Darstellung von Co_{2-x}Zn_xMo₃O₈-Einkristallen mit definierter Zusammensetzung durch Chemischen Transport

Udo Steiner^a, Werner Reichelt^{a,*}, Sofia Daminova^{a,c} und Enrico Langer^b

Dresden, Technische Universität ^a Institut für Anorganische Chemie, ^b Institut für Oberflächen- und Mikrostrukturphysik ^c Moskau/Russland, Staatliche Universität

Bei der Redaktion eingegangen am 24. Juni 2004.

Professor Heinrich Oppermann zum 70. Geburtstag gewidmet

Inhaltsübersicht. Phasenreine Pulverproben der Mischkristallphasen $Co_{2-x}Zn_xMo_3O_8$ wurden durch Festkörperreaktion in evakuierten Quarzglasampullen bei 1273 K dargestellt. Die Gitterkonstanten der Mischkristalle wurde an Röntgenpulverdiffraktometerdaten mit der Rietveld-Methode verfeinert. Eine geringe, aber signifikante Änderung der Gitterparameter in Abhängigkeit vom Zinkgehalt beweist das Vorliegen einer lückenlosen Mischkristallreihe $Co_{2-x}Zn_xMo_3O_8$. Einkristalle von $Co_{2-x}Zn_xMo_3O_8$ wurden durch Chemischen Transport im Temperaturgefälle 1273 K nach 1173 K mit den Transportmitteln NH₄Cl oder NH₄Br dargestellt, wobei ein Ausgangsmaterial mit geringem Sauerstoffüberschuss entsprechend der formalen Zusammensetzung "Co_{2-x}Zn_xMo₃O_{8.1}" eingesetzt wurde. Das Co/Zn-Verhältnis der abgeschiedenen Kristalle wurde mittels Röntgenspektroskopie (EDX) bestimmt.

Preparation of Co_{2-x}Zn_xMo₃O₈ Mixed Crystals with Defined Composition by Chemical Vapour Transport

Abstract. Phase-pure powder samples of $Co_{2-x}Zn_xMo_3O_8$ mixed crystals were prepared by solid state reactions in evacuated quartz tubes at 1273 K. The lattice parameter were refined from X-ray powder pattern by the Rietveld method. A small but significant change of the lattice parameter of $Co_{2-x}Zn_xMo_3O_8$ as a function of the zinc content was observed, thus confirming the existence of a complete solid solution series. Single crystals of $Co_{2-x}Zn_xMo_3O_8$ were grown by means of chemical vapour transport in a tempera-

1 Einleitung

Die ternären Molybdänoxide der Zusammensetzung $M_2Mo_3O_8$ (M = Mg, Mn, Fe, Co, Ni, Zn, Cd) wurden von *McCarroll* u.a. [1] bereits vor nahezu 50 Jahren beschrieben. Alle Verbindungen kristallisieren isotyp in der hexagonalen Raumgruppe $P6_3mc$. Insbesondere die in Abhängigkeit vom enthaltenen Übergangsmetall (M = Mn, Fe, Co, Ni, Zn) unterschiedlichen magnetischen und elektrischen Eigenschaften dieser Verbindungen waren im folgenden Zeitraum Schwerpunkt des wissenschaftlichen Interesses [2, 3, 5]. *Varret* u.a. [4] synthetisierten außerdem erstmals Mischkristalle Fe_{2-x}M_xMo₃O₈ (M = Mg, Zn, Mn, Co, Ni) und untersuchten deren Struktur mittels Mößbauer-Spektroskopie sowie die magnetischen Eigenschaften.

Voraussetzung für die Untersuchung der anisotropen magnetischen und elektrischen Eigenschaften der Verbindun-

Institut für Anorganische Chemie der Technischen Universität Mommsenstraße 13 D-01062 Dresden FAX: 0351 / 463 37287 E-mail: werner.reichelt@chemie.tu-dresden.de ture gradient 1273 K to 1173 K using NH₄Cl or NH₄Br as transport agent starting from a source material with a small oxygen excess, corresponding to a formal composition " $Co_{2-x}Zn_x$ - $Mo_3O_{8.1}$ ". The Co/Zn ratio of the obtained $Co_{2-x}Zn_xMo_3O_8$ single crystals was investigated using EDX measurements.

Keywords: Chemical Vapor Transport; Mixed Crystals; Molyb-denum

gen $M_2Mo_3O_8$ ist das Vorliegen von Einkristallen geeigneter Größe und Qualität. Hier eignet sich als Darstellungsmethode der Chemische Transport, wie bereits *Strobel* und *Le Page* [5] zeigten, die Einkristalle von $M_2Mo_3O_8$ (M = Mn, Fe, Co, Ni) durch Chemischen Transport mit dem Transportmittel TeCl₄ erhielten. Interessant in diesem Zusammenhang wäre sicher auch die Untersuchung von Mischkristallen zwischen der diamagnetischen Phase Zn₂Mo₃O₈ und Co₂Mo₃O₈, welches bei 40.8 K antiferromagnetisch ordnet [3].

Die Abbildung 1 zeigt die Koexistenzverhältnisse in den ternären Randsystemen Zn/Mo/O [6] bzw. Co/Mo/O und die Einordnung der Mischkristallreihe $Co_{2-x}Zn_xMo_3O_8$ in das quaternäre System Co/Zn/Mo/O. Aufbauend auf die systematischen Untersuchungen zum Chemischen Transport in den ternären Systemen Zn/Mo/O [6] und Co/Mo/O [7] konnten wir bei den hier vorgestellten Untersuchungen experimentelle Bedingungen bestimmen, bei denen sich Einkristalle von $Co_{2-x}Zn_xMo_3O_8$ mit definiertem Co : Zn-Verhältnis abscheiden lassen.

2 Experimentelles

Zur Darstellung von Pulverproben der Mischkristalle $Co_{2-x}Zn_x$ -Mo₃O₈ wurde von homogenisierten Gemengen aus CoO (herge-

^{*} Doz. Dr. W. Reichelt

Abb. 1 Einordnung der Mischkristallreihe Co_{2-x}Zn_xMo₃O₈ in das quaternäre System Co/Zn/Mo/O (schematisch)

stellt aus Co₃O₄, Chempur 99.5%, durch 24-stündige Temperung im Quarzglasschiffchen an Luft bei 1373 K), ZnO (Alfa 99.99%), MoO₃ (Merck, p. a., zur Reinigung umsublimiert) und Mo (Heraeus, 99,9+%) im entsprechenden stöchiometrischen Verhältnis ausgegangen. Nach der Temperung in evakuierten Quarzglasampullen (ein Tag bei 773 K und fünf Tage bei 1273 K) war das Reaktionsprodukt meist rönthenographisch (Röntgenpulverdiffraktometrie, Siemens D5000, CuK- $\bar{\alpha}$ -Strahlung) phasenreiner Mischkristall Co_{2-x}Zn_xMo₃O₈, gelegentlich waren geringe Mengen von MoO₂ nachweisbar.

Die Bestimmung der Gitterkonstanten der Mischkristallphasen erfolgte mittels Rietveld-Verfeinerung (Programm FULLPROF [9]) an Röntgenbeugungsdaten (Siemens D5000, CuK- $\bar{\alpha}$ -Strahlung, 5°<20<80°, Schrittweite 0.02°, 16 s Messzeit pro Schritt). Als Startmodell für die Verfeinerung dienten die Strukturdaten von Co₂Mo₃O₈ [2].

Die Versuche zum Chemischen Transport erfolgten in Quarzglasampullen in den üblichen Zweizonenöfen im Temperaturgefälle $T_2 = 1273$ K nach $T_1 = 1173$ K. Als Ausgangsmaterial wurden bei $T_2 = 1273$ K vorgetemperte Proben (Masse jeweils 1 g) mit einem geringen Sauerstoffüberschuss, entsprechend einer formalen Zusammensetzung Co:Zn:Mo:O wie 2-x : x : 3 : 8.1, vorgelegt. Die Synthese dieser Ausgangsgemenge erfolgte analog zur Darstellung der phasenreinen Mischkristallproben, röntgenographisch waren neben der Hauptphase Co2-xZnxMo3O8 Nebenbestandteile wie MoO₂, ZnO und CoMoO₄ bzw. ZnMoO₄ nachweisbar. Das Transportmittel NH_4X (X = Cl bzw. Br) wurde direkt eingewogen, die Massen betrugen jeweils etwa 1.5 mg (X = Cl) bzw. 2 mg (X = Br). Nach einer Transportzeit von ungefähr fünf Tagen wurden die Ampullen in Wasser abgeschreckt und die Transportrate durch Wägung der Abscheidungsprodukte bestimmt. Die transportierte Gesamtmasse betrug ca. 150 mg. Die Ermittlung des Co/Zn-Verhältnisses der abgeschiedenen Einkristalle erfolgte mittels Röntgenspektroskopie (EDX/ESMA, Gerätesystem CamScan CS 44). Aus jedem Transportversuch wurden zwei Kristalle ausgewählt und jeweils zwei unterschiedliche Stellen des Kristalls vermessen. Die Differenzen der Einzelmessungen waren zumeist gering (<5%), es wurden keine signifikante Unterschiede zwischen den Kristallen eines Versuches gemessen.

3 Resultate und Diskussion

Mischkristallbildung im System Co₂Mo₃O₈|Zn₂Mo₃O₈

Wie aufgrund der Isotypie der ternären Randphasen und der sehr ähnlichen Ionenradien von Zn²⁺ und Co²⁺ zu erwarten ist, kommt es zur Bildung einer lückenlosen Mischkristallreihe Co_{2-x}Zn_xMo₃O₈. Die mittels Rietveld-Verfeinerung bestimmten Gitterkonstanten für unterschiedliche Zinkgehalte x sind in Tabelle 1 zusammengestellt, Abbildung 2 zeigt die Abhängigkeit der Gitterkonstanten vom Zusammensetzungsparameter x. Wegen der bereits sehr ähnlichen Elementarzellenabmessungen der beiden Randphasen der Mischkristallreihe, ändern sich die Gitterkonstanten in Abhängigkeit von der Mischkristallzusammensetzung nur sehr geringfügig (stets weniger als 0.2%), aber signifikant. Während a mit steigendem Zinkgehalt annähernd gleichmäßig zunimmt, durchläuft c bei x = 1 ein Minimum. Im Ergebniss wird für das Volumen der Elementarzelle eine sehr geringe, kaum nachweisbare Abnahme bis x = 1 sowie eine Zunahme bei zinkreicheren Zusammensetzungen x>1 bis hin zum Wert der Randphase Zn₂Mo₃O₈ beobachtet (Abbildung 2). Ursache dieses Verhaltens ist sicherlich die unterschiedliche Besetzung der beiden kristallographisch unabhängigen M2+-Positionen mit Cobalt und Zink, eine Verfeinerung der Besetzungsparameter ist allerdings aufgrund der geringen Differenz der Ordnungszahlenbeider Elemente nicht sinnvoll.

Chemischer Transport

Ausgehend von Proben mit geringem Sauerstoffüberschuss (entsprechend einer formalen Zusammensetzung "Co_{2-x}-Zn_xMo₃O_{8.1}") gelingt im Temperaturgefälle $T_2 = 1273$ K nach $T_1 = 1173$ K die (nahezu) einphasige Abscheidung von Einkristallen der Reihe Co_{2-x}Zn_xMo₃O₈ mit den Trans-

Tabelle 1 Zellparameter der Mischkristalle Co2-xZnxMo3O8

x	<i>a</i> in Å	c in Å	V in Å ³	
0	5.7684(4)	9.9117(7)	285.62(3)	
0.25	5.7687(3)	9.9096(6)	285.59(3)	
0.5	5.7688(3)	9.9068(6)	285.51(3)	
0.75	5.7695(3)	9.9060(6)	285.56(3)	
1.0	5.7694(3)	9.9050(6)	285.52(3)	
1.25	5.7705(3)	9.9080(6)	285.65(3)	
1.5	5.7716(3)	9.9109(6)	285.92(3)	
1.75	5.7720(3)	9.9122(5)	285.99(2)	
2.0	5.7723(4)	9.9132(8)	285.99(4)	

Abb. 2 Relative Änderung der $Co_{2-x}Zn_xMo_3O_8$ -Gitterkonstanten (oben) sowie das Volumen der Elementarzelle (unten) in Abhängigkeit vom Zinkgehalt *x*

portmitteln NH₄X (X = Cl, Br) mit durchschnittlichen Transportraten von 1 bis 2 mg/h, wobei die Raten bei X = Br etwas höher und die abgeschiedenen Kristalle etwas größer als bei X = Cl waren. Die erhaltenen Kristalle (Abbildung 3) besitzen den typischen hexagonalen Habitus der Verbindungen M₂Mo₃O₈ bei Abmessungen bis zu mehreren mm Länge. Gelegentlich wurden im Abscheidungsraum (T_1) neben der Hauptphase Co_{2-x}Zn_xMo₃O₈ wenige, zumeist kleine Kristalle von weiteren Phasen wie MoO₂, ZnO bzw. ZnMoO₄ beobachtet, wobei die violette bis blaue Farbe der beiden letztgenannten Verbindungen auf den Einbau von Co zurückzuführen ist, wie EDX-Messungen zeigten.

Abb. 3 Typische Kristalle von $Co_{2-x}Zn_xMo_3O_8$, Transportmittel NH_4Br

Tabelle 2 Chemischer Transport von $Co_{2-x}Zn_xMo_3O_8$: Vergleich der Co-Gehalte x bei T_2 (Ausgangsbodenkörper) und T_1 (abgeschiedene Kristalle, ESMA/EDX-Messungen)

Ausgangs- zusammensetzung x bei $T_2 = 1273$ K	Zusammensetzung x der a bei $T_1 = 1173$ K (ESMA/I Transportmittel NH ₄ Cl	bgeschiedenen Kristalle EDX-Messungen) Transportmittel NH4Br
0.25	0.26; 0.27	0.24; 0.24; 0.26
0.5	0.57; 0.71	0.43; 0.50
0.75	0.83; 0.91	0.63; 0.74
1.0	1.25; 1.30; 1.37	1.07; 1.10; 1.16
1.25	1.40; 1.57	1.32; 1.50; 1.50
1.5	1.65: 1.78	1.72: 1.77
1.75	1.73; 1.85; 1.89	1.80; 1.85

Setzt man dagegen einphasige Pulverproben von Co_{2-x}-Zn_xMo₃O₈ als Startmaterial ein, wird nur die Abscheidung einiger weniger, sehr kleiner Kristalle beobachtet, bei denen es sich neben Co_{2-x}Zn_xMo₃O₈ um unidentifizierte intermetallische Phasen handelt. Ursache hierfür ist die reduzierende Wirkung des verwendeten Transportmittels NH₄X. Ebenfalls als ungeeignet zur Abscheidung von Co_{2-x}-Zn_xMo₃O₈ mit reproduzierbarer Zusammensetzung erwiesen sich die Transportmittel Cl₂ und Br₂. Sowohl bei einphasigen Proben der Mischkristalle als auch bei solchen mit Sauerstoffüberschuss wurde neben Co_{2-x}Zn_xMo₃O₈ die Abscheidung größerer Mengen koexistierender Phasen wie MoO₂, ZnO und ZnMoO₄ beobachtet. Weiterhin ist das Einbringen von Transportmittelmassen größer etwa 3 mg zu vermeiden, da dann mit der Kondensation von Metallhalogeniden, und damit mit weniger gut reproduzierbaren Transportergebnissen gerechnet werden muss.

In Tabelle 2 sowie in Abbildung 4 sind die Zusammensetzungen x der bei T_1 abgeschiedenen Einkristalle in Abhängigkeit von der vorgelegten Ausgangsbodenkörperzusammensetzung zusammengestellt, wobei ein Messwert jeweils für einen Transportversuch steht. Punkte auf der diagonalen Linie im Anreicherungs-/Abreicherungsdiagramm (Ab-

Abb. 4 Anreicherungs-/Abreicherungsdiagramm für den Chemischen Transport von $Co_{2-x}Zn_xMo_3O_8$ mit NH₄X (X = Cl, Br)

bildung 4) zeigen an, dass keine Veränderung des Co:Zn-Verhältnisses zwischen Auflösungs- und Abscheidungsraum (Quelle und Senke, T_2 und T_1) beobachtet wird. Punkte oberhalb der Linie weisen auf eine Verschiebung zu zinkreicheren (cobaltärmeren) Zusammensetzungen hin, solche unterhalb auf Zinkabreicherung (Cobaltanreicherung). Wie ersichtlich, beobachtet man mit dem Transportmittel NH₄Cl ausgehend von nahezu allen Ausgangsbodenkörperzusammensetzungen eine geringe (maximal $\Delta x = 0.3$), aber signifikante Verschiebung zu höheren Zinkgehalten (geringeren Cobaltgehalten), während mit NH₄Br bei Ausgangszusammensetzungen x<1 keine signifikante Änderung nachweisbar ist, während bei x>1 ähnliches Verhalten wie mit NH₄Cl beobachtet wird, also eine geringe Verschiebung zu zinkreicheren Zusammensetzungen.

Im Fall eines einphasigen Bodenkörpers tritt, aufgrund der unterschiedlichen Gasphasenlöslichkeit der Metallkomponenten (hier Zink und Cobalt), im Verlaufe des Transportes eine sukzessive Verschiebung der Zusammensetzungen von Bodenkörper und Abscheidungsprodukt ein. Liegt hingegen ein mehrphasiger Gleichgewichtsbodenkörper im Auflösungsraum vor, wird im Verlaufe des Transports eine bestimmte Zusammensetzung abgeschieden. Falls eine sukzessive Verschiebung der Zusammensetzungen auftritt, kann sie im Experiment vernachlässigt werden, wenn bei Versuchende der Ausgangsbodenkörper immer noch im großen Überschuss zu den Abscheidungsprodukten vorliegt, was bei den von uns gewählten Transportbedingungen gewährleistet war.

Modellrechnungen zum Chemischen Transport (insbesondere zuverlässige Voraussagen zur Cobalt- bzw. Zink-An/Abreicherung) sind im hier untersuchten System zur Zeit nicht möglich, da die komplexen Koexistenzbeziehungen der Phasen im quaternären System Co/Zn/Mo/O nur sehr unzureichend bekannt sind und für die Verbindungen $M_2Mo_3O_8$ (M = Co, Zn) z. T. nur abgeschätzte bzw. für die Mischkristalle Co_{2-x}Zn_xMo₃O₈ gar keine thermodyna-

Abb. 5 Gasphasenzusammensetzung über einem $Co_{2-x}Zn_xMo_3O_8$ -Bodenkörper (x = 1), Transportmittel NH₄Cl

mische Daten vorliegen. Trotzdem lassen sich anhand von Überschlagsrechnungen und aus den Untersuchungen zum Chemischen Transport der ternären Randphasen [6, 7] der Mischkristallreihe einige Aussagen zum Transportmechanismus und zu den für den Transportvorgang wesentlichen Gasteilchen treffen. Wie dem Ergebnis einer solchen Überschlagsrechnung zur Gasphasenzusammensetzung über einem CoZnMo₃O₈-Bodenkörper (x = 1, Transportmittel NH₄Cl) in Abbildung 5 entnommen werden kann, sind die für den Transport der Metalle wesentlichen Gasteilchen CoCl₂(g), ZnCl₂(g) bzw. MoO₂Cl₂(g). Da der Sauerstoffpartialdruck durch den koexistierenden Bodenköper bei niedrigen Werten festgelegt ist, erfolgt der Sauerstofftransport über die Gasphase neben MoO₂Cl₂(g) hauptsächlich über H₂O(g), das durch Reaktion des Transportmittels NH_4X (X = Cl, Br) mit dem Bodenkörper gebildet wird. Setzt man X₂ als Transportmittel ein, kann der beobachtete Transport nur durch das Vorhandensein von Feuchtigkeitsspuren erklärt werden. Wird bei T₁ nur der Mischkristall abgeschieden, lässt der Transportvorgang durch eine formale Gleichung beschreiben:

 $\begin{array}{l} Co_{2-x}Zn_{x}Mo_{3}O_{8}(s) \,+\, 10 \,\,HX(g) \leftrightarrows 2\text{-}x \,\,CoX_{2}(g) \,+\, x \,\,ZnX_{2}(g) \,+\, 3 \\ MoO_{2}X_{2}(g) \,+\, 2 \,\,H_{2}O(g) \,+\, 3 \,\,H_{2}(g). \end{array}$

Allgemein tritt bei der Einstellung des Bodenkörper-Gasphase-Gleichgewichtes nach Transportmittelzugabe und Aufheizen auf $T_2 = 1273$ K eine Verschiebung der Bodenkörperzusammensetzung auf (inkongruente Auflösung), unter anderem durch die Bildung von H₂O(g). Dabei ist zu vermeiden, dass sich die Zusammensetzung in einen sauerstoffärmeren Koexistenzraum (mit niedrigerem Sauerstoffkoexistenzdruck und als Folge deutlich geringerer Gasphasenlöslichkeit von Molybdän) verschiebt, was durch die Vorlage eines Ausgangsbodenkörpers mit geringem Sauerstoffüberschuss (entsprechend Co:Zn:Mo:O wie 2-x : x : 3 : 8.1) gewährleistet wird.

Wie gezeigt wurde, ist durch die Wahl geeigneter experimenteller Parameter die Abscheidung von $Co_{2-x}Zn_xMo_3O_8$ in einkristalliner Form bei guter Reproduzierbarkeit möglich, wobei die Zusammensetzung der Abscheidungsprodukte durch die vorgelegten Ausgangszusammensetzungen gesteuert werden kann. Die für das spezielle System gewählten experimentellen Bedingungen sind zwar aufgrund der in der Regel unterschiedlichen Koexistenzverhältnisse nicht sofort auf andere analoge Systeme $M_{2-x}M'_xMo_3O_8$ übertragbar, liefern aber wichtige Hinweise für die Auswahl geeigneter Parameter zur Darstellung weiterer Mischkristalle durch Chemischen Transport.

Literatur

- [1] W. H. McCarroll, L. Katz, R. Ward, J. Am. Chem. Soc. 1957, 79, 410.
- [2] D. Betrand, H. Kerner-Czeskleba, J. Physique 1975, 36, 379.
- [3] S. P. McAlister, P. Strobel, J. Magnetism Magnetic. Mat. 1983, 30, 340.
- [4] F. Varret, H. Czeskleba, F. Hartmann-Boutron, P. Imbert, J. *Physique* **1972**, *33*, 549.
- [5] P. Strobel, Y. Le Page, J. Crystal Growth 1983, 61, 329.
- [6] T. Söhnel, W. Reichelt, H. Oppermann, Z. Anorg. Allg. Chem. 1997, 623, 1190.
- [7] U. Steiner, S. Daminova, W. Reichelt, Z. Anorg. Allg. Chem. 2004, 630, 2541.
- [8] T. Maruyama, Y. Saito, Denki Kagaku 1990, 58, 498.
- [9] J. Rodriguez-Carvajal, *Program Fullprof 2000*, Laboratoire Leon Brillouin (CEA-CNRS).