
LETTER 1197
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Abstract: Two N-benzylated analogues of the antioxidant, radical
scavenging, and neuroprotective alkaloid neoechinulin A were pre-
pared. Since, according to SAR studies, stereochemistry does not
play an important role, both analogues were prepared in racemic
form, using enaminone chemistry.

Key words: N-benzylated alkaloid analogues, neoechinulin A,
diketopiperazines, enaminones, 2-isoprenylated, 2-prenylated in-
doles

Neoechinulin A is a simple indole alkaloid most abun-
dantly produced by microorganisms of Aspergillus sp.,
such as A. amstelodami,2 A. ruber3 and A. repens,4 others
including Eurotium rubrum,5 Xylaria euglossa,6 Chaeto-
mium globosum,7 and plants like Bridelia ferruginea.8

The alkaloid has been isolated from these species by sev-
eral research groups and also its total synthesis was al-
ready accomplished.9 In the literature there are several
reports on the strong antioxidant, radical scavenging, and
neuroprotective properties of neoecinulin A. Doi et al. re-
ported antioxidative activities in ferric thiocyanate and
thiobarbituric acid tests in which neoechinulin A showed
better antioxidative activity than a-tocopherol.4 Son et al.
demonstrated very good free radical scavenging activity
of neoechinulin A in a DPPH (1,1-diphenyl-2-picrylhy-
drazyl) assay;10 while Arai et al. reported neuronal cell
protective properties of neoechinulin A against peroxy-
nitrite, a very potent reactive nitrogen species (RNS) ca-
pable of oxidizing biomolecules and nitrating tyrosine
residues. Peroxynitrite is formed from nitric oxide and su-
peroxide, endogenous free radicals present in several
pathogenic processes including sepsis,11 Alzheimer’s and
Parkinson’s disorders.12 Neoechinulin A thus represents
an interesting lead compound for the design of new thera-
peutics for the treatment of peroxynitrite caused disorders.

Recently, we have demonstrated that enaminones can be
successfully used in the synthesis of various heterocyclic
systems13 and some simple diketopiperazine-based indole
alkaloid analogues with the a,b-unsaturated Trp moiety,
such as dipodazine,14 tryprostatin B,15 and others like
meridianines16 and aplysinopsines.17 Based on our previ-
ous work and the SAR studies of Arai et al.,18 we envis-
aged preparing novel neoechinulin A analogues. As
reported earlier, the diketopiperazine structure of neo-
echinulin A, together with its exocyclic double bond and

indole moiety, is crucial for concomitant antioxidative,
antinitration, and cytoprotective activity.18 Though the
mechanism of action of neoechinulin A still remains un-
certain, it is postulated that the alkaloid’s cytoprotective
properties are due to its ability to induce antioxidizing en-
zymes by reacting with biomacromolecules; or that neo-
echinulin A can directly react with RNS and/or ROS
(reactive oxygen species) and alkyl radicals.18 To clarify
this question, additional research has to be conducted in-
volving SAR of novel neoechinulin A analogues. Since
the absolute stereochemistry of the center in position 6 of
neoechinulin A is not important for biological activity,18a

we proposed preparing two racemic analogues 1 and 2,
with the N-benzyl group in position 1 of the diketopipera-
zine ring. This would increase lipophilicity of the ana-
logues 1 and 2 compared to neoechinulin A and also
reduce the number of hydrogen-bond donors, resulting in
additional SAR information. Analogue 1 possesses the
isoprenyl group of neoechinulun A at the indole 2-posi-
tion; whereas analogue 2 features the prenyl group
(Figure 1).

Figure 1 Neoechinulin A and analogues 1 and 2

The synthesis of both analogues started from the methyl
ester of (R,S)-alanine hydrochloride (3), which was reduc-
tively N-benzylated with benzaldehyde using sodium cy-
anoborohydride to give the N-benzyl methyl ester of
(R,S)-alanine (4). This was then reacted with chloroacetyl
chloride to form the methyl ester of (R,S)-N-benzly-N-
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chloroacetyl alanine (5) that was cyclized with ammonia
in methanol into (R,S)-1-benzyl-6-methylpiperazine-2,5-
dione (6, Scheme 1).

Previously we have already reported on compound 6 in
the context of its chiral solvating properties19 and dipo-
dazine analogues synthesis.14 Diketopiperazine 6 was
then reacted with t-BuO-bisdimethylaminomethane
(Bredereck’s reagent, 7) to furnish (Z)-(R,S)-1-ben-
zyl[(dimethylamino)methylidene]-6-methylpiperazine-2,5-
dione (8, Scheme 2).

Scheme 2 Synthesis of enaminone 8 for direct coupling with 2-iso-
prenylindole (9) and 2-prenylindole (10)

2-Isoprenylindole (9) was prepared using a similar proce-
dure to that reported by Danishefsky in his tryprostatin B
synthesis (where the analogous 2-isoprenylated tryp-
tophan derivative was prepared20) from 9-(3-methylbut-2-
enyl)-9-borabicyclo[3.3.1.]nonane (12), prepared by
modified procedure of Brown,21 and 3-chloroindole (13).
We found out that this is a very simple two-step, one-pot
synthesis of 2-isoprenylated indole (9). 2-Prenylated in-
dole (10) was prepared from prenylbromide 14 with the
lithiated derivative of N-tosylindole (15), followed by re-

ductive detosylation of 2-prenylated N-tosylindole (16)
with Mg powder in methanol (Scheme 3).15b

Next 2-isoprenylindole (9) and 2-prenylindole (10) were
coupled with the enaminone 8, affording targets 1 and 2.
In the case of reaction of 2-isoprenylindole (9) with en-
aminone 8, the reaction yield was much lower in compar-
ison to reaction of 2-prenylated indole (10) with
enaminone 8. The reason for this is presumably the greater
steric shielding of nucleophilic position 3 of indole deriv-
ative 9 than in 10. We have previously used bulkier sub-
stituents at position 2 of indole for similar coupling
reactions, 2-phenylindole for example, but the yields were
always better than in the case of 2-isoprenylated indole
(9).14,15a In the case of 2-phenylindole the phenyl ring is
perpendicular to the indole ring and is thus sterically
much less demanding for such coupling reactions than 2-
isoprenylated derivative 9, where the indole core is at-
tached to the quaternary sp3 carbon of the isoprenyl chain
(Scheme 4).

The structures of 1 and 2 were determined spectroscopi-
cally (NMR, IR) by MS and in the case of prenylated an-
alogue 2 by elemental analysis. Their spectroscopic data
are in agreement with those reported for neoechinulin A.9

Both compounds were isolated as Z-isomers as estab-
lished by HMBC spectroscopy on the basis of the long-
range coupling constant 3J(C,H) between the methylidene
proton C3¢–H and carbonyl C atom C2=O determined from
the antiphase splitting of the corresponding cross-peak
(Figure 2).22

Scheme 1 Synthesis of diketopiperazine precursor 6
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Scheme 3 Synthesis of 2-isoprenylindole (9) and 2-prenylindole (10)
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In summary, two N-benzylated analogues 1 and 2 of neo-
echinulin A have been prepared, using direct coupling of
2-isoprenylated (9) and 2-prenylated (10) indoles with
enaminone 8. This synthetic methodology represents a vi-
able alternative to Horner–Wadsworth–Emmons olefina-
tion, frequently used for synthesis of a,b-unsaturated-a-
amino acids. Both analogues 1 and 2 are more lypophilic
in comparison to neoechinulin A and represent valuable
compounds in additional SAR studies for clarification of
its antinitration, antioxidative, and cytoprotective mecha-
nism of action.

3-Chloroindole (13)
Indole (2.93 g, 25 mmol) was disolved in DMF (18 mL) at 0 °C, and
NCS (3.67 g, 27.5 mmol) was added. After 15 min at 0 °C, the re-
action mixture was stirred at r.t. for an additional 45 min, and then
the reaction mixture was poured in 150 mL of ice-cold water and
K2S2O5 (2.15 mg). The precipitate was filtered, dissolved in CH2Cl2

(30 mL) and extracted with H2O (4 × 30 mL). The organic phase
was then dried over Na2SO4 and concentrated at 100 mbar and
25 °C. The residual yellowish-green solid of crude 3-chloroindol
(13) showed spectroscopic data corresponding to the literature da-
ta;23 yield 3.25 g (86%), compound decomposed on heating. IR
(KBr): nmax = 3409, 3126, 3051, 1719, 1617, 1519, 1453, 1332,
1289, 1205, 1087, 1000, 929, 810, 740, 596 cm–1; 1H NMR (300
MHz, DMSO-d6): d = 7.05–7.14 (1 H, m, Ar), 7.14–7.23 (1 H, m,
Ar), 7.38–7.45 (1 H, m, Ar), 7.45–7.47 (2 H, m, Ar), 11.33 (1 H, s,
NH). 1H NMR (300 MHz, CDCl3): d = 7.15–7.18 (1 H, m, Ar),
7.19–7.28 (2 H, m, Ar), 7.25–7.39 (1 H, m, Ar), 7.60–7.67 (1 H, m,
Ar), 8.05 (1 H, br s, NH). MS (EI): m/z = 151 [M+].

2-(2-Methylbut-3-en-2-yl)-1-H-indole (9)
All glass ware was dried in a vacuum oven at 100 °C, for an hour
before use. To 9-BBN (29.4 mL, 0.5 M in THF) 3-methylbuta-1,2-
diene (11) (1.44 mL,14.7 mmol) was added under inert atmosphere,

and the reaction mixture was stirred at r.t. for 3.5 h. After that time,
Et3N (1.23 mL, 8.82 mmol) and 3-chloroindole (13) (1.11 g, 7.35
mmol) were added, and the reaction mixture was stirred for an ad-
ditional 17 h. Saturated aq NaCl was poured in the reaction mixture,
and THF was removed under vacuum. The aqueous phase was ex-
tracted with CH2Cl2 (3 × 25 mL), and the combined organic phases
dried over Na2SO4 and concentrated under vacuum. The brown oily
residue was purified by column chromatography (EtOAc–
PE = 1:40), and the product was isolated as yellow oil; yield 1.17 g
(85%). IR (KBr): nmax = 3422, 2968, 1637, 1542, 1459, 1406, 1289,
1234, 998, 918, 786, 749, 736 cm–1. 1H NMR (300 MHz, CDCl3): d
= 1.48 (6 H, s, 2 × CH3), 5.12 (1 H, dd, J1 = 1.1 Hz, J2 = 17.3 Hz,
CH), 5.10 (1 H, dd, J1 = 1.1 Hz, J2 = 10.4 Hz, CH), 6.05 (1 H, dd,
J1 = 10.3 Hz, J2 = 17.6 Hz, CH), 6.51 (1 H, dd, J1 = 0.9 Hz, J2 = 2.1
Hz, Ar), 7.06 (1 H, dt, J1 = 1.2 Hz, J2 = 6.1 Hz, Ar), 7.12 (1 H, dt,
J1 = 1.2 Hz, J2 = 7.0 Hz, Ar), 7.25–7.33 (1 H, m, Ar), 7.50–7.60 (1
H, m, Ar), 7.86 (1 H, br s, NH). 13C NMR (75.5 MHz, CDCl3): d =
27.6, 38.4, 98.2, 110.6, 112.4, 119.8, 120.3, 121.5, 128.8, 136.1,
146.0, 146.3. MS (EI): m/z = 185 [M+]. HRMS (EI): m/z calcd for
C13H15N [M+]: 186.1283; found: 186.1279.

(Z)-1-Benzyl-3-[(dimethylamino)methylidene]-6-methylpipera-
zine-2,5-dione (8)
For the experimental data on compound 8 see ref. 13.

(Z)-(1)-Benzyl-6-methyl-3-{[2-(2-methylbut-3-ene-2-yl)-1H-
indol-3-yl]methylidene}-piperazine-2,5-dione (1)
To enaminone 8 (0.547 g, 2 mmol) dissolved in glacial AcOH (4
mL), 2-isoprenylindole (9) (0.621 g, 3.35 mmol) was added, and the
reaction mixture was refluxed for 7 h. The mixture was then cooled
and concentrated under vacuum, and the residue was purified by
column chromatography (EtOAc–PE = 1:2). The yellow oil thus
obtained was crystallized from CH2Cl2 and heptane; yield 0.107 g
(13%) of pale yellow solid, mp 249–252 °C. IR (KBr): nmax = 3365,
3328, 2973, 1703, 1657, 1610, 1492, 1449, 1433, 1391, 1340, 1248,
11911149, 995, 917, 878, 751, 702, 609 cm–1. 1H NMR (300 MHz,
CDCl3): d = 1.56 (3 H, d, J = 6.9 Hz, CH3), 4.02 (1 H, q, J = 6.9 Hz,
CH), 4.17 (1 H, d, J = 15.0 Hz, CH), 5.20 (1 H, dd, J1 = 0.7 Hz,
J2 = 17.4 Hz, CH), 5.23 (1 H, dd, J1 = 0.7 Hz, J2 = 10.6 Hz, CH),
5.42 (1 H, d, J = 15.0 Hz, CH), 6.09 (1 H, dd, J1 = 10.6 Hz, J2 = 17.4
Hz, CH), 7.10–7.23 (2 H, m, Ar), 7.30–7.42 (7 H, m, Ar), 8.28 (1 H,
br s, NH). 1H NMR (300 MHz, DMSO-d6): d = 1.47 (3 H, d, J = 6.3
Hz, CH3), 1.48 (3 H, s, CH3), 1.51 (3 H, s, CH3), 3.94 (1 H, q, J = 6.9
Hz, CH), 4.33 (1 H, d, J = 14.6 Hz, CH), 5.04 (1 H, d, J = 14.8 Hz,
CH), 5.06 (1 H, dd, J1 = 1.1 Hz, J2 = 17.6 Hz CH), 5.07 (1 H, dd,
J1 = 1.2 Hz, J2 = 10.2 Hz, CH), 6.09 (1 H, dd, J1 = 10.9 Hz,
J2 = 16.9 Hz, CH), 6.96–7.20 (4 H, m, 3 H of Ar, CH), 7.26–7.46 (6
H, m, Ar), 9.18 (1 H, s, NH), 11.05 (1 H, s, NH). 13C NMR (75.5
MHz, DMSO-d6): d = 18.5, 27.4, 27.7, 46.9, 56.0, 103.8, 111.5,
111.7, 112.4, 118.9, 119.3, 120.6, 123.8, 126.1, 127.4, 127.9, 128.6,
135.1, 137.2, 144.3, 145.1, 159.6, 166.0. MS (EI): m/z = 414
[MH+]. HRMS (EI): m/z calcd for C26H27N3O2: 414.2182 [MH+];
found: 414.2170.

Scheme 4 Coupling of 2-isoprenylindole (9) and 2-prenylindole (10) with enaminone 8 – synthesis of targets 1 and 2
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(Z)-1-Benzyl-6-methyl-3-{[2-(3-methylbut-2-enyl)-1H-indol-
3yl]methylene}piperazine-2,5-dione (2)
To enaminone 8 (0.547 g, 2 mmol) dissolved in glacial AcOH (4
mL), 2-prenylindole (10) (0.371 g, 2 mmol) was added, and the re-
action mixture was refluxed for 2 h. The mixture was then cooled
and concentrated under vacuum, and the residue was purified by
column chromatography (EtOAc–PE = 1:2). The resultant orange
foam was crystallized from MeOH–H2O; yield 0.514 g (62%) of
yellow solid, mp 138–141 °C. IR (KBr): nmax = 3258, 3063, 2976,
1661, 1624, 1539, 1494, 1444, 1406, 1351, 1256, 1164, 1098, 984,
880, 788, 743 cm–1. 1H NMR (300 MHz, DMSO-d6): d = 1.45 (3 H,
d, J = 6.9 Hz, CH3), 1.72 (6 H, s, 2 × CH3), 3.42 (1 H, dd, J1 = 7.0
Hz, J2 = 16.9 Hz, CH), 3.51 (1 H, dd, J1 = 7.0 Hz, J2 = 16.9 Hz,
CH), 3.96 (1 H, q, J = 6.9 Hz, CH), 4.30 (1 H, d, J = 15 Hz, CH),
5.07 (1 H, d, J = 15.0 Hz, CH), 5.31 (1 H, dd, J1 = 7.0 Hz, J2 = 7.1
Hz, CH), 7.00–7.25 (3 H, m and s, Ar and CH), 7.25–7.43 (7 H, m,
Ar), 9.44 (1 H, s, NH), 11.30 (1 H, s, NH). 13C NMR (75.5 MHz,
DMSO-d6): d = 17.7, 18.3, 25.5, 25.9, 46.9, 56.1, 104.7, 111.0,
111.2, 119.0, 119.5, 120.3, 120.8, 123.2, 126.4, 127.4, 127.8, 128.6,
133.0, 135.9, 137.3, 140.0, 159.9, 166.2. HMBC: d = 7.06 (CH),
159.9 (CO, J = 4.8 Hz). MS (EI): m/z = 414 [MH+]. HRMS (EI):
m/z calcd for C26H27N3O2: 414.2182 [MH+]; found: 414.2171. Anal.
Calcd for C26H27N3O2: C, 75.52; H, 6.58; N, 10.16. Found: C,
75.29; H, 6.39; N, 10.21.
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