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ABSTRACT: Reported here for the first time is the Ir-catalyzed γ-
selective hydroboration of γ-substituted allylic amides under mild
reaction conditions. A variety of functional groups could be
compatible with reaction conditions, affording γ-branched amides in
good yields with ≤97% γ-selectivity. We have also demonstrated that the obtained borylated products could be used in a series of
C−O, C−F, C−Br, and C−C bond-forming reactions.

Transition-metal-catalyzed hydroboration of alkenes has
been recognized as one of the most efficient methods for

obtaining alkyl boronic acid and its derivatives.1 As a result, a
great number of strategies have been developed for the
synthesis of these compounds in chemo-, regio-, and
stereoselective manners. However, most of these successful
methods are limited to terminal alkenes,2 activated alkenes,3

and styrene derivatives.2d,4 The regioselective hydroboration of
aliphatic internal alkenes as well as other hydrofunctionaliza-
tion reactions5 remains a distinct challenge, which has in part
arisen from difficulty in the differentiation of two sterically and
electronically similar sp2 carbons. The first example of
transition-metal-catalyzed amide-directed regioselective hydro-
boration of aliphatic internal alkenes was not reported until the
1990s,6 although the Rh-catalyzed hydroboration of terminal
alkenes was developed as early as the 1980s.7 The key to the
success of regioselectivity is the chelation of the substrate to
the metal center. Later, a number of elegant regio- and
stereoselective hydroboration reactions of a variety of aliphatic
internal alkenes were developed by the group of Takacs.4l,8 In
addition to the chelation mechanism, the inductive effect could
also be used as the key factor to control regioselectivity. In
2016, the Hartwig group reported a Cu-catalyzed regio- and
stereoselective hydroboration of homoallylic alcohol and amine
derivatives, affording the desired products in excellent
regioselectivity.9 Notably, both substrate chelation and the
inductive effect give rise to the formation of a C−B bond at the
sp2 carbon that is proximal to the directing groups.10 Recently,
we developed an Ir-catalyzed hydroboration of β,γ- and γ,δ-
unsaturated carbonyl compounds with high γ- and δ-
selectivity.11 The DFT calculation reveals that the reaction
undergoes an unusual Ir(III)/Ir(V) catalytic cycle, and the
regioselectivity is dominated by steric repulsion.11 In the
development of this field, further extending the reaction types
is desirable.
γ-Branched amine derivatives are important building blocks

in synthetic chemistry and widespread subunits in a number of
bioactive compounds (Figure 1).12 In stark contrast to well-

developed methods for the α- and β-branched amine
derivatives,13 the catalytic methods for the synthesis of γ-
branched ones remain underdeveloped (Scheme 1A). A
practical way to synthesize these compounds was accomplished
by acid- or base-catalyzed nucleophilic addition to the
azetidine derivatives (Scheme 1A, a).14 In addition, Wu and
co-workers reported an efficient Rh-catalyzed reductive
amination of γ,γ-disubstituted allylic amine derivatives to
prepare γ-branched amines (Scheme 1B, b).15 However,
substrates require preinstallation of γ-substituents, which
sometimes costs extra steps and reagents. Therefore, direct
regioselective hydrofunctionalization of γ-substituted allylic
amine derivatives could provide an attractive alternative to the
γ-branched amines. In this context, γ-selective hydroboration
could be an appealing candidate in combination with well-
established C−B bond transformations.16 Herein, we report an
Ir-catalyzed γ-selective hydroboration of allylic amides under
mild reaction conditions, affording the corresponding γ-
borylated products with ≤97% γ-selectivity (Scheme 1B, c).
Our research commenced with the optimization of the

reaction conditions. We chose 1a as our pilot substrate. The
reaction of 1a with HBpin (1.6 equiv) in the presence of a
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Figure 1. Selected examples of bioactive γ-branched amine
derivatives.
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catalytic amount of [Cp*IrCl2]2 (1.25 mol %) and a
stoichiometric amount of 1,1-diphenylethene (A) (1.0 equiv)
in cyclohexane for 5 h afforded γ-borylated product 2a in 78%
yield with 90% γ-selectivity (Table 1, entry 1). Replacement of
the Ir catalyst with its Rh analogue afforded only a trace
amount of the product with 81% γ-selectivity (Table 1, entry
2). Neither CpIr(cod) (I) (cod = 1,5-cyclooctadiene) nor
chiral CpIr(cod) (II) showed reactivity for this reaction (Table
1, entry 3).17 The use of Crabtree’s catalyst also showed no
reactivity (Table 1, entry 4). When styrene was used in lieu of
A, almost the same level of regioselectivity was observed.
However, 2a was obtained in inferior yield (Table 1, entry 5).
A low yield was observed (29%) when the reaction was carried
out without A (Table 1, entry 6). The role of A was to act as
the hydrogen acceptor to inhibit the hydrogenation byproduct
of 1a, which was evidenced by the 1,1-diphenylethane (44%
yield) observed by 1H NMR of the crude reaction mixture
under standard reaction conditions (Table 1, entry 1). We next
investigated the effect of phosphine ligands on the current
reaction. However, none of them could further enhance the
performance of the reaction in terms of the outcome of
product 2a (Table 1, entries 7−9). Further examination of
solvent effects revealed that cyclohexane was optimal in terms
of both yield and regioselectivity (Table 1, entry 1 vs entries 10
and 11).
With optimized reaction conditions in hand (Table 1, entry

1), we then determined the additional substrate scope of the
current Ir-catalyzed γ-selective hydroboration of γ-substituted
allylic amides as shown in Scheme 2. First, a variety of N

substituents are investigated when R′ is an ethyl group (1a−h).
All of the reactions could reach completion within 5 h in
moderate to good yields (2a−h, 64−80%). The regioselectivity
strongly depended on the substituent. For example, o-methyl-
substituted 2b gave higher γ-selectivity (92%) while a para
substituent usually gave inferior results (2c−h, 82−90% γ-
selectivity). The reaction was also tolerated with a thiophenyl
group, although only 80% regioselectivity was observed (2i).
We next focused on the variation of the R′ group. When R′ is a
methyl group, the reaction afforded the products in 63−80%
isolated yields with γ-selectivity ranging from 86% to 90% (2j−
l). The regioselectivity remained at the same level when the
chain length of R′ was extended to n-propyl (1m) and n-butyl
(1n). In addition to alkyl substrates, benzyl and homobenzyl
groups (1o and 1p, respectively) were also compatible with
reaction conditions. In particular, an excellent γ-selectivity
(97%) was observed when R′ was a benzyl group. The
moderate isolated yield (45%) is due to the partial
decomposition of 2o upon column chromatography. The
lower stability of 2o is probably due to its C−B bond being
closer to the inductively electron-withdrawing sp2 carbon of
the phenyl ring compared to that of 2p. Apart from arylamides,
alkylamide (1q) could also undergo the hydroboration
smoothly to afford the product (2q) in 68% yield with inferior
γ-selectivity (86%) compared to the reaction of 1j. We then
surveyed the compatibility of other relatively sensitive
functionalities. Fortunately, ester (1r), ether (1s), aldehyde
(1t), and free hydroxy (1u) groups were well tolerated,
affording 2r−2u, respectively, in 57−69% isolated yields with
γ-selectivity ranging from 85% to 91%. Although isolated olefin
was not compatible, the bishydroborated product (2v) was
obtained in 66% yield with 90% γ-selectivity. To further extend
the generality of the current protocol, we examined the

Scheme 1. Typical Branched Amine Derivatives and
Transition-Metal-Catalyzed Synthesis of γ-Amine
Derivatives

Table 1. Optimization of Reaction Conditions for the Ir-
Catalyzed γ-Selective Hydroboration of 1aa

entry variations 2a:3ab
yield of 2a

(%)c

1 none 90:10 78
2 [Cp*RhCl2]2 was used instead of

[Cp*IrCl2]2
81:19 trace

3 I or II was used instead of [Cp*IrCl2]2 NR −
4 Crabtree’s catalyst was used instead of

[Cp*IrCl2]2
NR −

5 styrene in lieu of A 89:11 65
6 without A 92:8 29
7 Davephos (2.5 mol %) was added 89:11 75
8 PPh3 (2.5 mol %) was added ND NR
9 Xantphos (2.5 mol %) was added 88:12 70
10 THF was used instead of CyH 84:16 65
11 1,4-dioxane was used instead of CyH 84:16 71

aUnless otherwise noted, all of the reactions were carried out with 1a
(0.20 mmol) and HBpin (0.32 mmol) in solvent (1.0 mL) at room
temperature for 5 h. bThe 2a:3a ratio was determined by GC analysis.
cIsolated yield.
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performance of homoallylic amides. An internal alkene (1w)
gave inferior distal selectivity (81% δ) compared to that of its
allylic analogue (1j). Pleasingly, the exclusive δ-borylated
product (2x) was observed with a terminal alkene (1x).
To demonstrate the synthetic utility of the current protocol,

a gram-scale reaction of 1a and several transformations of 2a
were conducted as shown in Figure 2. The reaction of 1a (5
mmol) under standard reaction conditions afforded 2a in 68%
isolated yield (1.05 g) with 88% γ-selectivity. The C−B bond
could be transformed into other functional groups. For
example, oxidation of 2a with NaBO3·4H2O gave 1,3-
aminoalcohol derivative 3 in 96% isolated yield.10a Fluorinated
product 5 was obtained in 80% yield when the reaction of 2a
was carried out with Selectfluor in the presence of a catalytic
amount of AgNO3.

18 The reaction of 2a with electron-deficient
aryl lithium followed by addition of NBS could provide γ-

bromo amide 6 in 70% yield.19 On the other hand, treatment
of 2a with electron-rich aryl lithium followed by NBS afforded
arylated products 7 and 8 in 80% and 84% yields,
respectively.20 Finally, treatment with 2a with vinylmagnesium
bromide followed by sequential addition of I2 and NaOMe
resulted in olefination product 8 in 92% yield.21

In conclusion, we have developed Ir-catalyzed γ-selective
hydroboration of γ-substituted allylic amides under mild
reactions for the first time. A variety of functional groups
could be well-tolerated, affording γ-borylated products in good
yields with ≤97% γ-selectivity. We have also demonstrated that
the obtained borylated products could be used in the synthesis
of a series of γ-branched amides. Further exploration of
regioselective hydroboration of other types of aliphatic internal
alkenes is currently underway in our laboratory.
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