_{2} and $\mathrm{Ac}_{2} \mathrm{O}$ and recrystallized from ethanol. $\mathrm{ArN}(\mathrm{N}-$ 0) $\mathrm{COCH}_{3}(7 \mathrm{a}-\mathrm{g})$ were prepared according to the modified method of Carcia et al. ${ }^{13} \quad \mathrm{~N}_{2} \mathrm{O}_{4}$ (10 times excess) generated from $\mathrm{Cu}-$ concentrated HNO_{3} was introduced to a solution of ArNHCOCH in $\mathrm{Ac}_{2} \mathrm{O}$ with NaOAc at -40 to $-20^{\circ} \mathrm{C}$. In the present method, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was replaced by $\mathrm{Ac}_{2} \mathrm{O}$ as a solvent because of the easy decomposition of 7 during the purification by column chromatography (silica gel $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$). After ordinary workup from the resulting green solution, $7 \mathrm{a}-\mathrm{g}$ were obtained and stored under nitrogen at $-20^{\circ} \mathrm{C} . \mathrm{Pd}(\mathrm{dba})_{2}{ }^{16}$ and $\mathrm{Pd}(\mathrm{OAc})_{2}{ }^{17}$ were prepared by the published methods. $(E)-\mathrm{RCH}=\mathrm{CHSiMe}_{3}$ ($1 \mathrm{a}-\mathrm{c}$) and Z isomers were prepared through hydrosilation ${ }^{18}$ of acetylenes and hydroalumination ${ }^{19}$ of (trimethylsilyl)acetylenes, respectively. $\mathrm{CH}_{2}=\mathrm{CHSiMe}_{3}(6)$ was obtained by methylation of $\mathrm{CH}_{2}=\mathrm{CH}$ SiCl_{3} with MeMgBr in dibutyl ether. (E)- and $(Z)-n$ -

[^3]$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{CH}=\mathrm{CDSiMe}_{3}$ (16) were prepared from hydrosilation of $n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{CD}$ and deuterolysis of hydroalumination products of $n-\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{C} \equiv \mathrm{CSiMe}_{3}$, respectively. The structure and purity of starting alkenylsilanes were confirmed by ${ }^{1} \mathrm{H}$ NMR and \mathbb{R} spectra and GC analysis. Isomeric purity estimated by GC of those alkenylsilanes was 99.9% or more except for (Z)-1a (96.0%) and (E)-1c (99.5%). Deuterium contents estimated by NMR of (E)-16 and (Z)-16 were 96% and 94%, respectively.

General Procedure of Arylation. Method A (eq 1). To a thermostated cell equipped with gas buret under nitrogen were added 0.5 mmol of N -nitroso- N -arylacetamide (7), 1 mmol of alkenyltrimethylsilane (1), 0.1 mmol of $\mathrm{Pd}(\mathrm{dba})_{2}$, and 5 mL of dry acetonitrile. Smooth evolution of gas was started by warming the mixture to $40^{\circ} \mathrm{C}$. The mixture was stirred for 1 h . Method B (eq 2). The reaction was carried out by addition of 0.2 mmol of $\mathrm{Pd}(\mathrm{OAc})_{2}$ to a solution of 0.2 mmol of $\mathrm{Ph}_{3} \mathrm{Sb}, 0.5 \mathrm{mmol}$ of 1 , and 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $25^{\circ} \mathrm{C}$. The solution was stirred for 2 h . Method C (eq 3). The reaction was started by addition of 0.5 mmol of $\mathrm{Ph}_{3} \mathrm{P}$ to a solution of 0.5 mmol of $\mathrm{Pd}(\mathrm{OAc})_{2}, 1 \mathrm{mmol}$ of 1 , and 5 mL of $\mathrm{CH}_{3} \mathrm{CN}$ at $40^{\circ} \mathrm{C}$. The mixture was stirred for 1 h . After reactions were completed, 50 mL of diethyl ether was added to the mixture. The diluted solution was filtered to remove precipitated palladium. The product ratios were determined by GC analysis of the filtrate after an appropriate internal standard was added. The mixture was washed with aqueous sodium bicarbonate and brine and then dried over anhydrous magnesium sulfate. The filtrate was condensed in vacuo. The residue was purified by column chromatography (silica gel-hexane) and/or distillation (Kugelrohr). The stereochemistries of (E)- and (Z)-2a, $(E)-2 \mathrm{c}$, and (E) - and (Z)-3c were assigned by NMR spectra of their epoxides which were prepared by the reaction with peroxybenzoic acid in CHCl_{3}.
((E)-1,2-Diphenylvinyl)trimethylsilane (E)-2a) ((E) $\mathbf{P h C H a}^{-}=\mathbf{C}(\mathbf{P h})$ SiMe $_{3}{ }^{\text {b }}$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 6.7(\mathrm{~s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{b}}$ 0.14 (s, 9 H). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Si}$: C, 80.87; H, 8.00. Found: C, 80.90; H, 8.08 .
((Z)-1,2-Diphenylvinyl)trimethylsilane ($(Z)-2 a)((Z)$ $\mathbf{P h C H}{ }^{\mathrm{a}}=\mathbf{C}(\mathbf{P h})$ SiMe $_{3}{ }^{\mathrm{b}}$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta \mathrm{H}^{\mathrm{a}} 7.24(\mathrm{~s}, 1 \mathrm{H})$, $\mathrm{H}^{\mathrm{b}}-0.06$ (s, 9 H). Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Si}$: C, 80.87; H, 8.00. Found: C, 81.02; H, 7.93.
(2,2-Diphenylvinyl)trimethylsilane (3a) ($\mathrm{Ph}_{2} \mathrm{C}=$ CH ${ }^{\mathrm{a} S i M e}{ }_{3}{ }^{\mathrm{b}}$): ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta \mathrm{H}^{\mathrm{a}} 6.21(\mathrm{~s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{b}}-0.13$ (s, $9 \mathrm{H})$ [lit. ${ }^{20} \mathrm{H}^{\mathrm{a}} 6.91, \mathrm{H}^{\mathrm{b}}-0.12$]. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{Si}: \mathrm{C}, 80.87$; H, 8.00. Found: C, 80.93; H, 7.97.

Epoxide of (E)-2a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 4.13(\mathrm{~s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{b}}$ 0.22 (s, 9 H) [lit. ${ }^{21}$ 4.24, $\mathrm{H}^{\mathrm{b}} 0.32$]. Epoxide of (Z)-2a: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 3.95(\mathrm{~s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{b}} 0.05(\mathrm{~s}, 9 \mathrm{H})$.

((E)-1-Phenyl-1-n-octenyl)trimethylsilane ((E)-2b) $\left((\boldsymbol{E})-\boldsymbol{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathbf{C H}_{2}{ }^{\mathrm{a}} \mathbf{C H}^{\mathrm{b}}=\mathbf{C}(\mathbf{P h}) \mathrm{SiMe}_{3}{ }^{\mathrm{c}}\right):{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}}$ $1.85-2.30(\mathrm{br}), \mathrm{H}^{\mathrm{b}} 5.96\left(\mathrm{t}, J_{\mathrm{ba}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), \mathrm{H}^{\mathrm{c}} 0.11(\mathrm{~s}, 9 \mathrm{H})$.
((E)-2-Phenyl-1-n-octenyl)trimethylsilane ($(E)-3 b)$ $\left((\boldsymbol{E})-\boldsymbol{n}-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CH}_{2}{ }^{\mathrm{a}} \mathbf{C}(\mathbf{P h})=\mathrm{CH}^{\mathrm{b}} \mathrm{SiMe}_{3}{ }^{\mathrm{c}}\right):{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}}$ 2.45-2.93 (br), $\mathrm{H}^{\mathrm{b}} 5.77$ ($\mathrm{s}, 1 \mathrm{H}$), $\mathrm{H}^{\mathrm{c}}-0.15$ (s, 9 H).
((Z)-2-Phenyl-1-n-octenyl)trimethylsilane ((Z)-3b) $\left((Z)-n-\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{CH}_{2}{ }^{\mathrm{a}} \mathbf{C}(\mathbf{P h})=\mathrm{CH}^{\mathrm{b}} \mathrm{SiMe}_{3}{ }^{\mathrm{c}}\right.$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}}$ $2.30-2.76(\mathrm{br}), \mathrm{H}^{\mathrm{b}} 5.54\left(\mathrm{t}, J_{\mathrm{ba}}=1.33 \mathrm{~Hz}, 1 \mathrm{H}\right), \mathrm{H}^{\mathrm{c}} 0.11(\mathrm{~s}, 9 \mathrm{H})$.
((\boldsymbol{E})-3-Methoxy-1-phenylpropenyl)trimethylsilane $((E)-2 c)\left((E)-\mathrm{Me}^{\mathrm{a}} \mathrm{OCH}_{2}{ }^{\mathrm{b}} \mathrm{CH}^{\mathrm{c}}=\mathrm{C}(\mathbf{P h}) \mathrm{SiMe}_{3}{ }^{\mathrm{d}}\right):{ }^{1} \mathrm{H}$ NMR (CD-
(20) Grobel, B. T.; Seebach, D. Chem. Ber. 1977, 110, 852.
(21) The NMR spectra are those of authentic sample prepared from the following reactions. The NMR spectra of epoxide of (E)-2a were nearly in agreement with those of the authentic sample.

$\left.\mathrm{Cl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 3.27(\mathrm{~s}, 3 \mathrm{H}), \mathrm{H}^{\mathrm{b}} 3.80\left(\mathrm{~d}, J_{\mathrm{bc}}=5.87 \mathrm{~Hz}, 2 \mathrm{H}\right), \mathrm{H}^{\mathrm{c}} 6.14$ ($\mathrm{t}, J_{\mathrm{cb}}=5.87 \mathrm{~Hz}, 1 \mathrm{H}$), $\mathrm{H}^{\mathrm{d}} 0.16(\mathrm{~s}, 9 \mathrm{H})$.
((E)-3-Methoxy-2-phenylpropenyl)trimethylsilane $((E)-3 c)\left((E)-\mathbf{M e}^{\mathrm{a}} \mathrm{OCH}_{2}{ }^{\mathrm{b}} \mathrm{C}(\mathbf{P h})=\mathrm{CH}^{\mathrm{c}} \mathrm{SiMe}_{3}{ }^{\mathrm{d}}\right)$: ${ }^{\mathrm{I}} \mathrm{H}$ NMR (CD$\left.\mathrm{Cl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 3.42(\mathrm{~s}, 3 \mathrm{H}), \mathrm{H}^{\mathrm{b}} 4.08\left(\mathrm{~d}, J_{\mathrm{bc}}=1.47 \mathrm{~Hz}, 2 \mathrm{H}\right), \mathrm{H}^{\mathrm{c}} 5.90$ $\left(\mathrm{t}, J_{\mathrm{cb}}=1.47 \mathrm{~Hz}, 1 \mathrm{H}\right), \mathrm{H}^{\mathrm{d}}-0.08(\mathrm{~s}, 9 \mathrm{H})$.
((Z)-3-Methoxy-2-phenylpropenyl)trimethylsilane $((Z)-3 \mathrm{c})\left((Z)-\mathrm{Me}^{\mathrm{a}} \mathrm{OCH}_{2}{ }^{\mathrm{b}} \mathbf{C}(\mathbf{P h})=\mathrm{CH}^{\mathrm{c} S i M e}{ }^{\mathrm{d}}\right):{ }^{1} \mathrm{H}$ NMR (CD$\left.\mathrm{Cl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 3.42(\mathrm{~s}, 3 \mathrm{H}), \mathrm{H}^{\mathrm{b}} 4.43(\mathrm{~s}, 2 \mathrm{H}), \mathrm{H}^{\mathrm{c}} 6.12(\mathrm{~s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{d}} 0.36$ ($\mathrm{s}, 9 \mathrm{H}$).

Epoxide of (E)-2c: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 3.02(\mathrm{~s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{b}}$ $-0.20(\mathrm{~s}, 9 \mathrm{H})$. Epoxide of $(\boldsymbol{E})-3 \mathrm{c}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 2.44$ $(\mathrm{s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{b}} 0.07(\mathrm{~s}, 9 \mathrm{H})$. Epoxide of $(\boldsymbol{Z})-3 \mathrm{c}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta \mathrm{H}^{\mathrm{a}} 2.15(\mathrm{~s}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{b}} 0.33(\mathrm{~s}, 9 \mathrm{H})$.

Arylation of Vinyltrimethylsilane. ($E)$-2-Phenylvinyl)trimethylsilane (8a) and (1-Phenylvinyl)trimethylsilane (9a). The reaction was carried out through method A and employed $5 \mathrm{mmol}(0.50 \mathrm{~g})$ of vinyltrimethylsilane (6), $5 \mathrm{mmol}(0.82$ g) of $7 \mathrm{a}, 0.5 \mathrm{mmol}(0.29 \mathrm{~g})$ of $\mathrm{Pd}(\mathrm{dba})_{2}$, and 50 mL of $\mathrm{CH}_{3} \mathrm{CN}$.

After completion of the gas evolution, the mixture was diluted with 100 mL of diethyl ether. The usual workup and purification by column chromatography (silica gel-hexane) gave 8a and 9a ($0.71 \mathrm{~g}, 80 \%$, $8 \mathrm{a}: 9 \mathrm{a}=94: 6$). $(\boldsymbol{E}) \mathbf{- P h C H}=\mathrm{CHSiMe}_{3}$ (8a): Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{Si}: \mathrm{C}, 74.91 ; \mathrm{H}, 9.16$. Found: $\mathrm{C}, 74.76 ; \mathrm{H}, 9.25$. (E) $-4-\mathrm{MeC}_{6} \mathrm{H}_{4} \mathrm{CH}=\mathrm{CHSiMe}_{3}$ (8b): Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18}$ Si: C, 75.70 ; H, 9.55 . Found: $\mathrm{C}, 75.91 ; \mathrm{H}, 7.90$. (E)-4$\mathbf{M e}^{\mathrm{a}} \mathbf{O C}_{6} \mathbf{H}_{4} \mathbf{C H}^{\mathrm{b}}=\mathrm{CH}^{\mathrm{c}} \mathrm{SiMe}_{3}{ }^{\mathrm{d}}$ (8c): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 3.87$ $(\mathrm{s}, 3 \mathrm{H}), \mathrm{H}^{\mathrm{b}} 6.90\left(\mathrm{~d}, J_{\mathrm{bc}}=19.7 \mathrm{~Hz}, 1 \mathrm{H}\right), \mathrm{H}^{\mathrm{c}} 6.24\left(\mathrm{~s}, J_{\mathrm{cb}}=19.7\right.$ $\mathrm{Hz}, 1 \mathrm{H}), \mathrm{H}^{\mathrm{d}} 0.40(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{OSi}: \mathrm{C}, 69.83$; H , 8.81. Found: $\mathrm{C}, 72.00 ; \mathrm{H}, 9.16$. (E)-4$\mathrm{CH}_{3}{ }^{a} \mathrm{CH}_{2}{ }^{\mathrm{b}} \mathrm{OCOC}_{6} \mathrm{H}_{4} \mathrm{CH}^{\mathrm{c}}=\mathrm{CH}^{\mathrm{d}} \mathrm{SiMe}_{3}{ }^{\mathrm{e}}(8 \mathrm{~g}):{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta \mathrm{H}^{\mathrm{a}} 1.50\left(\mathrm{t}, J_{\mathrm{ab}}=6.0 \mathrm{~Hz}, 3 \mathrm{H}\right), \mathrm{H}^{\mathrm{b}} 4.35\left(\mathrm{q}, J_{\mathrm{ba}}=6.0 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $\mathrm{H}^{\mathrm{c}} 6.92\left(\mathrm{~d}, J_{\mathrm{cd}}=1.87 \mathrm{~Hz}, 1 \mathrm{H}\right), \mathrm{H}^{\mathrm{d}} 6.47\left(\mathrm{~d}, J_{\mathrm{dc}}=18.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $\mathrm{H}^{e} 0.42(\mathrm{~s}, 9 \mathrm{H})$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2} \mathrm{Si}: \mathrm{C}, 67.68 ; \mathrm{H}, 8.13$. Found: $\mathrm{C}, 68.20 ; \mathrm{H}, 8.18$. 4-EtOCOC $\mathbf{6}_{6} \mathbf{H}_{4}(\mathbf{M e} \mathbf{3} \mathbf{S i}) \mathrm{C}=\mathrm{CH}_{2}{ }^{a, b}(\mathbf{9 g})$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 5.79\left(\mathrm{~d}, J_{\mathrm{ab}}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), \mathrm{H}^{\mathrm{b}} 5.60\left(\mathrm{~d}, J_{\mathrm{ba}}\right.$ $=2.9 \mathrm{~Hz}, 1 \mathrm{H}$).

Reactions of (E)- and (Z)-n-C $\mathbf{C}_{13} \mathrm{CH}=\mathrm{CDSiMe}_{3}$ with $\mathbf{P h N}(\mathbf{N O}) \mathbf{C O C H}_{3}$. The same procedure with that described above was employed with $2.4 \mathrm{mmol}(0.45 \mathrm{~g})$ of $(E)-16,1.5 \mathrm{mmol}$ (0.25 g) of $7 \mathrm{a}, 0.6 \mathrm{mmol}\left(0.35 \mathrm{~g}\right.$) of $\mathrm{Pd}(\mathrm{dba})_{2}$, and 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$, or with $2.4 \mathrm{mmol}(0.45 \mathrm{~g})$ of $(Z)-16,2.0 \mathrm{mmol}(0.33 \mathrm{~g})$ of $7 \mathrm{a}, 0.4$ $\mathrm{mmol}(0.23 \mathrm{~g})$ of $\mathrm{Pd}(\mathrm{dba})_{2}$, and 10 mL of $\mathrm{CH}_{3} \mathrm{CN}$. The ordinary workup and Kugelrohr distillation gave arylated alkenylsilanes and n-octenes in $51 \%(0.20 \mathrm{~g})$ yield from $(E)-16$ and in $40 \%(0.21$ g) yield from (Z)-16. The stereochemistries of 17-20 and 21-24 were confirmed by NMR spectra of them and by their retention times on GC with those products from entries 7 and 10 , respectively. Deuterium contents of products were estimated by NMR spectra of mixtures of them. $(E)-n-\mathrm{C}_{6} \mathrm{H}_{13}(\mathrm{Ph}) \mathrm{C}=\mathrm{CDH}^{a}$ (20): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{a} 5.14(\mathrm{~s}) .{ }^{22}(\boldsymbol{Z})-\boldsymbol{n}-\mathrm{C}_{6} \mathrm{H}_{13}(\mathbf{P h}) \mathrm{C}=\mathrm{CH}^{\mathrm{a}} \mathbf{D}(24)$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 5.02(\mathrm{t}, J=1.3 \mathrm{~Hz}) .{ }^{22}$
(22) The NMR spectra were compared with those of $\mathrm{I}\left(\mathrm{R}=n-\mathrm{C}_{6} \mathrm{H}_{13}\right)$ prepared from the palladium-catalyzed reaction of $(E)-\mathrm{RCH}=\mathrm{CHSiMe}_{3}$ with $\mathrm{PhN}_{2} \mathrm{BF}_{4}:{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{H}^{\mathrm{a}} 5.09(\mathrm{~m}), \mathrm{H}^{\mathrm{b}} 5.27(\mathrm{~m})$. Cf. the spectra were in fair agreement with those of α-methylstyrene (II): H^{a} $5.02, \mathrm{H}^{\mathrm{b}} 5.28$; Jackman, L. M.; Wiley, R. H. J. Chem. Soc. 1960, 2881.

II

[^0]: (1) (a) Chan, T. H.; Fleming, I. Synthesis 1979, 761. (b) Colvin, E. W. Silicon in Organic Synthesis; Butterworth: London, 1981; p 44. (c) Weber, W. P. Silicon Reagents for Organic Synthesis; Springer-Verlag: Berlin, 1983; p 79. (d) Magnus, P. D.; Sarkar, T.; Djuric, S. Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, G. A., Abel, E. W., Eds.; Pergamon Press: New York, 1983; Vol. 8, Chapter 48.4.
 (2) Collman, J. P.; Hegedus, L. S. Principle and Application of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1980.

[^1]: (6) Kikukawa, K.; Ikenaga, K.; Wada, F.; Matsuda, T. Chem. Lett. 1983, 1337.
 (7) Ikenaga, K.; Kikukawa, K.; Matsuda, T. J. Chem. Soc., Perkin Trans. 1 1986, 1959.
 (8) Kikukawa, K.; Ikenaga, K.; Kono, K.; Toritani, K.; Wada, F.; Matsuda, T. J. Organomet. Chem. 1984, 270, 277.
 (9) A part of this paper was preliminary communicated: Kikukawa, K.; Ikenaga, K.; Wada, F.; Matsuda, T. Tetrahedron Lett. 1984, 25, 5789.
 (10) Kikukawa, K.; Naritomi, M.; He, G.-X.; Wada, F.; Matsuda, T. J. Org. Chem. 1985, $50,299$.
 (11) Kawamura, T.; Kikukawa, K.; Takagi, M.; Matsuda, T. Bull. Chem. Soc. Jpn. 1977, 50, 2021.
 (12) Kikukawa, K.; Matsuda, T. J. Organomet. Chem. 1982, 235, 247.

[^2]: (14) (a) Heck, R. F. Acc. Chem. Res. 1979, 12, 146; (b) Palladium Reagents in Organic Syntheses; Academic Press: London, 1985; p 268.

[^3]: (15) Henry, P. M. J. Am. Chem. Soc. 1966, 88, 1595.
 (16) Ukai, T.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253.
 (17) Stephenson, T. A.; Morehouse, S. M.; Powell, A. R.; Heffer, J. P.; Wilkinson, G. J. Chem. Soc. 1965, 3632.
 (18) Tamao, K.; Yoshida, J.; Yamamoto, H.; Kakui, T.; Matsumoto, H.; Takahashi, M.; Kurita, A.; Murata, M.; Kumada, M. Organometallics 1982, 1, 355.
 (19) Miller, R. B.; McGarvey, G. J. Org. Chem. 1978, 43, 4420.

