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Broad range of selectivity possesses serious limitation for the development of matrix metalloproteinase-2
(MMP-2) inhibitors for clinical purposes. To develop potent and selective MMP-2 inhibitors, initially mul-
tiple molecular modeling techniques were adopted for robust design. Predictive and validated regression
models (2D and 3D QSAR and ligand-based pharmacophore mapping studies) were utilized for estimating
the potency whereas classification models (Bayesian and recursive partitioning analyses) were used for
determining the selectivity of MMP-2 inhibitors over MMP-9. Bayesian model fingerprints were used
to design selective lead molecule which was modified using structure-based de novo technique. A series
of designed molecules were prepared and screened initially for inhibitions of MMP-2 and MMP-9, respec-
tively, as these are designed followed by other MMPs to observe the broader selectivity. The best active
MMP-2 inhibitor had IC50 value of 24 nM whereas the best selective inhibitor (IC50 = 51 nM) showed at
least 4 times selectivity to MMP-2 against all tested MMPs. Active derivatives were non-cytotoxic against
human lung carcinoma cell line—A549. At non-cytotoxic concentrations, these inhibitors reduced intra-
cellular MMP-2 expression up to 78% and also exhibited satisfactory anti-migration and anti-invasive
properties against A549 cells. Some of these active compounds may be used as adjuvant therapeutic
agents in lung cancer after detailed study.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Remodeling of extracellular matrix (ECM) is important in many
physiological and pathological events. Matrix metalloproteinases
(MMPs) are zinc-dependent endopeptidases which are involved
in remodeling of ECM. The MMPs are implicated in numerous dis-
ease conditions such as cardiovascular disorders (atherosclerosis,
restenosis, hypertension, heart failure, aortic aneurysm, etc), pul-
monary disorders [chronic obstructive pulmonary diseases (COPD),
bronchial asthma, pulmonary fibrosis, etc], rheumatic diseases
(rheumatoid arthritis, lupus erythematosus, systemic sclerosis,
etc) and diabetes mellitus as well as cancer. Owing to these broad
ranges of applications, MMPs are still considered as potential tar-
gets for drug development.1

Although several MMP inhibitors (MMPIs) entered clinical trials,
none of these has been established as an anticancer drug due to the
adverse effects that mainly stem from the broad spectrum of MMP
inhibition. Poor pharmacokinetic profiles are well-known obstruc-
tion for the discovery of MMPIs.2 Most of the trialed compounds
are hydroxamate derivatives that show poor aqueous solubility as
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well as non-specificity towards MMPs and other zinc containing
enzymes.2,3 So far, 28 subtypes of MMPs have been identified and
are classified into six subfamilies. One of the subfamilies, gelatinase
is having two enzymes—MMP-2 (gelatinase A) and MMP-9 (gelati-
nase B).4–6 TheMMP-2 has been characterized as themost validated
target for cancer whereas MMP-9 is reported as an anti-target in
advanced state of the disease due to its anti-angiogenic and anti-
tumorigenic functions.7–12 It was earlier reported that MMP-9 is
responsible for the formation of tumstatin that suppress angiogen-
esis via aVb3 integrin.13 The MMP-9 deficient mice were found to
have increased invasiveness in neuroendocrine tumorigenesis.14

Apart from the risks of angiogenesis andmetastasis, increased hem-
orrhage and brain edema were also reported for MMP-9 suppres-
sion.6 In addition, long time suppression of MMP-9 disrupts
recovery in cardiac ischemic patients and may lead to cardiac fail-
ure.15 Therefore, it is necessary to design MMPIs that would be
active as well as selective againstMMP-2 but non-selective towards
other MMPs particularly MMP-9.

Computational chemistry gained significance in drug design
and development in last few decades. In the current study, robust
in silico fragment-based technique was adapted for the develop-
ment as well as lead modification of the potent and the selective
MMP-2 inhibitors. The ‘fragments’ are smaller and less compli-
cated molecular residues that may be efficiently optimized into
the lead compound series if the structural insight is obtained at
the outset for the binding interaction between the fragment hit
and the target protein of interest. This hypothesis is supported
by the reports of clinical trials of drug molecules developed from
weakly acting fragment.16 As MMP-2 and MMP-9 enzymes belong
to same MMP subgroup (gelatinase), these have highly homolo-
gous catalytic sites12 for the enzyme actions. Therefore, initially
in silico studies were performed considering the higher differences
in affinities between MMP-2 and MMP-9. The designed com-
pounds, obtained through the molecular modeling study were syn-
thesized and their enzymatic activities were measured initially
against these two MMPs followed by other MMPs to observe the
broader selectivity. In addition, some of these active compounds
were also tested against nuclear extract of histone deacetylase
(HDAC) enzymes consists mainly of histone deacetylase 1 (HDAC1)
and histone deacetylase 2 (HDAC2) to justify the selectivity of
these compounds against other Zn dependent metalloenzymes.
Some highly active designed MMP-2 inhibitors were further inves-
tigated for cytotoxicity, apoptosis, cellular expression, anti-migra-
tory and anti-invasive properties against A549 cell line- a highly
invasive as well as MMP-2 and -9 over-expressing human lung car-
cinoma cell line.17 The initial work of these studies is reported
here. The work may help to get some useful leads as adjuvant ther-
apeutic agents in lung cancer.

2. Materials and methods

2.1. Molecular modeling study

Two different types of molecular modeling techniques were
performed. The regression analyses (2D and 3D QSAR studies as
well as pharmacophore mapping technique) were considered with
an aim to understand the mechanistic activity of the designed
molecules. The classification analyses (Bayesian modeling and
recursive partitioning techniques), on the other hand, were per-
formed to ensure the selectivity of the designed molecules towards
MMP-2 comparing with that of MMP-9 which is of the same class.

2.1.1. Dataset
Two hundred fourteen (214) structurally diverse compounds

were collected from the published work.18–37 The biological activ-
ity value [IC50 (nM)] was converted to the negative logarithmic
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
scale [pIC50 = log109/IC50] and was used as the dependent variable
in different regression analyses except the pharmacophore map-
ping method where IC50 value was used. Another one hundred for-
tynine (149) compounds with both MMP-2 and MMP-9 inhibitory
activities were collected from the published work38–43 of Johnson
and Johnson Pharmaceutical Research and Development. Around
20% of the data (33 compounds) with the higher MMP-2 selectivity
[i.e., the higher MMP-9 IC50 (nM)/MMP-2 IC50 (nM)] were denoted
as the ‘selective’ and other compounds as the ‘non-selective’. These
compounds were used for the classification model development.

2.1.2. Division into training and test sets
For regression analyses, initially 25% of the dataset was selected

as the test set by diversity based data splitting technique in Accel-
rys Discovery Studio 3.0 (DS)44 following the method described
earlier.45 Fifty three (53) compounds were selected as the test set
and remaining one hundred sixtyone (161) compounds were con-
sidered as the training set. To understand whether the current
splitting maintains uniformity in both sets46, these compounds
were analyzed by the principal component analyses (PCA)
method.45 The PCA plot is provided in Supporting information
(Fig. S1), which demonstrates that the test set compounds are uni-
formly distributed in three dimensional PCA plot. Therefore, simi-
larity and uniformity of both of these sets are justified. The
classification analyses data were divided randomly into one hun-
dred twenty (120) [21 selective and 99 nonselective] training set
and twenty nine (29) [12 selective and 17 non selective] test set
compounds.

2.1.3. 2D QSAR model
Different molecular 2D and 3D descriptors were calculated for

the dataset compounds through Dragon 2.147, DS44 and Canvas48

tools. The multiple linear regression (MLR) models were developed
on the training set by the forward stepwise regression method fol-
lowing the procedure described earlier.49 Statistical qualities of the
training set MLR equations were justified by the square of correla-
tion coefficient (R2), adjusted R2 (RA

2), variance ratio (F), probability
factor related to F-ratio (p) and standard error of estimate (s). To
check the predictability of these 2D-QSAR models, leave-one-out
(LOO) cross-validation method50 was used as an internal validation
tool. The LOO cross-validated regression coefficient (Q2) was used
for justifying internal predictabilities of the model along with
parameters like r2mðLOOÞ and Dr2mðLOOÞ .

51 The R2
Pred

52 was used as an
external validation parameter to verify the model predictability
on the test set. Moreover, r2mðTestÞ and Dr2mðTestÞ

53 were also used for
justifying external predictabilities of the 2D QSAR model. To pre-
dict the overall predictability of models, r2mðOverallÞ and Dr2mðOverallÞ

53

parameters were calculated. In order to verify the null hypothesis,
Y-based randomization technique54 was performed for the step-
wise multiple linear regression (sMLR) model. Two parameters—
RP
2 and cRP

2 55 were taken into consideration as the validation
parameters for the Y-based randomization test. For the MLR mod-
els, variance inflation factors (VIF) values56,57 and applicability
domain58 were also determined to justify significance, robustness
and reliability of these 2D-QSAR models.

2.1.4. Pharmacophore mapping method
Hypogen algorithm59 was used to develop 3D-QSAR pharma-

cophore models using DS.44 Thirty (30) structurally diverse com-
pounds were selected as the training set from the current
database with the help of Find diverse molecules tool of DS.44

Remaining one hundred eighty four (184) compounds were used
as the test set. The BEST conformation generation method with
an energy threshold of 20 kcal/mol was used for conformation gen-
eration. All parameters were set to default value except uncer-
tainty value and excluded volume. These were set to 1.5 and 8,
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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respectively, for getting optimum statistical results. The generated
pharmacophore models were validated by three different tech-
niques, i.e., (a) cost analysis, (b) Fischer’s randomization test and
(c) test set prediction method.60 Configuration cost depends on
the complexity of the hypothesis space being optimized. Pharma-
cophore hypotheses having a difference of 40–60 bits between
the total cost and the null cost hypotheses indicates a 75–90% pos-
sibility for a true correlation in the data. Fischer’s randomization
test was performed to ensure that the generated models were
not developed by chance. This method was computed with 95%
confidence level. The third validation method, i.e., the test set pre-
diction method proves that the pharmacophore models are well
predictive over the test set. A test set containing one hundred
twenty eight (128) compounds was chosen for the validation of
pharmacophore models. The test set prediction was performed
using the Ligand pharmacophore mapping protocol of DS44 with
BEST conformational search through rigid or flexible fitting
options.

2.1.5. 3D QSAR analyses
Compounds fitted (aligned) with the best ligand-based pharma-

cophore model were used as the aligned structures for 3D QSAR
analyses. Two 3D QSAR techniques, comparative molecular field
analyses (CoMFA)61 and comparative molecular similarity analyses
(CoMSIA)62 methods were performed using Sybyl63 tool. The
CoMFA method correlates between molecular properties (steric
and electrostatic) and the biological activity in the form of contour
maps. It is also possible to predict the biological activity of these
compounds by using this method. For the CoMFA method, steric
and electrostatic field energies were calculated using Lennard-
Jones and Coulomb potentials, respectively. The partial least square
(PLS) technique was used for the development of the model. The
optimum number of components in the final PLS model was deter-
mined by the Q2 value (LOO cross-validation technique). The opti-
mization is based on ‘5% rule’ according to which the number of
components is increased only if it increases Q2 value of 5% or more.
Conventional correlation coefficient (R2), standard error of esti-
mate (SEE) and F ratio were considered as the validation parame-
ters. Bootstrapping analysis for 20 runs was also performed to
assess the robustness and statistical confidence of the derived
models. External predictability of these models was determined
by estimating R2

Pred.
45

2.1.6. Bayesian classification modeling
A Bayesian model45 on the ‘selective’ and the ‘non-selective’

MMP-2 inhibitors was developed following the methodologies
described previously.45,64 The good (favorable) and bad (unfavor-
able) fingerprints for MMP-2 selectivity were obtained. The model
predictability was checked on the test set compounds.

2.1.7. Recursive partitioning (RP) analyses
Create recursive partitioning model module of DS44 was used to

build RP classification model on the ‘selective’ and the ‘non-selec-
tive’ compounds. The model was developed by minimizing the Gini
index to divide these compounds into branches.45,64 The splitting
process was continued until no significant nodes are found or
when a minimum number of samples per node are reached. The
values of ‘Minimum number of samples per node’ and ‘Maximum
tree depth’ were set to 10 and 20, respectively. Leave-one out cross
validation was used for estimating the error rates of tree depth.

2.1.8. De novo fragment based lead modification
In the current study, the best docked pose of the lead molecule

was subjected to identify proper fragments for the higher interac-
tion through de novo link protocol in DS.44 This protocol uses Ludi
algorithm65 to identify suitable fragments and it also scores the
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
fragments on the basis of the higher interactions. A site sphere
with 13 Å radius was created from the ligand pose. The DS input
fragment library was used as a source of fragments. The protocol
was applied with all hydrogen atoms of the lead using default
parameters including link point maximum alignment angle: 15,
link/lipophilic/polar weight: 1, maximum fit attempts: 1000, max-
imum RMSD: 0.3, bond rotation: 2, density of lipophilic/polar site:
25, pre-selection factor: 2.

2.1.9. Quantum polarized ligand docking and MM-GBSA
analyses

Since MMP-2 is a metalloenzyme with a catalytic transition
state zinc metal, accurate and precise docking estimation requires
quantum mechanics (QM) level treatment.66 In the present study,
quantum polarized ligand docking (QPLD) technique67 was utilized
to dock the designed inhibitors into the active site of MMP-2
enzyme. The NMR structure of MMP-2 enzyme (PDB ID: 1HOV)
was obtained from the protein data bank (PDB).68 The ligand atoms
were treated at the QM level whereas the receptor including zinc
metal was described using OPLS force field parameters. The partial
charges and the protonation states of the receptor molecules were
described using Epik module and the catalytic zinc atom was
assigned with +2 atomic charge. Histidine residue coordinating
with catalytic zinc atom was set with an epsilon protonation state
whereas other two adjacent histidine residues were assigned with
delta protonation states. The restrained minimization of the hydro-
gen atom of the protein molecule was done using the protein prepa-
ration wizard and OPLS2005 force field. A receptor grid box of size
15 Å � 15 Å � 15 Å was generated considering the bound ligand of
the protein as the centre of the box. The initial docking of the pre-
pared ligand was performed using the standard precision (SP) pro-
tocol that generated the preliminary ligand poses. The single point
calculation of the ligand poses using the density functional theory
(DFT) based Becke–Lee–Yang–Parr (BLYP)/6-31G⁄ model was per-
formed to calculate the polarizable charges of these inhibitors.
These charges were assigned for inhibitors by electrostatic poten-
tial (ESP) fitting. Finally, these inhibitors with new partial charges
were re-docked into the enzyme active site to obtain the most
energetically favorable ligand poses. These selected poses were
analyzed throughmolecular mechanics combined with generalized
Born and surface-area salvation (MM-GBSA) approach69–71 that
calculates the free energy of binding of these ligands. The GBSA
continuum model was employed for this analysis. The binding free
energy of the internal dataset compounds was compared with their
observed activities. Different contributors of MM-GBSA binding
energy values (Coulomb energy, van der Waals energy, solvation
free energy, covalent energy, etc) were also analyzed to understand
structural requirements of these molecules.

2.1.10. Molecular dynamic simulation
The MD simulation of the protein–ligand complexes was carried

out through Desmond/Maestro.72–74 Briefly, OPLS2005 molecular
mechanics forcefield parameters for the protein–ligand complex
were set. The complex was soaked by an orthorhombic water
box (extended 10 Å from the complex) of TIP3P water model. The
system was neutralized with Na+ ions applying periodic boundary
conditions in each direction. The SHAKE algorithm was used to
constrain the motion of covalent bonds using hydrogen atoms.
Before MD simulations, a six step relaxation procedure was per-
formed. The solvated system was initially minimized with the
solute restrained followed by a minimization without the solute
restrained with the help of hybrid method of steepest descent
and limited memory Broyden–Flecher–Goldfarb–Shanno (LBFGS)
algorithm with maximum 2000 iterations. The relaxed complex
was subjected to a 12 ps simulation in the NVT ensemble (temper-
ature 10 K) with non-hydrogen solute atoms restrained. The
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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similar simulation was carried out for subsequent NPT ensemble at
24 ps with a temperature of 300 K. The temperature and pressure
were maintained by Berendsen thermostats and barostats, respec-
tively. The system was simulated for 10 ns with a step of 2 fs NPT
ensemble using a Nose–Hoover chain thermostat at 300 K and
Martyna–Tobias–Klein barostat at 1.013 bar pressure. The atomic
coordinate data and system energies were recorded every 10 ps
with a trajectory of 4.8.74

2.2. Organic chemistry

The designed molecules were subjected to syntheses and char-
acterizations followed by biological validation for exploring potent
and selective MMP-2 inhibitors as well as for other biological
activities.

2.2.1. General
The mass spectroscopy analysis was performed in a LC MS/MS

instrument [The LC, Agilent coupled to electrospray ion (ESI) mass
spectrometer controlled by Mass Hunter Quantitative Analysis
software]. The 1H nuclear magnetic resonance (NMR) spectra were
recorded on a AC Bruker 300 mHz FT-NMR machine with TMS as
the internal standard. The synthesized compounds were dissolved
individually in dimethyl sulfoxide-d6 (DMSO-d6) solvent. Infrared
spectroscopy (IR) analyses were performed in a Bruker alpha
11960095 FT-IR instrument. Splitting patterns are designated as s
(singlet), d (doublet) andm (multiplet). The heteronuclear multiple
bond correlation spectroscopy (HMBC) was performed with a Bru-
ker Avance DPX-500 spectrometer using DMSO-d6 solvent. Optical
rotation of these compounds was observed by Perkin–Elmer Type
141 polarimeter. Melting point of synthesized compounds was
measured on Mel-Temp Electrothermal apparatus and a capillary
melting point apparatus. These were verified in CTRONICS-a digital
melting point apparatus. Chemical reactions were monitored by
the analytical thin layer chromatography (TLC) performed on silica
gel G plates (TLC silica gel 60 F254, Merck, Germany). The spots
were located by keeping the TLC plates in iodine chamber.

2.2.1.1. Syntheses of substituted benzenesulfonyl chlorides
(I1). The chemical synthesis was started with chlorosulfony-
lation of the substituted benzenes (S1) individually in dry chloro-
form by dropwise addition of chlorosulfonic acid over a period of
45–60 mins at 0–5 �C. After completion of chlorosulfonic acid addi-
tion, the reaction mixture was stirred for additional 45 min at
room temperature and the mixture was poured over crushed ice.
The mixture was extracted thrice with 50 ml chloroform which
was dried overnight in presence of anhydrous sodium sulfate. After
evaporation of the solvent chloroform, substituted benzenesul-
fonyl chlorides (I1) were obtained individually in solid forms
which were used for next step without any purification.

2.2.1.2. Syntheses of 2N-substituted benzenesulfonyl L(+) glu-
tamic acids (I2). L(+)-Glutamic acid was taken in a 250 ml
conical flask and 2 N NaOH solution was added until the acid
was solubilized and reaction mixture becomes alkaline (pH 8–9).
In stirring condition, the mixture was heated at 60–70 �C and the
substituted benzenesulfonyl chlorides (I1) was added individually
in small portions. The 2 N NaOH solution was added from time-to-
time maintaining the alkalinity of the mixture. The end-point of
the reaction was determined by TLC. After completion of the reac-
tion, the mixture was cooled to room temperature and was filtered
to remove undissolved solids. The filtrate was acidified with 6 N
HCl solution saturated with sodium chloride and extracted thrice
with 50 ml portions of ethyl acetate. The substituted benzenesul-
fonyl-L(+) glutamic acids (I2) were obtained individually in solid
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
forms after distillation of the solvent ethyl acetate. These products
were purified separately by recrystallization with water.

2.2.1.3. Syntheses of 1-(substituted benzenesulfonyl)-5-oxopy-
rrolidine-2-carboxylic acids (I3). The 2N-substituted ben-
zenesulfonyl L(+) glutamic acids (I2) were refluxed separately
with acetyl chloride for 2–3 h. The completion of the reaction
was estimated by TLC. The mixture was then cooled to room tem-
perature and poured onto crushed ice with continuous stirring. The
precipitated product was filtered and recrystallized with water.

2.2.1.4. Syntheses of 5-N-substituted 2-(substituted benzene-
sulfonyl) L(+) glutamines (A1–A26). The 1-(substituted ben-
zenesulfonyl)-5-oxopyrrolidine-2-carboxylic acids (I3) were
suspended in 20 ml water and to these, excess amines were added
individually. The reaction mixture was allowed to stand for 14–
15 h and was heated on a steam bath to remove excess unreacted
amines. The mixture was cooled to room temperature and 6 N HCl
solution was added in chilled condition. The precipitate was fil-
tered off, washed with cold water and recrystallized with dilute
ethanol (60%) to get the final products (A1–A26).

Chemical characterizations of the synthesized compounds
(A1–A26) are presented in Supporting information (Text S1).
Isomeric purities of the compounds were determined by HMBC
analyses. The HMBC spectra of A9 are shown in Supporting infor-
mation (Fig. S2) as an example.

2.3. Biological assays

The synthesized designed molecules were screened for inhibi-
tion of MMPs and HDAC activities, cytotoxicity against lung carci-
noma cell line (A549), flow cytometry apoptotic assay, cellular
expression by immunofluorescence assay, wound healing migra-
tion and invasion assays.

2.3.1. Enzyme assays
Two kinds of enzyme assays were preformed namely matrix

metalloproteinase (MMP) inhibition assay and histone deacetylase
(HDAC) assay.

2.3.1.1. Matrix metalloproteinase inhibition assay. The
MMPs inhibition assays75 were carried out using MMP inhibitor
profiling kits purchased from Enzo Life Science International Inc.,
USA following the manufacturer’s protocol. The absorbance value
at 410 nm was measured with the help of a microplate photometer
(Thermo Scientific Multiscan FC, USA). An inhibitor—N-Isobutyl-N-
(4-methoxyphenylsulfonyl) glycyl hydroxamic acid (NNGH) was
included as the prototype control inhibitor.

2.3.1.2. Histone deacetylase inhibition assay. The inhibitory
potential of the designed compounds towards HDAC was done by
the HDAC colorimetric drug discovery kit (Enzo Life Science Inter-
national Inc., USA).75 The colorimetric substrate containing an
acetylated lysine side chain was incubated at 37 �C with HeLa
nuclear extract having high HDAC activity (especially HDACs 1
and 2) and a range of inhibitor concentrations. The substrate was
sensitized by deacetylation and was reacted with the developer
causing an increase in the absorption at 405 nm using a microplate
photometer (Thermo Scientific Multiscan FC, USA). Trichostatin A
was used as the positive control.

2.3.2. Other biological assays
2.3.2.1. Cytotoxicity assay. The lung carcinoma cell line A549
was collected from National Centre for Cell Science, Pune, India
and was maintained as monolayer cultures in Dulbecco’s
Modified Eagle Medium (DMEM) (Gibco Life Technologies, USA)
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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supplemented with 10% heat-inactivated FBS (Gibco Life Technolo-
gies, USA) and Penicillin–Streptomycin (100 IU ml�1–100 lg ml�1).
The growth inhibitory effect of compounds was evaluated by using
the MTT assay following the earlier described method.75

2.3.2.2. Flow cytometry apoptosis assay. The apoptosis was
assayed by using an annexin V-FITC apoptosis detection kit (Cal-
biochem, Germany) following the protocols described earlier.75

Briefly, after treating the A549 cells with different concentrations
of compounds, these were stained with propidium iodide (PI)
and annexin V-FITC according to the manufacturer’s instructions.
The percentage of the live, apoptotic and necrotic cells were ana-
lyzed by BD LSR Fortessa cell analyzer (Becton Dickinson, USA).
Data from 106 cells were analyzed for each sample.

2.3.2.3. Immunofluorescence assay. Anti-MMP-2 antibody
(sc-10736) and CFL-tagged secondary antibody (sc-362252, IgG-
CFL 488) were purchased from Santa Cruz Biotechnology Inc.,
USA. The A549 cell line (1 � 106 cells/cm2) was seeded on cover
slips and was subsequently treated with the test compounds
(except the control). After 24 h, these cells were fixed with 4%
paraformaldehyde in PBS for 15 min, permeabilized with 0.1% Tri-
ton X-100 in PBS for 15 min and exposed to the blocking solution
(PBS containing 5% bovine serum albumin and 0.2% Tween 20)
for 1 h. The fixed cells were incubated overnight with anti-MMP-
2 primary antibody (1:250 dilutions), washed with PBS and treated
with secondary antibody (1:250 dilutions) for 1 h. The culture was
treated with 10 mg/ml of DAPI solution for 1 min for nuclear stain-
ing. Samples were mounted in Vectashield hard set media (Vector
Laboratories, USA). Images were acquired by an Andor spinning
disk confocal microscope. The corrected total cell fluorescence
(CTCF) was calculated by ImageJ tool.76 All integrated density of
each cells (presented in these images) and at least six background
areas were measured and CTCF value was determined as per the
Eq. 1:

CTCF ¼ ½Integrated density� ðarea of selected cell

�mean fluorescence of background readingsÞ� ð1Þ
2.3.2.4. Would healing migration assay. The A549 cells were
seeded in 24 well plate at a density of 5 � 104 cells per well. After a
certain confluence (60–75%), these were starved overnight. A
scratch was made in the cell monolayer by 20–200 ll pipette tip.
The detached and loosely bound cells were washed thrice with
PBS. These remaining cells were treated with different concentra-
tions of these compounds for 48 h and the rates of migration were
then photographed.75

2.3.2.5. Invasion assay. The anti-invasiveness of these com-
pounds was evaluated by a fluorimetric QCM ECMatrix cell inva-
sion assay kit (Millipore, USA) following the methods previously
described.75 The A549 cells were starved overnight in FBS-free
DMEM. These staved cells were resuspended in FBS-free medium
with 5% BSA and were harvested (1 � 105 cells) in each well of
the insert. The feeder tray (the lower portion of the well plate)
was filled with 5% FBS. The synthesized compounds were added
to the cell suspensions in triplicates. These cells were incubated
for 24 h. Invasive cells are able to invade through a basement layer
of matrix membrane solution and cross the pores of polycarbonate
membranes to adhere at the bottom of the inserts. The adhered
cells were dissociated from the bottom with cell detachment solu-
tion and the detached cells were stained by CyQuantGR dye. The
fluorescence was measured with a multi-mode microplate reader
at 480 nm excitation and 520 nm emission (SpectraMax, Molecular
Devices, USA) spectra.
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
3. Results and discussion

In order to design potent and selective MMP-2 inhibitors, two
different types of molecular modeling techniques were considered.
First, regression analyses (three different methods) based models
[2D and 3D quantitative structure activity relationship (QSAR)
studies and pharmacophore mapping method] were developed
and validated. These predictive and validated models were utilized
to understand the structural requirements of MMP-2 inhibitors
and to predict the activity of the designedmolecules. The biological
activity of these inhibitors [IC50 (nM)] was converted to the
negative logarithmic scale [pIC50 = log109/IC50] which was used
as the dependent variable in different regression analyses (except
pharmacophore mapping where the IC50 values were used). In
the second step, the classification models were developed by two
methods (Bayesian modeling and recursive partitioning analyses)
to explore the important fragments responsible for selective
MMP-2 inhibition. Bayesian model depicts useful fingerprint frag-
ments responsible for the higher selectivity towards MMP-2 com-
paring with that of MMP-9. These fragments were joined to design
the primary lead molecule.

3.1. Regression analyses

A dataset containing structurally diverse MMP-2 inhibitors
were collected from the reported work of Phizer Global Research
and Development18–37 [Table S1, Supporting information] and were
used for developing the regression models.

3.1.1. 2D-QSAR study
The best 2D QSAR model (Model 1) was developed through the

stepwise multiple linear regression (sMLR) analysis and is depicted
in the Eq. 2.

pIC50 ¼ 14:037ð�2:497Þ � 11:523ð�2:771ÞBIC5
þ 4:185ð�0:592ÞHOMA� 0:056ð�0:008ÞRDF110u
þ 0:727ð�0:062ÞC � 026þ 1:012ð�0:116ÞJurs RPCS

� 0:095ð�0:023ÞSTDðO; SÞ � 0:024ð�0:006ÞPEOE2
þ 0:351ð�0:062Þ#rtvFG ð2Þ

nTr = 161; R = 0.882; R2 = 0.777; RA
2 = 0.766; F(8,152) = 66.397;

p < 0.00001; SEE = 0.750; Q2 = 0.750; PRESS = 96.230; SDEP = 0.373;
r2mðLOOÞ = 0.735; Dr2mðLOOÞ = 0.160; nTs = 50; R2Pred = 0.690;
r2mðTestÞ = 0.665; Dr2mðTestÞ = 0.181; r2mðOverallÞ = 0.713; Dr2mðOverallÞ = 0.158;
k = 1.008; k0 = 0.975; Rr2 = 0.210; cRp

2 = 0.755.
Where nTr and nTs are the numbers of compounds used in the

training and the test sets, respectively. Regarding the 2D-QSAR
model validation, other statistical parameters and their meanings
are shown in Table 1. The definitions related to the statistical
validation parameters are shown in the Supporting information
(Text S2).

Three compounds (Compd R57, R75 and R77, Table S1, Support-
ing information) were removed as outliers from the test set as the
standard residual values (observed-predicted) were found to be
higher for these compounds. These compounds may act through
different mechanism(s) of action. The model explains 76.60% and
predicts 75.00% of variances of the experimental activity. The val-
ues of R2

Pred of 0.690 and the r2mðTestÞ of 0.665 show satisfactory
external predictability of this model. The r2mðOverallÞ value of 0.713
justifies the overall predictability of the model. The experimental
vs predicted activity plot of Model 1 is provided in Figure 1.

The Y test randomization parameters Rr
2 and cRP

2 indicate that
the model is unique and not developed by chance. The correlation
matrix among variables, variation inflation factor (VIF), p- and
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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Table 1
Statistical parameters and their meanings

Sl
no.

Validation
parameters

Meaning

1 nTr Number of compounds in the training set
2 nTs Number of compounds in the test set
3 R Correlation coefficient of regression analysis
4 R2 Squared correlation coefficient
5 R2A Adjusted square correlation coefficient
6 F Variance ratio between explained to the residual at

specified degrees of freedom
7 p Probability factor related to F-ratio
8 SEE Standard error of estimate
9 Q2 Leave-one-out cross-validated R2

10 PRESS Predicted residual sum of squares
11 SDEP Standard deviation error of prediction
12 r2mðLOOÞ Leave-one-out predicted modified R2 for the training set

compounds
13 Dr2mðLOOÞ Difference of r2mðLOOÞ using reverse axes for the training

set compounds
14 R2Pred Predicted R2

15 r2mðTestÞ Modified R2 for the test set compounds

16 Dr2mðTestÞ Difference of r2mðTestÞ using reverse axes for the test set

compounds
17 r2mðOverallÞ Leave-one-out modified R2 for the whole dataset

18 Dr2mðOverallÞ Difference of r2mðOverallÞ using reverse axes for the whole

dataset
19 k R(observed � predicted)activity/R(predicted activity)2

20 k0 R(observed � predicted)activity/R(observed activity)2

21 Rr
2 Squared randomized scrambled correlation coefficient

22 cRp
2 Degree of variation between random and nonrandom

model

Figure 1. Observed vs predicted acti
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t-values as well as leverage values of Model 1 are provided in the
Supporting information (Tables S2, S3 and S4, respectively).

As per the Model 1, HOMA, C-026, Jurs_RPCS, STD(O,S) and
#rtvFG variables have the positive influences on the activity
whereas descriptors like BIC5, RDF110u and PEOE2 are detrimental
to the higher activity. The HOMA77 is an aromaticity index param-
eter that stands for the harmonic oscillator model of aromaticity
index. The positive correlation of HOMA indicates that the aro-
maticity may have a favorable contribution for the higher biologi-
cal activity. The atom centre fragment index C-02678 signifies the
R-CX-R fragment [the number of substituent group attached to
the phenyl ring excluding the carbon groups (e.g., methyl, carboxyl,
etc)]. The presence of this fragment may increase the MMP-2 inhi-
bitory potential. It also emphasizes that not only the aromatic ring
but also its substitutions are important for the higher activity. The
Jurs_RPCS79 is a 3D descriptor that stands for the relative positive
charged surface area and is positively correlated with the solvent
accessible surface area (SASA) of the most positive atom as well
as with the total positive charge of the molecule. Therefore, the
positively charged atoms and SASA may be favorable for the higher
MMP-2 inhibitory activity. Topological descriptor, STD(O,S)80 signi-
fies the sum of the topological distance between the sulfur and the
oxygen atoms. The #rtvFG81 descriptor is the number of reactive
groups in these molecules. Three topological descriptors, BIC5
(Bond information content neighborhood symmetry of 5th order),
RDF110u (unweighted radial distribution function-11.0)82 and
PEOE2 (partial equalization of orbital electronegativity of second
order)81 are found to be negatively correlated with the biological
activity, indicating that the higher values of these descriptors are
unfavorable for the activity.
vity (pIC50) plots of Models 1–4.

. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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3.1.2. Ligand based pharmacophore modeling
30 structurally diverse training set molecules [Fig. S3, Support-

ing information] with a considerable biological activity variations
were used for developing hypogen 3D QSAR pharmacophore mod-
els with the fixed, null and configuration costs of 108.71, 328.82
and 11.87, respectively.45,60 The hypogen model helps to derive
important pharmacophore features (such as hydrogen bond accep-
tor, hydrogen bond donor, hydrophobic, hydrophobic aromatic,
ring aromatic, positive ionizable and negative ionizable groups)
from a structurally diverse set of biologically active molecules
(variation of activities at least four orders of magnitude). Moreover,
this model differentiate the active molecules from the inactive
ones by means of identifying important chemical and structural
features required for the activity by means of generating top scor-
ing predictive pharmacophores.45,60 The higher value of the corre-
lation coefficient along with the lower value of the total cost is
characteristics of a good pharmacophore model. Furthermore, the
value of the total cost should be close to the fixed cost whereas
the difference between the total cost and the null cost should be
high. The null cost is the cost of generating a hypothesis where
the error cost is maximum. The total cost is the actual cost of
hypothesis generation that is the sum of weight cost, error cost
and configuration cost. The fixed cost is produced for an ideal
hypothesis where the error cost is minimal. In addition, the root
mean square deviation (RMSD) value should be less than 1.5 and
the configuration cost should be less than 17. The RMSD value indi-
cates the overall conformational difference between the final con-
formations of these structures with the minimized conformations.
The cost values, correlation coefficients (R), root mean square devi-
ations (RMSD) and the pharmacophore features of top ten
hypotheses are listed in Table 2.

It is evident from Table 2 that the Hypo 1 produced the most
reliable model in terms of statistical quality. The low RMSD
(<1.50) indicates that the model is generated with a good align-
ment of these compounds. Hypotheses with the higher number
of exclusion volumes (E) produced the better results implying that
the steric hindrance plays a significant role for the ligand–receptor
interactions. Interestingly, the zinc binding feature (Z) has
appeared to be an important feature in the hypotheses, emphasiz-
ing its role in MMP-2 inhibition.

To estimate the predictability of the Hypo1 (Model 2) on the
external dataset, the remaining 184 compounds were screened
with this hypothesis. The test set showed a correlation coefficient
(R2) of 0.491 in the preliminary trial with the rigid fitting. Some
compounds (Compd R22, R20, R14, R42, R38, R64, R69, R68,
R70, R71, R89, R85, R145, R146, R129, R133, R149, R127 and
R180, Table S1, Supporting information) showed large variations
between the observed and the estimated activities. It was also
Table 2
Statistical information of top 10 pharmacophore hypotheses

Hypo No. Total Cost Cost differencea RMSD

Hypo1 134.10 194.72 1.251
Hypo2 148.77 180.05 1.610
Hypo3 162.93 165.89 1.896
Hypo4 163.99 164.83 1.917
Hypo5 185.86 142.96 2.260
Hypo6 191.78 131.04 2.422
Hypo7 212.98 115.84 2.632
Hypo8 213.42 115.40 2.637
Hypo9 216.99 111.83 2.686
Hypo10 222.72 106.10 2.756

a Cost difference between the null and the total cost. The null cost, the fixed cost and
b Abbreviations used for features: RMSD, root mean square deviation; A: hydrogen bon

exclusion volume.
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evident that some of these compounds could not map this pharma-
cophore because of rigidity. Therefore, the flexible mapping was
allowed for these derivatives in Hypo 1. It was found that except
two compounds (Compd R64 and R180), the flexible fitting low-
ered the variations between the observed and the estimated activ-
ities. Therefore, it was presumed that these compounds require
more restrictions in their mapping. These compounds were
mapped with Hypo3 that contained four extra E features as com-
pared to Hypo1. This mapping adjusted the predicted activity of
these two compounds. Finally, 184 test set compounds produced
a predictive correlation coefficient (R2) of 0.650 in the final flexible
fitting. The observed vs predicted activity plot of Model 2 is pro-
vided in Figure 1. The interfeature distance constrains of the Model
2 is illustrated in Figure 2A along with the mappings of the best
active (Compd R198) of the training set (Fig. 2B) and the least
active (Compd R180) of the dataset on this pharmacophore
(Fig. 2C).

The highly active Compd R198 is fitted with four features of
the Model 2 whereas the least active Compd R180 is mapped
with only three features. The phenoxyphenyl moiety of the
Compd R198 is mapped with ‘Ha’ and ‘A’ features and the sul-
fonyl residue of this molecule is mapped with another A feature.
The hydroxamate residues of both these compounds are fitted
with the Z feature.

3.1.3. 3D QSAR studies
The alignments obtained in the best ligand based pharma-

cophore mapping (Hypo1) were used for developing comparative
molecular field (CoMFA)61 and similarity (CoMSIA)62 analyses to
understand 3D features required for these molecules. The results
are shown in Table 3.

Both the CoMFA (Model 3) and the CoMSIA (Model 4) models
were generated with 4 components. The CoMSIA model [Model
4] emerged as the superior to the CoMFA model [Model 3] as far
as the statistical results are concerned. The CoMSIA model [Model
4] showed the importance of steric, electrostatic, hydrophobic and
acceptor features. The presence of the donor feature deteriorated
the statistical qualities and it was therefore, excluded to develop
Model 4. Two compounds (Compd R65 and R68, Table S1, Supple-
mentary materials) in the CoMSIA model and three compounds
(Compd R65, R68 and R77, Table S1, Supporting information) in
the CoMFA model were found to be outliers and were removed
to develop the present models. The CoMFA and CoMSIA contour
maps of the best active (Compd R189) and the least active (Compd
R180) compounds are shown in Figure 3. The observed vs pre-
dicted activity plots of Models 3 and 4 are provided in Figure 1.
Detail descriptions of model 3 and 4 are provided in Supporting
information (Text S3).
b Error cost Correlation Featuresb

118.94 0.948 AAHaHZ11E
134.33 0.912 AAHaHZ14E
149.36 0.877 AAHaHZ15E
150.61 0.874 AAHaHZ10E
172.08 0.820 AAHaHZ7E
183.48 0.789 AAHaHZ5E
199.34 0.745 AAHaHZE
199.76 0.744 AAHaHZE
203.71 0.732 AAHaHZ3E
222.72 0.715 AAHaHZ

the configuration cost are 328.82, 108.71, and 11.87, respectively.
d acceptor; H: hydrophobic; Ha: hydrophobic aromatic; Z: zinc bonding feature, E:

. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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Figure 2. (A) Ligand-based pharmacophore model (Model 2) with its interfeature distance constraints (Å), (B) Mapping of the best active (Compd R198) of training set and (C)
the least active compounds (Compd R180) of the dataset.

Table 3
Statistical results of 3D-QSAR models

PLS statistics CoMFA CoMSIA

Non-validated R2 0.803 (nTr = 161) 0.842 (nTr = 161)
SEE 0.696 0.625
F 159.463 207.236
LOO-cross validated Q2 0.512 0.589
10 fold cross validation 0.501 0.586
R2bootstrap 0.845 (±0.014) 0.885 (±0.008)
Q2

Scrambled 0.353 0.324
CSDEP 1.133 1.148
dq2/dr2yy 0.917 0.811
Optimal components 4 4
R2Pred 0.514 (nTs = 50) 0.599 (nTs = 51)

Field contributions
Steric 0.580 0.207
Electrostatic 0.420 0.289
Hydrophobic — 0.285
Acceptor — 0.219
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3.2. Classification analyses

Since the aim of the current work is not only limited to explore
the structural requirements of active MMP-2 inhibitors but also to
obtain selectivity towards MMP-2 comparing MMP-9 of the same
class, two classification models were built on a dataset containing
149 MMP-2 and MMP-9 inhibitors.38–43 The structures and activi-
ties of these derivatives are provided in Supporting information
(Table S5). To build the classification models, 33 compounds hav-
ing the higher selectivity towards MMP-2 (comparing with MMP-
9) were assigned as the ‘selective’ whereas the remaining 116 com-
pounds were assigned as the ‘non-selective’. The whole dataset
was randomly divided into 120 training set (21 selective and 99
non-selective) and 29 test set (12 selective and 17 non-selective)
compounds. Fingerprint-based Bayesian model83,84 was developed
to understand these structural requirements of the compounds for
having more MMP-2 selectivity. Recursive partitioning64 model
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
was also developed with the same training and test set combina-
tion to understand the structural and physicochemical require-
ments of these compounds for the higher MMP-2 selectivity.

3.2.1. Bayesian model development and validation
Eight descriptors [lipophilicity (A logP), molecular weight

(MW), number of hydrogen bond acceptor (nHBA), number of
hydrogen bond donor (nHBD), number of ring (nR), number of aro-
matic ring (nArR) and molecular fractional polar surface area
(MFPSA) and one fingerprint feature FCFP_6 (extended connectiv-
ity fingerprint of maximum diameter 4)] were used for developing
the Bayesian model (Model 5). The definition of these descriptors
used in bayesian model development is shown in Table 4.

The model was validated using leave-one-out (LOO) cross-vali-
dation method and the receiver operating characteristic curve
(ROC)85 was generated. The ROC curves of the training and the test
sets are provided in Supporting information (Fig. S4). The model
showed leave-one-out (LOO) cross-validation ROC of 0.853, 5-fold
cross validation ROC of 0.851, respectively, and satisfactory enrich-
ments data (Fig. S4, Supporting information). The ‘best split’ value
obtained in the current model (Model 5) is �3.523 which demar-
cates the ‘selective’ compounds from the ‘non-selective’ inhibitors.
Based on this value, a contingency table was obtained which
helped to calculate the number of true positive (TP), true negative
(TN), false positive (FP) and false negative (FN) compounds. The
test set compounds were used to validate this model and it pro-
duced ROC score of 0.833 which indicated satisfactory predictabil-
ity of the model. The good and bad fingerprints are shown in the
Supporting information (Fig. S5A and B, respectively) and five each
selected favorable and unfavorable fingerprints are listed in
Figure 4.

Figure 4 shows that the biphenyl residues may be responsible
for the selectivity towards MMP-2 enzyme comparing to that of
MMP-9 whereas the phenoxy derivatives are mostly non-selective.
The sulfonyl group emerged as an important fingerprint for assur-
ing selectivity when it is attached to the long aliphatic chains but
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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Figure 3. (A) CoMFA, (B) CoMSIA (steric, electrostatic) and (C) CoMSIA (acceptor and hydrophobic) contour maps of (I) the best active (Compd R189) and (II) the least active
(Compd R180) compounds. Steric favorable: green and steric unfavorable: yellow; positive electrostatic: blue and negative electrostatic: red; hydrophobic favorable: purple
and hydrophobic unfavorable: white; acceptor favorable: orange and acceptor unfavorable: cyan.

Table 4
Definition of descriptors used in Bayesian model development

Sl
No.

Descriptors Meaning

1 A logP Lipophilicity
2 MW Molecular weight
3 nHBA Number of hydrogen bond acceptor groups
4 nHBD Number of hydrogen bond donor groups
5 nR Number of rings
6 nArR Number of aromatic rings
7 MFPSA Molecular fractional polar surface area
8 FCFP_6 Extended connectivity fingerprint of maximum

diameter 4
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the group is attached to tertiary nitrogen atom infers non-selectiv-
ity for MMP-2. The tertiary nitrogen atom was repeatedly found to
be a bad fingerprint for MMP-2 selectivity. Among the zinc binding
groups, the carboxylic acid group appeared as a good fingerprint
for the higher selectivity whereas the hydroxamate group was
found as a bad fingerprint.

3.2.2. Recursive partitioning (RP) analyses
The recursive partitioning (RP) on 121 training set compounds

generated four classification trees (Tree 1–4). The Tree 1 was
selected as the best model (Model 6) on the basis of the receiver
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
operating characteristic (ROC) score (0.902) and 5-fold cross-
validated ROC curve (0.816). Moreover, when the model was
validated with 29 test set compounds, the ROC score was found
as 0.779. The details statistical analysis of Model 4 is provided in
Table 5. The schematic representation of the RP-tree 1 model is
shown in Supporting information (Fig. S6).

The RP model shows the importance of descriptors like
ES_sum_ssO (electrotopological state indices of two single bonded
oxygen atom), Jurs_RPCG (relative positive charge)79 and CHI_V_2
(second order Kier & Hall valence-modified connectivity index).
The model was primarily classified on the basis of ES_sum_ssO
descriptor, the value of which should be less than 0.5 for the higher
selectivity towards MMP-2. The Bayesian model (Model 5) high-
lighted the phenoxy containing fingerprints as unfavorable for
the better selectivity and this information is consistent with RP
prediction. The 2D QSAR model (model 1) described importance
of Jurs descriptor, Jurs_RPCS that is related to the positively charged
solvent accessible surface area (SASA). The descriptor Jurs_RPCG
stands for the relative positive charge (charge of the most positive
atom divided by the total positive charge). Therefore, it is inferred
that the positive charge of these molecules are responsible
for inferring the selectivity towards MMPs. The topological
descriptor CHI_V_2 is the last classifier of the model. Definition
of these descriptors used to develop the RP model was shown in
Table 6.
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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Figure 4. Top five good (G) and bad (B) molecular fingerprints identified by FCFP_6 descriptors.

Table 5
Results of recursive partitioning classification analyses

Set n Tree no. TP FN TN FP Se Sp Acc ROC ROCCV

Training 120 1 20 1 79 20 0.952 0.798 0.825 0.902 0.816
2 21 0 70 29 1.000 0.707 0.758 0.894 0.810
3 16 5 85 14 0.762 0.859 0.842 0.810 0.719

Test 29 1 8 4 14 3 0.750 0.823 0.759 0.779 —
2 9 3 14 3 0.739 0.657 0.793 0.779 —
3 8 4 14 3 0.750 0.823 0.759 0.745 —

TP: true positive, FN: false negative, FP: false positive, TN: true negative, Se: sensitivity, Sp: specificity, Acc: accuracy, ROC: receiver operating characteristic, ROCCV: cross
validated ROC curve

Table 6
Definition of these descriptors used to develop the RP model

Sl
no.

Descriptors Meaning

1 ES_sum_ssO Electrotopological state indices of two single bonded
oxygen atoms

2 Jurs_RPCG Relative positive charge (charge of the most positive
atom/total positive charge)

3 CHI_V_2 Kier & Hall valence-modified connectivity index of
second order
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3.3. Design of selective MMP-2 inhibitors (over MMP-9) and de
novo lead modification

The information obtained in the classification models were ana-
lyzed to design a novel compound that may show the higher selec-
tivity towards MMP-2 comparing with that of MMP-9. The
compound was designed from the Bayesian fingerprints. The fin-
gerprints, like the biphenyl, the sulfonyl and the aliphatic chains
were joined through de novo design to form the Compd A1 [(2S)-
5-amino-2-[(biphenyl-4-ylsulfonyl) amino]-5-oxopentanoic acid],
depicted in Figure 5A. The A1 was predicted as an ‘active’ MMP-2
inhibitor in all regression models (Models 1–4) and was also
depicted as a ‘selective’ MMP-2 inhibitor in both of the classifica-
tion models (Models 5 and 6).

To design the Compd A1, three topmost favorable fingerprints
(G1–G3) of Bayesian model were taken into consideration so that
the specificity to MMP-2 may be ensured. The sulfonamido linkage
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
was included instead of the sulfonyl group since the A1 showed the
better estimated activity against different ligand-based models as
compared to the respective sulfonyl derivative. In addition, the
introduction of the sulfonamido moiety avoided the exact mimick-
ing of molecules reported earlier in the classification analyses data-
set. Moreover, a new terminal carboxamide group was introduced
in the structure. Bayesian model predicted the tertiary amino
group as a negative fingerprint for the higher selectivity but the
roles of the secondary or the primary amines or amides were not
revealed. The designed A1 was mapped in different chemometric
models (Models 2, 3 and 4). The current work reports only the
(S)-isomer of A1 and its modified derivatives. The (R)-isomer also
showed similar activity patterns in the regression models. Biolog-
ical activities (R)-isomers are under investigation and will be
reported elsewhere.

The compound A1 was docked at the active site of MMP-2
enzyme (PDB: 1HOV).86 All poses were submitted for Molecular
Mechanics with Generalized Born and Surface Area solvation
(MM-GBSA) analyses for the binding energy calculations and the
pose with the highest MM-GBSA binding energy of �57.81 kcal/-
mol was considered as the best docked conformation. The best
docked pose of A1 along with its interactions is shown in Figure 6.
The biphenyl moiety is found to form multiple hydrophobic and
pi–pi interactions with catalytic amino acids like Leu83, His120,
Thr143 and Tyr142. The catalytic zinc atom forms a metal interac-
tion with the carboxylic acid group and also develops a pi–metal
interaction with the biphenyl residue. The sulfonyl group interacts
with Leu83 and Ala84 by hydrogen bonding. Additional hydrogen
bonding interaction is observed between the carboxyl group of
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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Figure 5. (A) Design of the lead compound (Compd A1) from Bayesian fingerprints (G1–G3) and its estimated activities in different ligand based models; (B) Mapping of
compound A1 in Hypo1 (Model 2), CoMSIA (Model 4) (C) electrostatic and steric and (D) acceptor and hydrophobic contour maps of A1.

Figure 6. Docking interactions of compound A1 and its lead modification using de novo links (Link1-4).
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A1 and His85 residue. These interactions comply with the pharma-
cophore fitting of A1. Moreover, the hydrophobicity contour found
in the receptor binding site is also consistent with the CoMSIA
hydrophobic contours.

To modify the structure of the designed lead (A1), de novo frag-
ment based lead modification technique was adopted. When the
docked conformer of A1 was subjected to de novo fragment-based
search for better interactions, most of the generated links were
found near the amide terminal and only a few links were observed
at the biphenyl end and other positions. Four top de novo links are
shown in Figure 6 (Links 1–4). Three of these links (Links 1–3) were
found at the terminal amide residue are isobutyl (Link 1), n-pentyl
(Link 2), 4-hydroxybenzyl (Link 3). These substitutions may give
rise to additional interactions with the catalytic amino acids like
Asp 72, His85, Phe87 and His124. The Link 4 was rejected since
alkyl hydroxyl group was found to be detrimental to the higher
MMP-2 selectivity as per Model 5. As the terminal amide group
of A1 was not involved in interaction, it was selected for different
aliphatic and aromatic substitutions as suggested by de novo
design. In order to validate these hypotheses, A1 as well as 13
other derivatives and analogs of these compounds were synthe-
sized and tested for MMP-2 inhibition. Moreover, these com-
pounds were also screened against MMP-9 inhibition to explore
the pattern of selectivity of these two enzymes of the same class.

3.4. Synthesis of the designed molecules

In order to understand the SAR of the designed compounds, A1
and its 13 derivatives (A2–A14) were synthesized on the basis of
Table 7
MMP-2 and -9 inhibitory activities of the designed molecules (Compd A1–A14)

R1 SO2NH

Compd R1 R2 IC50
a (nM

MMP-2

A1 C6H5 H 885
A2 C6H5 CH3 843
A3 C6H5 C2H5 203
A4 C6H5 n-C3H7 177
A5 C6H5 i-C3H7 208
A6 C6H5 n-C4H9 49
A7 C6H5 i-C4H9 98
A8 C6H5 t-C4H9 186
A9 C6H5 C5H11 41
A10 C6H5 C6H13 103
A11 C6H5 C6H11 30
A12 C6H5 C6H5 79
A13 C6H5 CH2C6H5 24
A14 C6H5 CH2CH2C6H5 123
A15 4Br-C6H4-O C5H11 472
A16 4Br-C6H4-O C6H11 672
A17 4Br-C6H4-O CH2C6H5 419
A18 C6H11 C5H11 >500
A19 C6H11 CH2C6H5 >500

a Enzymatic data are mean values of minimum three independent experiments and s
b MMP-9/MMP-2.

Scheme 1. Syntheses of desig
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prediction of de novo fragment based design to get a fruitful picture
of the SAR. Syntheses and characterizations of the designed mole-
cules are discussed in the experimental section. The general syn-
thetic scheme is illustrated in Scheme 1.

The structures of the designed leads are shown in Table 7.

3.5. Enzyme inhibition assay

Two types of enzyme inhibition assays were performed in the
work:

3.5.1. Matrix metalloproteinase (MMP) assay
MMPs are related to cancer migration, invasion and metas-

tases.7,75 The MMP-2 is a cancer target and MMP-9 is an anti-
target.7–12 We performed preliminary inhibition assays of both
MMP-2 and MMP-9 and the results are shown in Table 7. The com-
pound A1 and its derivatives (A2–A14) showed variable activities
against MMP-2 and -9 subtypes. All these compounds showed sat-
isfactory isoform selectivity towards MMP-2 as compared to that
of MMP-9. Though A1 showed 8 folds selectivity to MMP-2, all of
its derivatives show better activity as well as selectivity to this
enzyme. The benzyl analog A13 is found to be the most potent
MMP-2 inhibitor (IC50 value of 24 nM) whereas the n-pentyl analog
A9 is the most selective as well as the most potent MMP-2 inhibi-
tor. The selectivity of A9 towards MMP-2 is more than 100 times.
Interestingly, these two derivatives are directly predicted by de
novo fragment-based design. Furthermore, the phenylethyl analog
A14 almost five times less potent than A13 whereas the n-hexyl
analog A10 is twice less potent than A9. The difference in
COOH CONHR2

) Selectivityb Lipinski rule Veber rule

MMP-9

7432 8.40 Pass Pass
38449 45.61 Pass Pass
8710 42.78 Pass Pass
11280 63.72 Pass Pass
7407 35.61 Pass Pass
714.9 14.58 Pass Fail
8170 83.37 Pass Pass
8500 45.69 Pass Pass
5715 139.39 Pass Fail
5882 57.10 Pass Fail
636 21.23 Pass Pass
4282 54.20 Pass Pass
492 20.53 Pass Pass
7001 56.90 Pass Fail
5494 11.63 Pass Fail
ND — Pass Pass
5991 14.29 Pass Fail
ND — Pass Pass
ND — Pass Fail

tandard deviations are with ±10%.

ned molecules (A1–A26).
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MMP-2 inhibitory activities of A3 is highly significant since it
demonstrates that the potency of the compound increases 4-times
when the methyl group is replaced with the ethyl moiety. More-
over, these compounds are drug-like since most of these passed
Lipinski87 and Veber88 rules. However, four compounds (A6, A9,
A10 and A14) failed Veber rule as total number of rotatable bonds
are more than 10 for these derivatives. Therefore, further increase
in the aliphatic chain in R2 position [Table 7] is avoided. The best
active compound A13 passed both of these rules.

To understand the SAR systematically and validate the current
in silico predictions regarding the activity and the selectivity of
designed MMPIs, five other derivatives (A15–A19) were also
designed and synthesized by the same method. Since the phenoxy
moiety has shown to infer less selectivity to the MMPIs in Bayesian
Model (Model 5, Fig. 4), three 4-bromophenoxy derivatives (A15–
A17) were synthesized to check the experimental validation of
the prediction. The aromaticity of A1 phenyl ring (attached to sul-
fonamido residue) is found to be important in all regression mod-
els (Models 2–4) as well as docking interactions (Fig. 6). To validate
these predictions, two cyclohexyl derivatives (A18–19) were also
prepared. The other parts of the molecules were kept unchanged
and the higher active R2 side chains (n-pentyl, benzyl) were
included in these derivatives. It is inferred that MMP-2 inhibitory
activities of these phenoxy derivatives (A15–A17) are considerably
lower than the biphenyl derivatives and their MMP-2 selectivity
also suffered (Table 7). Similar results are also observed for the
cyclohexyl derivatives (A18–A19). These indicate that predictions
obtained from different classification and regression models (Mod-
els 1–6) are successfully validated experimentally.

In order to understand the selectivity of these designed mole-
cules in other MMPs, some highly active compounds were finally
tested against MMP-1, -8, -12 and -14. The enzyme inhibitory
activities are depicted in Table 8.
Table 8
Experimental activities of higher active designed molecules in different MMPs

Compd IC50
b (nM)

MMP-2a MMP-9a MMP-1 MMP-8 MMP-12 MMP-14

A4 177.70 11,280.00 >10,000 45.30 177.60 7783.00
A6 44.65 714.90 >10,000 59.60 71.02 4639.00
A7 98.00 8170.00 >10,000 226.00 246.60 8805.00
A9 41.00 5715.00 >10,000 59.00 52.30 1000.00
A10 103.90 5882.50 >10,000 81.40 96.10 807.00
A11 30.00 636.75 >10,000 64.80 73.20 2407.00
A12 79.80 4282.00 >10,000 56.20 295.80 1389.00
A13 24.00 492.60 >10,000 21.30 53.20 427.00
A14 123.70 7001.00 >10,000 104.30 296.60 6875.00

a The activities against MMP-2 and MMP-9 are included for comparison.
b Enzymatic data are mean values of minimum three independent experiments

and standard deviations are within ±10%.

Table 9
Activities of A13 derivatives in different MMPs (common substructure is shown in Table 4

Compd R1 R2

MMP-2 MM

A13b C6H5 CH2C6H5 24 492
A20 C6H5 3,4-diClCH2C6H3 806 ND
A21 C6H5 3,5-diCF3CH2C6H3 51 674
A22 C6H5 4-ClCH2C6H4 263 209
A23 C6H5 2-ClCH2C6H4 31 880
A24 C6H5 4-FCH2C6H4 76 115
A25 C6H5 4-OCH3CH2C6H4 193 182
A26 C6H5 4-NO2CH2C6H4 291 ND

a Enzymatic data are mean values of minimum three independent experiments and s
b Included for comparison.
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It is observed that all compounds are inactive against MMP-1.
The non-selectivity to MMP-14 is also satisfactory for most of these
derivatives. The highest active MMP-2 inhibitor A13 is more than
20 times selective to MMP-2 compared to MMP-14. Some com-
pounds like A7, A11, A12, A13 and A14 have at least twice selectiv-
ity to MMP-2 compared to MMP-14 but compounds like A6, A9 and
A10 are either less selective or non-selective. The most significant
result is found for MMP-8 activity since the binding affinity value
of MMP-8 of A13 is less than that of MMP-2. Only two analogs,
A7 and A11 have shown more than twice selectivity to MMP-2
comparing MMP-8. Since A13 is the most potent MMP-2 inhibitor
and pi–pi interaction is observed with the benzyl portion (Fig. 6),
some substituted benzyl derivatives were also synthesized by the
same method and the activity against different MMPs were deter-
mined following the same procedure (Table 9).

The substituted benzyl derivatives (A20–A26) showed variable
activities against MMP-2 enzyme. However, none of these had
the higher MMP-2 inhibitory potential comparing with that of
A13. The compounds A23 (2-chlorobenzyl analog) has shown
equal MMP-2 inhibitory activity to that of A13. However, A23 is
also non-specific towards MMP-8. Four derivatives (A21, A23,
A24 and A25) showed IC50 values of less than 100 nM against
MMP-2. Interestingly, the 3,5-bis-trifluoromethylbenzyl analog,
A21 is found to be the most selective MMP-2 inhibitor of the cur-
rent series. Other than being very much less selective towards
MMP-9 (i.e., MMP-9/MMP-2 = 132), it showed at least five times
selectivity to MMP-2 compared to MMP-8. Therefore, A21 may
be considered as the most potent as well as the selective MMP-2
inhibitor among the current series of compounds.

3.5.2. Histone deacetylase (HDAC) inhibition assay
As matrix metalloproteinase (MMP) inhibitors are zinc binders,

the inhibitory activities of some important designed compounds
(A9, A11, A13, A21, A23) were tested against HeLa nuclear extract
of HDACs as another zinc-dependent protease. The catalytic center
of these proteases is formed by narrower tunnel like pockets. None
of these derivatives showed inhibition of HDACs upto 100 lM indi-
cating that the designed compounds may be selective to MMPs
only.

3.6. In silico physicochemical ADME studies

The designed MMP-2 inhibitors were studied for in silico ADME
property prediction through QuikProp module.81 Values of some
important ADME parameters of these compounds are presented
in Table 10. It is observed that in spite of the structural similarity,
the ADME properties may vary and that in turn, may affect their
cellular and biological responses. All these compounds showed
the lower blood brain barrier penetration (QPlogBB) and also have
the lower predicted central nervous system (CNS) activity. The
)

IC50
a (nM)

P-9 MMP-1 MMP-8 MMP-12 MMP-14

.6 >10,000 21.3 53.2 427
ND ND ND ND

0 >10,000 228 462 6311
3 ND ND ND ND

>10,000 39 63 1614
5 >10,000 47 84 5424
4 ND ND ND ND

ND ND ND ND

tandard deviations are within ±10%.
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Table 10
The predicted ADME properties of designed derivatives

Descriptors A6 A7 A9 A11 A12 A13 A21 A23 A24

CNS (�2 to +2) �2 �2 �2 �2 �2 �2 �2 �2 �2
PSA (7.0–200) 128.31 127.42 134.04 117.00 124.87 128.36 128.70 131.00 127.35
QPlogP o/w (�2.0 to 6.5) 3.100 3.089 3.065 3.408 3.831 3.565 5.532 4.007 3.975
QPlogS (�6.5 to 0.5) �4.914 �4.778 �4.383 �4.722 �5.866 �5.142 �7.984 �5.932 �5.800
QPlogBB (�3.0 to 1.2) �2.355 �2.129 �2.477 �1.469 �2.064 �2.273 �1.854 �2.289 �2.109
QPPMDCK (<25 poor >500 good) 18.959 22.902 10.531 58.169 20.117 22.52 343.362 29.852 40.339
Metabolism (1–8) 2 2 2 2 3 3 5 3 3
% Hu Or Ab >80% high <25% poor 70.03 71.34 66.03 81.32 78.29 72.029 57.632 73.49 76.373
Violation of Rule of 5 (Max 4) 0 0 0 0 0 0 2 0 0
Violation of Rule of 3 (Max 3) 0 0 1 0 0 1 2 2 1
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predicted n-octanol–water partition coefficient (QPlogP o/w),
aqueous solubility (QPlogS) and polar surface area (PSA) are within
the permissible limits for all compounds except A21 that showed
poor water solubility. However, the presence of the free carboxylic
acid group in A21 may help to form metallic salts of the free car-
boxylic acid to increase the water solubility. All compounds
showed moderate to good human oral absorption. The permeabil-
ity in MDCK cells (QPPMDCK) is low for most of these compounds
except A21 that is predicted with exceptionally high cellular per-
meability as compared to other derivatives. Apart from these,
A21 is predicted to have some unique ADME property since it
showed the highest number of likely metabolism reactions and
maximum violations in rule of 3 and 5.

3.7. Molecular docking and MM-GBSA binding energy analyses

To understand the SAR of the designed molecules, biphenyl
compounds were docked at the binding site of the MMP-2 receptor
(PDB: 1HOV).86 All docked poses were subjected to MM-GBSA
binding energy calculations. The (extra precision) XP_Gscores,
docking scores and binding energy scores for these derivatives
are depicted in Table 11. The energy components of MM-GBSA
binding are provided in Supporting information (Table S6).

The MM-GBSA binding energy scores [DGBind] are mostly con-
sistent with the experimental MMP-2 inhibitory activities of these
biphenyl derivatives. The MMP-2 inhibitory activity increased
almost three folds when the methyl substitution at R2 position is
replaced with the ethyl group. The difference in the DGBind is
Table 11
The extra-precision (XP) GLIDE docking scores and MM-GBSA binding energy values of de

Compd R1 R2 XP_GScore XP_D

A1 C6H5 H �7.201 �7.
A2 C6H5 CH3 �7.282 �7.
A3 C6H5 C2H5 �6.934 �6.
A4 C6H5 n-C3H7 �9.149 �9.
A5 C6H5 i-C3H7 �9.073 �9.
A6 C6H5 n-C4H9 �9.404 �9.
A7 C6H5 i-C4H9 �6.162 �6.
A8 C6H5 t-C4H9 �6.300 �6.
A9 C6H5 C5H11 �9.338 �9.
A10 C6H5 C6H13 �8.714 �8.
A11 C6H5 C6H11 �5.535 �5.
A12 C6H5 C6H5 �8.596 �8.
A13 C6H5 CH2C6H4 �5.256 �5.
A14 C6H5 CH2CH2C6H4 �8.962 �8.
A20 C6H5 3,4-diCl C6H3 �11.460 �11.
A21 C6H5 3,5-diCF3 C6H3 �12.230 �12.
A22 C6H5 4-Cl C6H4 �11.457 �11.
A23 C6H5 2-Cl C6H4 �9.905 �9.
A24 C6H5 4-F C6H4 �11.897 �11.
A25 C6H5 4-OCH3 C6H4 �12.725 �12.
A26 C6H5 4-NO2 C6H4 �11.649 �11.

a The activities against MMP-2 are included for comparison.
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observed when the ethyl group was converted to the n-propyl resi-
due. More branching in the side chains at this position is found to
be detrimental since the experimental activity deteriorated when
the n-propyl residue is replaced with the i-propyl and the n-butyl
is replaced with the i-butyl or the t-butyl groups. Long straight ali-
phatic chain R2-substituents favors the activity. These changes
were properly reflected in the binding energy analyses. The MM-
GBSA energy components reveal that mainly van der Waals and/
or hydrophobic energy are responsible for these differences in
affinities. Hydrophobic interaction is also found to be important
for the higher activity of the long aliphatic chain derivatives like
n-pentyl, n-hexyl, etc. Therefore, it may be inferred that the resid-
ual interaction predicted by de novo design (Fig. 6) was correct. The
DGBind of the most active compound A13 is �76.429 kcal/mol
which is higher than the small aliphatic chain derivatives but
lower than the higher aliphatic chain compounds. All substituted
benzyl derivatives except A13 and A21 showed comparatively
lower DGBind complying with the experimental results. Except
these two (A13 and A21), differences between solvated and non-
solvated DGBind values increased implying the fact that the solva-
tion free energy may play important role in binding affinities of
these compounds. Moreover, improvements of Coulombic energies
for these two compounds indicate involvements of more number
of polar interactions. The higher Coulombic energies are mainly
attributed to better p–p interactions with His85 residues as pre-
dicted in the de novo designing. Unexpectedly, the second best
active A11 showed extremely lower MM-GBSA binding energy
owing to the lower lipophilic interaction.
signed derivatives

ock Score DGBind DGBind (NS) MMP-2 IC50
a (nM)

201 �55.623 �57.806 885
282 �60.026 �66.420 843
934 �63.998 �70.524 203
149 �73.493 �74.900 177
073 �70.630 �71.919 208
404 �73.558 �79.481 44
162 �54.568 �60.506 98
300 �50.790 �56.310 186
338 �82.228 �84.785 41
714 �82.029 �89.772 103
535 �52.814 �58.724 30
596 �63.327 �73.627 79
256 �73.137 �76.429 24
956 �72.023 �80.556 123
46 �71.780 �83.056 806
23 �75.020 �80.918 51
457 �70.658 �77.765 263
900 �75.749 �78.761 31
897 �67.520 �73.362 76
725 �67.300 �80.729 193
649 �69.570 �78.538 291
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The docked conformations of A13 and A21 are shown in Figure 7
(A and B). Like A1, the biphenyl residues of both of these com-
pounds strongly interacted with Tyr142, Thr143 and His 120 as
well catalytic zinc residue. Similarly, the sulfonyl group formed
hydrogen bond interactions with Leu83 and Ala84. The benzyl resi-
due of A13 interacted with His85 and Asp72 and these interactions
are consistent with the findings of de novo design. The 3,5-bistriflu-
oromethyl residues of A21 interacted with three different amino
acid residues –His85, Phe87 and Ala88. Since other interactions
are similar to A13, it may be assumed that these interactions with
3,5-bistrifluoromethyl residues may be responsible for the higher
selectivity of A21 towards MMP-2.

3.8. Molecular dynamics (MD) simulation studies

The most active compound A13 and the most selective
derivative A21 were subjected to 10 ns MD simulation runs to
understand whether the major interactions found in the docking
were stable or not in the biological conditions. The percentage
occurrences of interactions (more than 10%) are shown in
Figure 7(C and D).

Figure 7 demonstrates that the carboxylic acid group of both of
these compounds makes strong interaction with the catalytic zinc
ion and the percentage of occurrences for this interaction ranges
from 70 to 100%. Moreover, the sulfonyl moiety of both of these
molecules interacts strongly with Leu83 and Ala84 residues. The
Figure 7. Docking interactions of (A) A13 and (B) A21. The percentage occurrenc
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amido group attached with the sulfonyl functionality of both of
these compounds is found to interact with either water molecules
or the catalytic amino acid residues like Ala84 and Gly81. The car-
boxamido residues showed similar hydrogen bond interactions.
Overall, the number of interactions is higher for the compound
A13 that may justify its higher activity as compared to A21. The
biphenyl aromatic moiety of A13 interacts with His120 and Tyr
142 residues by p–p interactions and the percentage of occur-
rences are more than 30% implying strong interactions. In A21,
however, only one aromatic residue of the biphenyl group interacts
with these two amino acids (His120 and Tyr 142). The terminal
benzyl moiety of both of these analogs is found to be solvent
exposed and therefore, it may be justified that solvation free
energy may be a determining factor for the higher binding energy
for these synthesized compound as predicted by MM-GBSA bind-
ing energy analyses.

Some important MD simulation analyses results are presented
in the Supporting information. These provide some interesting
facts about the activity and the selectivity of this series of mole-
cules. The average root mean square deviation (RMSD) of A13 is
found to be lower than A21 (Supporting information, Fig. S7A
and B). The A13 showed some fluctuations in the ligand RMSD
whereas A21 is found with a steady RMSD. The histogram interac-
tion plots show that A13 generated more number of hydrophobic
polar and water bridges interactions than A21 (Supporting infor-
mation, Fig. S7C and D). It may explain the lower RMSD and the
es of interactions observed in 10 ns MD simulation of (C) A13 and (D) A21.
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higher experimental activity of A13. Interactions with Tyr74, Le82,
Tyr142 and Phe148 are observed for A13 but these are either
absent or less frequent in A21. Interestingly, A21 showed more
interactions with residues like His85, Ala86, Phe87, Ala88,
Leu116 and Val117. To elaborate these interactions, the timeline
representations of protein–ligand contacts of these two ligands
are observed (Fig. S8, Supporting information). The plot reveals
that these interactions of A21 are not only more frequent than
A13 but also complementary to each other (i.e., in 10 ns MD run,
the ligand is found to interact with some of these residues). Inter-
estingly, these amino acid residues are part of S10 pocket of MMP-2
and it has earlier been reported that more number of interactions
with the hydrophobic pocket may ensure the higher selectivity
towards MMP-2 against MMP-8.38 The docking interaction of A21
suggested that the 3,5-bis-trifluromethylbenzyl residue interacts
with His85, Ala88 and Phe87. It may, therefore, be hypothesized
that these interactions are responsible for non-selectivity of A21
towards MMP-8. Two of the non-conservative residues between
MMP-2 and MMP-8 (Thr143 of MMP-2 or Ala220 of MMP-8 and
Thr145 of MMP-2 or Arg228 of MMP-8) have also been recognized
for the differences in ligand affinities between MMP-2 and MMP-8.
When the docking interactions predicted a possible p-donor inter-
action with Thr143 in both these ligands, no information of these
interactions is deduced from the MD simulation. On the other
hand, interaction with Thr145 residue is unlikely since the ligand
poses are located away from this residue. The analyses of the
ligand root mean square fluctuations (RMSFs) (Fig. S9, Supplemen-
tary material) further reveal that the benzyl residues of both
ligands have the higher fluctuations (or variable interactions)
whereas the rest of these molecules have the lower fluctuations
(or constant interactions). However, the average RMSF of 3,5-bis
trifluromethylbenzyl moiety of A21 is slightly less than the benzyl
moiety of A13. It may, therefore, be interpreted that the better sta-
bility in the terminal residues may be a determining factor for both
the affinity and the selectivity of this series of molecules.

3.9. Cytotoxicity and flow cytometry apoptotic assays

The designed compounds having MMP-2 IC50 values < 105 nM
were tested for cytotoxicity against A549 cell line by 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)
assay. The cytotoxicity results are shown in the Supporting infor-
mation (Table S7). All these compounds showed lower cytotoxicity
against A549 cell line and most of these compounds showed cell
viability 80–90% at concentration of 100 lM. Except A21, none of
these inhibitors exhibited 50% or more cytotoxicity up to 300 lM
(Table S7, Supporting information). This compound showed an
IC50 value of 270 lM. The results of A13 and A21 treated A549 cells
at four different concentrations between 0 and 300 lM are pro-
vided in the Supporting information (Fig. S10). None of these two
compounds significantly reduce the cell viability compared with
the untreated control. It was earlier reported that MMPIs may
not exhibit cytotoxicity even at the higher concentrations.89,90 To
understand the mechanistic involvement of apoptosis in the anti-
proliferative activity, A13 and A21 were tested in annexin-V/pro-
pidium iodide (PI) flow cytometry assay (Fig. S10, Supporting infor-
mation). Two different doses of 100 and 200 lM were chosen for
this assay. At 100 lM concentration, both inhibitors showed min-
imal apoptotic as well as necrotic effects. However, the necrotic
effects predominate in both compounds. At the higher concentra-
tions (200 lM), necrotic effect increases approximately 2.5%
whereas apoptotic effects remain unchanged. Two conclusions
may be drawn from these studies—(I) these compounds are not
cytotoxic below 100 lM and (II) concentrations higher that
200 lM may elicit undesirable necrotic effects in the cell lines.
Therefore, a fixed noncytotoxic concentration of 50 lMwas chosen
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for immunofluorescence as well as migration and invasion assays
for the active compounds.

3.10. Immunofluorescence assay for cellular MMP-2 expression

To explore the potential of these synthesized molecules to inhi-
bit MMPs in human cancer cell lines, immunofluorescence micro-
scopy technique was adopted to find out cellular localizations of
MMP-2 enzyme in the treated and untreated cell lines. The A549
cell line (1 � 106 cells) was cultured in chamber slides and treated
with a fixed dose (50 lM) of three compounds (Compd A9, A13 and
A21) for 24 hours. The best active A13 is chosen along with A9
since the later is the most selective MMP-2 inhibitor with the ali-
phatic side chain. The A21, on the other hand, is the most selective
MMP-2 inhibitor of this series. After 24 h, cells were washed with
phosphate buffer saline (PBS) and fixed in chilled methanol and
permeabilized in 0.01% triton X 100. Nonspecific bindings were
blocked by bovine serum albumin (BSA) in phosphate buffer saline
(PBS), followed by incubation with MMP-2 antibodies. Expression
was detected with conjugated secondary antibody. For nucleus
counterstaining, 40-6-diamidino-2-phenylindole (DAPI) was used.
The expressions of MMP-2 antibodies in untreated control and
treated cells are presented in Figure 8A.

It is evident from Figure 8A that all treated cells showed the
lower expression of MMP-2 comparing with the untreated cells.
The mean fluorescence reading was recorded. The total intensity
of fluorescence was measured by calculating the corrected total
cell fluorescence (CTCF) of the control and samples are provided
in Supplementary materials (Fig. S11). The cellular MMP-2 expres-
sion of A13 treated cells is slightly lower than that of A9. The over-
all MMP-2 expression is reduced upto 60.50% in A13 treated cells
whereas the intensity is lowered upto 52.10% in A9 treated cells.
Notwithstanding the lowest observed binding affinity among these
three derivatives, the most prominent inhibition is obtained for
A21. This compound reduces MMP-2 expression upto 78.90% com-
paring with that of the control. The DAPI and phase contrast dia-
grams (Fig. 8A) depict that the designed compounds did not
produce considerable DNA fragmentations and morphological fea-
ture changes at 50 lM concentrations.

3.11. Wound healing migration assay

To investigate anti-migratory properties of the designed com-
pounds, migration assay was performed with A549 cell line which
was treated with 50 lM of compounds A9, A13 and A21 for 48 h
after a wound was made on the monolayer of cells. The observa-
tions are illustrated in Figure 8B. It demonstrates that the control
cells extensively migrated into the denuded area. However, the cell
migration was significantly reduced by the designed compounds.
The inhibition was most prominent for the compounds A13 and
A21 whereas A9 also reduced the migration but overall effect
was lower than that of these two compounds.

3.12. Invasion assay

Inhibitions of A549 cell invasion by the designed compounds
were measured using fluorimetric QCM ECMatrix cell invasion
assay (ECM 555, Millipore). Some higher active designed com-
pounds (A6, A9, A11, A13, A21 and A23) were investigated for their
anti-invasive properties. The total numbers of migrated cells are
graphically represented in Figure 8C. It was observed that all of
these compounds were able to reduce the total number of
migrated cells. The maximum inhibition was observed for the com-
pound A13 (55.8 ± 2.7%), followed by the compounds A6
(52.0 ± 3.0%) and A21 (51.0 ± 1.5%). The other three compounds
showed less than 50% anti-invasive properties (A9: 37.0 ± 2.6%,
. (2016), http://dx.doi.org/10.1016/j.bmc.2016.07.023
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Figure 8. (A) Confocal microscopy images of cellular MMP-2 expressions in untreated, compounds A9, A13 and A21 treated A549 cell lines. 1 � 106 cells were seeded in glass
coverslips and treated with fixed concentration (50 lM) of compounds (except the control) for 24 h. These cells were fixed with formaldehyde, permeabilized with Triton X-
100 and blocked with PBS containing blocking solution. Cultures were incubated with primary antibody followed by secondary antibody. These were counter stained with
DAPI. The changes of MMP-2 expression in untreated and treated cells were observed by confocal microscopy. (B) Effects of designed molecules (A9, A13 and A21) on the
migration in A549 cells. (C) The total number of cell migration in untreated and compounds (A6, A9, A11, A13, A21 and A23) treated A549 cells. A549 cells were incubated
with or without compounds for 24 h. The cells migrate to invade from the upper side of insert to the underside of the porous polycarbonate membrane. Migration abilities of
A549 cells were measured using CyQuantGR dye. Values were expressed as means ± SD representing 3 independent experiments.
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A11: 39.0 ± 3.1% and A23: 40.0 ± 2.4%). Therefore, it may be
inferred that all these compounds have both anti-migratory and
anti-invasive properties in A549 cell line.

4. Conclusion

In the present work, an initial attempt has been made to design
some novel active as well as selective MMP-2 inhibitors over MMP-
9 through the concepts of molecular modeling. The basic structural
requirements of these molecules for potential MMP-2 inhibitory
activity and selectivity (with respect to MMP-9) were analyzed
by the regression and classification models. It was observed from
Figure 5 that the outcomes of different regression models were
similar as far as the predictability of the lead compound is con-
cerned. Similarly, two classification models also depicted the same
result for the lead compound. Application of more than one regres-
sion and classification tools consolidated the predictability for the
lead compound by robust design. However, the scope of these
models are not only limited to the design and predictability of
the current work only. The information obtained from different
modeling analyses may be utilized by other workers to understand
structural requirements for potent and selective MMP-2 inhibitors.
The 2D QSAR model provided some crucial structural and physico-
chemical descriptors for the higher potency. Pharmacophore map-
ping study demonstrated the essential pharmacophoric features
responsible for the higher MMP-2 inhibitory activity. Similarly,
3D QSAR models showed the essential three dimensional require-
ments for the higher activity. The Bayesian classification method
highlighted the favourable and the unfavourable fingerprints
whereas the RP modeling suggested important structural and
physicochemical descriptors for the higher MMP-2 selectivity
Please cite this article in press as: Adhikari, N.; et al. Bioorg. Med. Chem
(comparing with MMP-9). Considering the fact that these analyses
are independently developed and validated in the current work,
one or more models may be utilized for other investigators for
the design of novel MMP-2 inhibitors.

During designing in the current work, the higher activity was
preferred over the selectivity (i.e., the selectivity of a compound
was discarded if it is found to be less potent than most of the
higher active molecules). Initial enzyme assays were performed
for both MMP-2 and MMP-9 followed by other MMPs to observe
the broader selectivity. The results of these enzyme assays led to
further synthesis of derivatives of the higher active compound
A13 and tested against different MMPs. The compound A13
emerges as the most potent MMP-2 inhibitor whereas the com-
pound A21 shows the highest MMP-2 selectivity. The docking
poses, binding energies, in silico ADME properties and molecular
dynamics simulation results of important compounds were
obtained and were analysed and described. It is revealed that most
of these designed molecules are non-cytotoxic in nature even at
high concentrations in A549 cell line. At non-cytotoxic concentra-
tions, their cellular permeability is satisfactory to reduce the
expression of intracellular MMP-2 enzyme. Moreover, these are
also able to reduce the migration and invasion of lung carcinoma
A549 cells though not showing cytotoxicity. Further studies of
some of these active compounds may help to use them in lung can-
cer as adjuvant therapeutic agents.
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