Journal of Organometallic Chemistry, 232 (1982) 137–146 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ASSISTANCE NUCLEOPHILE DANS DES REACTIONS DE REDUCTION D'ORGANOHALOGENO- ET HALOGENO-GERMANES PAR DES REDUCTEURS DOUX R₃M(IVB)--H ET RCHO: GERMYLANIONS, DERIVES FONCTIONNELS DU GERMANIUM

A. CASTEL, P. RIVIERE et J. SATGE

Laboratoire de Chimie des Organominéraux, ERA No. 829 du CNRS, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex (France)

(Reçu le 15 janvier 1982)

Summary

Catalytic activity of nucleophiles such as tertiary amines and diazo derivatives in the reduction of halogermanes by means of gentle reductive agents, such as $R_3M(IVB)$ —H or RCHO, has been shown.

In the particular case of enolisable aldehyde, a competition between nucleophilic substitution at the metal and germanium—halogen bond reduction has been observed. Transposition of enoxygermanes formed through the substitution process, leads to β -germylaldehydes.

Résumé

L'activité catalytique des nucléophiles tels que les amines tertiaires et les composés diazoïques, dans des réactions de réduction d'halogénogermanes par des réducteurs doux ($R_3M(IVb)$ —H, RCHO) a pu être mise en évidence.

Dans le cas d'aldéhyde énolisable, deux réactions compétitives de réduction et de substitution nucléophile au niveau de la liaison germanium—halogène sont observées. Les énoxygermanes, formés par réaction de substitution, se transposent rapidement en aldéhydes β -germaniés.

Introduction

Dans le mémoire précédent [1], des réactions de substitution sur des halogénogermanes ont été réalisées sous assistance nucléophile d'amines tertiaires ou de composés diazoïques.

Une catalyse similaire par assistance nucléophile au niveau du métal IVB peut être également envisagée dans les réactions de réduction d'halogénoger-

0022-328X/82/0000-0000/\$02.75 © 1982 Elsevier Sequoia S.A.

manes par des réducteurs doux tels que les hydrures de métal IVB ou les aldéhydes.

Résultats et discussion

Ainsi les hydrures métalliques réducteurs doux tels que Bu_3SnH ou Et_3GeH qui ne réduisent pas ou très difficilement la liaison germanium—chlore des phénylchlorogermanes (PhGeCl₃, Ph₂GeCl₂, cf. partie expérimentale) à température ambiante et en l'absence d'initiateur de réactions radicalaires [2,3] se montrent par contre très réactifs en présence de nucléophile (R_3N , N₂CHCOOEt). Une réduction rapide des liaisons germanium—halogène est observée.

SCHEMA 1

Contrairement aux réductions réalisées sous effet thermique, ces dernières réactions ne sont absolument pas affectées par les inhibiteurs de processus radi-

calaires et procèdent donc certainement par une attaque initiale, sous assistance nucléophile, de l'hydrure métallique sur le complexe [A'] correspondant (cf. Schéma 2). Il y a, dans le cas des polyhalogénogermanes, formation intermédiaire d'halogénohydrogermanes. Ces derniers subissent principalement une déchlorhydratation intramoléculaire donnant le germylène correspondant mais également une réduction secondaire conduisant à des hydrogermanes (cf. Schéma 2).

Par contre, la formation de dichlorogermylène dans l'action du trichlorosilane sur GeCl₄ en présence de nucléophile (N₂CHCOOEt) peut s'interpréter comme résultant d'une attaque du trichlorosilylanion sur GeCl₄ avec formation transitoire de Cl₃SiGeCl₃ connu comme générateur de dichlorogermylène [4].

En effet, la formation transitoire de trichlorogermane par réduction partielle de GeCl₄ par le trichlorosilane est peu vraisemblable même en présence de nucléophile. Cette réaction n'est observée que dans le cas de composés organométalliques à caractère hydrure plus prononcé tels que les trialkyl-silanes [5], -stannanes (cf. ci-dessus) ou -germanes [2]:

Une réaction de réduction similaire est observée dans le cas des aldéhydes non enolisables (PhCHO). Ces réactions conduisent vraisemblablement comme les précédentes à des halogénohydrogermanes intermédiaires (Schéma 3, réaction a) mais ces derniers n'ont pu être mis en évidence car leur vitesse de formation est dans ce cas beaucoup plus lente que leur déchlorhydratation in-situ.

La formation prépondérante de ClCH₂COOEt, PhCOCH₂COOEt, \geq GeCOPh et \geq GeCHOHPh et celle en quantités appréciables de PhCOCOPh, PhCOCl, germylènes et polygermanes s'expliquent à partir de l'enchaînement réactionnel dans le Schéma 3.

Par ailleurs, l'étude de la réaction directe des phénylchlorohydrogermanes sur le benzaldéhyde en présence de nucléophile a montré que cette réaction (cf. Schéma 3) conduit à la formation de germylanions intermédiaires [1]. Ces germylanions, peu stables, réagissent suivant les deux voies 3b et 3c dans des pourcentages relatifs de b (28%), c (72%) ($N = N_2$ CHCOOEt).

L'intermédiaire [B] peut lui-même évoluer suivant 2 voies: en présence d'un excès d'hydrogermane (réaction à partir de PhCl₂GeH) la réaction 3e est observée de façon préférentielle et conduit au chlorogermylalcool partiellement déchlorhydraté par le nucléophile (3g).

Lorsque, par contre, la concentration en hydrogermane est faible (réaction à

SCHEMA 3

partir de PhGeCl₃) la réaction 3d devient alors importante et il y a formation de cétone germaniée.

Les chlorogermylcétones formées plus instables que les trialcoyl- ou triarylgermylcétones correspondantes [6–8] n'ont pu être mises en évidence qu'à partir de leur bande $\nu(>C=O)$ fortement abaissée et de leurs produits de dégradation thermique [6,7,9]. Leur réduction in-situ à 0°C par LiAlH₄ dans l'éther (réaction généralement quasi quantitative [9,7] dans le cas des triaryl- ou trialkylgermylcétones) conduit aux hydrogermylalcools et leur arylation aux arylgermylalcools correspondants mais avec de très faibles rendements (cf. partie expérimentale). Ces faibles rendements peuvent s'expliquer par l'affaiblissement de la liaison germanium—carbone dans ces halogénogermylcétones qui subissent un clivage important de leur liaison germanium—carbone sous l'effet des hydrures ou des magnésiens et des réactions de symétrisation 3h. Il peut également se produire une réaction secondaire de ces halogénogermylcétones avec le diazoacétate d'éthyle, type de réaction observée par Brook et al. dans le cas du carbène et des silylcétones [10].

Nous avons essayé par ailleurs de synthétiser ces mêmes chlorogermylcétones par d'autres voies. Le clivage des anhydrides par le phényldichlorogermane conduit bien à l'acide attendu mais aussi à une forte décomposition des produits germaniés formés dans la réaction. Comme dans le cas précédent, la réduction in-situ du mélange réactionnel ne produit que de faibles quantités des hydrogermylalcools correspondants.

 $PhCl_2GeH + (RCO)_2O \xrightarrow{T^\circ C}$

 $PhCl_2GeCOR + RCOOH + (PhCl_2Ge)_2O + RCOCOR + C_6H_6$

La formation de quantités appréciables de benzylacétate d'éthyle, (réaction 3f) s'explique par la réaction secondaire de l'intermédiaire réactionnel [C] ($N = N_2$ CHCOOEt) sur PhCHO. Une réaction comparable du diazoacétate d'éthyle sur les aldéhydes conduisant aux cétoesters correspondants est, en effet, observée en présence de ZnCl₂.

Les aldéhydes enolisables (CH₃CHO) réagissent de façon prépondérante sous leur forme énolique en conduisant à des réactions de substitution du type (I) principalement lorsque $N = R_3N$

$$\exists \text{Ge-Cl} + \underbrace{\begin{array}{c} \text{CH}_3 - \text{CHO} \\ || \\ \text{CH}_2 = \text{CHOH} \end{array}}_{\text{CH}_2 = \text{CHOH}} \xrightarrow{N} \exists \text{Ge-O-CH} = \text{CH}_2 + N\text{H}^+ \text{Cl}^- \\ \downarrow \\ \exists \text{Ge-CH}_2 - \text{CHO} \end{cases}$$

La formation de vinyloxygermane a pu être observée par RMN, leur transposition en aldéhyde germaniée est rapide (2 à 3 h à 20° C).

La formation d'énoxysilanes, à partir d'aldéhydes énolisables a été récemment observée en présence de NaI, Et_3N [11].

Cependant une réduction partielle des chlorogermanes suivant le schéma réactionnel 3a ($\mathbf{R} = \mathbf{CH}_3$) est également observée, particulièrement dans le cas où $N = N_2$ CHCOOEt. On observe en effet la formation parallèle d'alcool \supseteq GeCHOHCH₃ et d'acétylacétate d'éthyle. Ce dernier est issu de la réaction 3f.

La réduction des halogénogermanes par les hydrures métalliques a été abondamment décrite [2,12]. Nous avons pu montrer, dans ce mémoire, que la réduction de ces halogénogermanes par des réducteurs doux ($R_3M(IVB)H$, RCHO) peut être catalysée par des nucléophiles (R_3N , RCHN₂).

Dans le cas de polyhalogénogermanes, une réaction secondaire de déshydrohalogénation des halogénohydrogermanes formés intermédiairement, est observée, conduisant à des germylènes par formation transitoire de germylanions.

L'action des aldéhydes énolisables sur les halogénogermanes, en présence de ces mêmes nucléophiles, conduit préférentiellement aux énoxygermanes dont la transposition rapide en aldéhyde β -germaniée est observée dès la température ambiante.

Partie expérimentale

Les composés décrits dans ce mémoire ont été caractérisés par les méthodes usuelles d'analyse CPV (Aérograph 1200 SE-30, référence interne Et_4Ge ou Bu_4Ge), RMN (EM 360 A et T 60 Varian), IR (Perkin-Elmer 457) film liquide ou suspension dans le Nujol. Les analyses élémentaires pondérales ont été réalisées dans le service central de microanalyse du CNRS.

Action de PhGeCl₃ sur Bu₃SnH. Le mélange stoechiometrique de 2.56 g (0.01 mole) de PhGeCl₃ et 2.98 g (0.01 mole) de Bu₃SnH est abandonné 5 h à 20°C. L'analyse du mélange réactionnel par CPV et RMN montre: PhGeCl₃ résiduel (68%), Bu₃SnH résiduel (60%) et la formation de Bu₃SnCl (40%), PhCl₂GeH (30%), PhH₂GeCl (traces) et PhGeH₃ (2%). La présence dans le milieu de quantités catalytiques de galvinoxyl inhibe fortement la réaction.

Action de PhGeCl₃ sur Bu₃SnH en présence de N_2 CHCOOEt. Au mélange 2.56 g (0.01 mole) de PhGeCl₃ et 2.98 g (0.01 mole) de Bu₃SnH sont ajoutés lentement 1.14 g (0.01 mole) de N_2 CHCOOEt. La réaction est exothermique et s'accompagne d'un important dégagement de N_2 . Après 4 h á 20°C, l'analyse du mélange réactionnel par CPV et RMN montre la presence de PhGeCl₃ résiduel (53%), N_2 CHCOOEt résiduel (20%).

Produits identifiés Bu_3SnCl (80%), $PhGeH_3$ (12%), $ClCH_2COOEt$ (35%), $PhClGeH_2$ (12%) (% calculés par rapport aux réactifs de départ).

La mélange réactionnel est concentré sous pression réduite. Au résidu obtenu, est alors ajouté du diméthylbutadiène (0.82 g, 0.01 mole). Après 12 h à 120°C (tube scellé), on note la formation de 4% de $CH_2C(CH_3)=C(CH_3)CH_2GePhCl (CPV)$ [13].

La consommation de la majorité de PhGeCl formé, ainsi qu'une partie du N₂CHCOOEt s'explique par leur réaction secondaire étudiée par ailleurs [14].

Action de Ph_2GeCl_2 sur Bu_3SnH . Le mélange stoechiométrique de 0.60 g (0.002 mole) de Ph_2GeCl_2 et 0.60 g (0.002 mole) de Bu_3SnH est abandonné 24 h à 20°C. On ne note aucune réaction.

Action de Ph_2GeCl_2 sur Bu_3SnH en présence de $N_2CHCOOEt$. Au mélange précédent, sont alors ajoutés 0.22 g (0.002 mole) de $N_2CHCOOEt$. On note un dégagement progressif de N_2 . Après 2 h à 20°C, le mélange réactionnel est analysé par CPV et RMN, on note l'apparition de Ph₂ClGeH (traces), Ph₂GeH₂ (3%), ClCH₂COOEt (7%). Après 24 h à 20°C: Ph₂GeCl₂ résiduel (32%), $N_2CHCOOEt$ résiduel (38%), ClCH₂COOEt (22%), Ph₂ClGeH (7%), Ph₂GeH₂ (33%), Bu₃SnCl (97%). (Ph₂Ge)_n \simeq 15–20% calculé par défaut et piégé partiellement sur diméthyldisulfure avec formation de Ph₂Ge(SMe)₂ [15].

Action de Et_3GeH sur $GeCl_4$ en présence de $N_2CHCOOEt$. Au mélange 2.14 g (0.01 mole) de $GeCl_4$ et 1.60 g (0.01 mole) de Et_3GeH en solution dans 10 cm³ de pentane, est ajouté $N_2CHCOOEt$ (1.14 g; 0.01 mole). On note un dégagement progressif de N_2 et la précipitation d'une huile orangée rouge identifiée à $GeCl_2$ (57%, après 48 h) par action sur $ClCH_2OCH_3$ [6].

La solution surnageante traitée par PhMgBr en excès conduit à un mélange de Et_3GeH (résiduel), PhGeEt₃, Ph₄Ge mais on note l'absence totale de Ph₃GeGeEt₃ (CPV).

Action de Cl_3SiH sur Ge Cl_4 en présence de $N_2CHCOOEt$. Au mélange 1.36 g (0.01 mole) de Cl_3SiH et 2.14 g (0.01 mole) de Ge Cl_4 , est ajouté $N_2CHCOOEt$

(1.14 g, 0.01 mole). On note un dégagement progressif de N₂. La réaction suivie par RMN montre la disparition de Cl₃SiH et la formation de ClCH₂COOEt (quantitative après 48 h à 20°C). La distillation du mélange réactionnel conduit à 1.18 g de SiCl₄ (Eb. 57°C, Rdt. 70%), 1.07 g de ClCH₂COOEt (Eb. 41-42°C/11 mmHg, 87%) et à des polymères indistillables (décomposition thermique de GeCl₂ formé).

Au mélange 0.68 g (0.005 mole) de Cl₃SiH, 1.07 g (0.005 mole) de GeCl₄ et 0.40 g (0.005 mole) de ClCH₂OCH₃ est ajouté N₂CHCOOEt (0.57 g, 0.005 mole). On note un dégagement progressif de N₂. Après 48 h à 20°C, le mélange est analysé par RMN et CPV et montre la formation de ClCH₂COOEt (~70%), Cl₃GeCH₂OCH₃ (5%) [6]. Dans les conditions opératoires utilisées, aucune réaction ne se produit à 20°C entre les réactifs Cl₃SiH et ClCH₂OCH₃.

Action de GeCl₄ sur PhCHO en présence de N_2 CHCOOEt. Au mélange 2.14 g (0.01 mole) de GeCl₄ et 1.06 g (0.01 mole) de PhCHO dans 10 cm³ de pentane est ajouté lentement N_2 CHCOOEt (1.14 g, 0.01 mole). Après 14 h à 20°C, le mélange réactionnel est analysé rar RMN et CPV et montre la présence de: GeCl₄ (36%) ClCH₂COOEt (19%), PhCHO (9%), PhCOCl (4%), Cl₃GeCOPh (12%), PhCOCH₂COOEt (17%), et PhCOCOPh (3%) (% relatifs); GeCl₄ résiduel (75%), PhCHO résiduel (20%), ClCH₂COOEt (24%), et PhCOCH₂COOEt (26%) (% absolus).

La distillation du mélange réactionnel conduit à 4 fractions:

- (1) $GeCl_4$ (Eb. 80°C/760 mmHg) 1.60 g;
- (2) ClCH₂COOEt, PhCHO, PhCOCl (0.57 g) (Eb. 20–60°C/4 \times 10⁻² n.mHg) (identifiés par CPV et RMN);
- (3) PhCOCH₂COOEt (40%), Cl₃GeCOPh (60%) (0.70 g) (Eb. 65 -75° C/4 × 10⁻² mmHg) (% relatifs CPV);
- (4) PhCOCH₂COOEt (90%), Cl₃GePh (10%) (0.42 g) (Eb. 90–95°C/4 × 10^{-2} mmHg) (% relatifs CPV).

L'analyse par IR de la fraction 3 montre à $\nu(CO)$ 1680 et 1730 cm⁻¹ les bandes caractéristiques du benzoylacétate d'éthyle (idem pour fraction 4) et une bande fortement abaissée $\nu(C=O)$ 1645 cm⁻¹ caractéristique des cétones germaniées [8] (différente de la bande $\nu(CO)$ de PhCOCOPh) et attribuée à Cl₃GeCOPh.

La réduction de cette fraction par LiAlH₄ à 0°C dans l'éther conduit à un mélange de PhCH₂OH et PhCHOHCH₂CH₂OH, mais ne nous a pas permis de mettre en évidence le produit de réduction de la cétone germaniée H₃GeCHOHPh.

La phénylation d'un mélange identique (fraction 3) par un excès de PhMgBr dans l'éther permet par contre d'observer la formation de $Ph_3GeC(OH)Ph_2$ (2-3%) identifié par CPV par comparaison à un échantillon de produit pur (cf. ci-dessous).

Synthèse de Ph₃GeCOHPh₂

0.91 g (0.005 mole) de benzophénone PhCOPh dans 5 cm³ d'éther sont ajoutés à 0.005 mole de Ph₃GeLi obtenu par action de 0.005 mole de BuLi en solution dans l'hexane et de 1.53 g (0.005 mole) de Ph₃GeH en solution dans 10 cm³ d'éther. Après hydrolyse, extraction, séchage sur Na₂SO₄, concentration sous pression réduite, le résidu est recrystallisé dans le pentane et conduit à 1.83 g de Ph₃GeCOHPh₂ (F. 154–155°C (Rdt 76%). Analyse: Trouvé: C, 76.27; H, 5.26. C₃₁H₂₆Ge calc.: C, 76.46; H, 5.34%). Action de PhGeCl₃ sur PhCHO en présence de N_2 CHCOOEt. Au mélange de 2.56 g (0.01 mole) de PhGeCl₃ et 1.06 g (0.01 mole) de PhCHO est ajouté N_2 CHCOOEt (1.14 g; 0.01 mole). On note un dégagement progressif de N_2 . Après 48 h à 20°C, l'analyse du mélange réactionnel par RMN et CPV montre la présence de: PhCHO résiduel (23%), PhGeCl₃ résiduel (40%) (% relatifs aux produits de départ), ClCH₂COOEt (42%), PhCOCH₂COOEt (18%), EtOOCCH= CHCOOEt (8%), PhCOCOPh (2%).

La distillation du mélange réactionnel sous pression réduite n'a pas permis d'isoler la cétone germaniée PhCl₂GeCOPh.

Comme précédemment, la réduction du mélange réactionnel par LiAlH₄ dans l'éther n'a pas permis d'observer la formation de PhH₂GeCHOHPh synthétisé par ailleurs (cf. ci-après). Elle conduit à un mélange de PhCH₂OH (57%) et PhGeH₃ (43%).

La phénylation par un excès de PhMgBr conduit comme dans le cas précédent à une faible quantité de Ph₃GeCOHPh₂ (3-5%) identifié par CPV.

Action de Ph_2GeCl_2 sur PhCHO en présence de $N_2CHCOOEt$. Au mélange 1.50 g (0.005 mole) de Ph_2GeCl_2 et 0.53 g (0.005 mole) de PhCHO est ajouté $N_2CHCOOEt$ (0.57 g, 0.005 mole). La réaction est très lente et conduit après 3 jours à 20°C, à de faibles quantités de ClCH₂COOEt et de PhCOCH₂COOEt (<10%). Dans les mêmes conditions, Ph₃GeCl et Et₃GeCl ne donnent aucune réaction.

Action de PhGeCl₃ sur CH₃CHO en présence de N_2 CHCOOEt. Au mélange de 2.56 g (0.01 mole) de PhGeCl₃ et de 0.5 g (0.01 mole) de CH₃CHO est ajouté N_2 CHCOOEt (1.14 g, 0.01 mole). On note un dégagement immédiat de N_2 . Après 24 h à 20°C, on note la disparition totale du diazoacétate d'éthyle, la présence de 43% de PhGeCl₃ résiduel et la formation de ClCH₂COOEt (53%), CH₃COCH₂COOEt (39%), PhCl₂GeCOCH₃ (9%), PhCl₂GeOCH=CH₂ (11%). La formation de ce dernier dérivé est observée au cours de la réaction, mais il se transpose rapidement (cf. ci-dessous).

PhCl₂GeCOCH₃ (RMN (C₆D₆): δ (CH₃) 1.90 ppm (s). IR ν (CO) 1640 cm⁻¹). μ (2)

PhCl₂GeOCH=C (RMN (C₆D₆): δ (CH(1)) 7.07 ppm (d.d) $J_{1,2}$ 13.6 Hz; (1) H(3)

 $\delta(CH(2))$ 5.10 ppm (d.d) $J_{1,3}$ 6 Hz; $\delta(CH(3))$ 4.83 ppm (d.d) $J_{2,3}$ 0.8 Hz).

La distillation du mélange réactionnel permet d'isoler comme précédemment, les produits organiques (ClCH₂COOEt, CH₃COCH₂COOEt), mais aucun des deux produits germaniés, trop instables.

Action de PhGeCl₃ sur CH₃CHO en présence de Et₃N. Au mélange de 0.52 g (0.002 mole) de PhGeCl₃ et de 0.10 g (0.002 mole) de CH₃CHO dans 1 cm³ de C₆D₆, est ajouté Et₃N (0.20 g, 0.002 mole) à 0°C. La réaction est suivie par RMN et montre la formation de: PhCl₂GeOCH=CH₂ (54%) (RMN (C₆D₆, Et₃N): δ_1 6.87, δ_2 4.97, δ_3 4.53 ppm (d.d) (cf. ci-dessus)). PhClGe(OCH=CH₂)₂ (6%) (RMN (C₆D₆, Et₃N): δ_1 6.87, δ_2 4.92, δ_3 4.43 ppm (d.d); $J_{1,2}$ 13.6, $J_{1,3}$ 6, $J_{2,3}$ 0.8 Hz). PhCl₂GeOCH₃ (7%) (RMN (C₆D₆, Et₃N): δ (CH₃) 1.67 ppm (s)).

On note la transposition rapide du vinyloxygermane en aldéhyde germanié $PhCl_2GeCH_2CHO$. Cette transposition est totale après 3 h à 20°C (RMN (C_6D_6 , Et₃N): $\delta(CH_2)$ 2.80 ppm (d), $J(HC-CH_2)$ 3 Hz, $\delta(CH)$ 9.40 ppm (t)).

La réduction du mélange réactionnel par LiAlH₄ dans l'éther conduit exclu-

sivement à un mélange de PhGeH₃ et CH_3CH_2OH . La formation de PhH₂Ge-CHOHCH₃ synthétisé par ailleurs n'a pu être observée (cf. ci-après).

Dans toutes ces réactions, le chauffage à 120° C du mélange réactionnel en tube scellé et en présence de diméthylbutadiène n'a conduit qu'à des traces CH₂C(CH₃)=C(CH₃)CH₂GePhCl [13].

Les tri-alcoyl ou arylchlorogermanes réagissent peu sur l'acétaldéhyde en présence de Et₃N. Dans le cas du triphénylchlorogermane, un très faible pourcentage (3 à 5%) d'aldéhyde germanié a pu être observé après 18 h à 20°C (δ (CH) 9.37 ppm (t)).

Etude de la caractérisation des phénylchlorobenzoylgermanes

Action de PhCl₂GeH sur (CH₃CO)₂O. Le mélange stoechiométrique de PhCl₂GeH (2.22 g, 0.01 mole) et 1.06 g (0.01 mole) d'anhydride acétique est chauffé 12 h à 80°C dans un tube scellé. L'analyse par RMN du mélange réactionnel montre la formation de 70% de CH₃COOH. On note une décomposition partielle du mélange réactionnel avec formation de benzène et de résidus polymères (~30%) et l'apparition d'un nouveau produit présentant un signal δ (CH₃) 1.90 ppm (s) (CCl₄) pouvant être attribué à PhCl₂GeCOCH₅ (~26%) et en IR ν (C=O) 1650 cm⁻¹. Une forte bande ν (GeOGe) 890 cm⁻¹, montre la formation de quantités importantes de (PhCl₂Ge)₂O.

La réduction du mélange réactionnel précédent par un excès de LiAlH₄ dans l'éther à 0°C conduit à \sim 7% de PhH₂GeCHOHCH₃ et 43% de PhGeH₃.

Action de PhCl₂GeH sur $(C_6H_5CO)_2O$. Le mélange stoechiométrique de PhCl₂GeH (2.20 g, 0.01 mole) et 2.26 g (0.01 mole) d'anhydre benzoïque est chauffé 12 h à 85°C dans un tube scellé. L'analyse par RMN du mélange réactionnel montre la disparition de PhCl₂GeH, la formation de 60% de C_6H_5COOH et 15% de décomposition conduisant comme dans le cas précédent au benzène et à des polymères.

La réduction in situ du mélange réactionnel (cf. ci-dessus) ne conduit qu'à des traces de PhH₂GeCHOHPh et principalement à PhGeH₃ et PhCH₂OH.

Synthèse de PhH₂GeCHOHPh

3.30 g (0.015 mole) de PhCl₂GeH et 1.60 g (0.015 mole) de PhCHO sont chauffés 5 h à 80°C en tube scellé. L'analyse par RMN du mélange réactionnel montre la formation quasi quantitative de PhCl₂GeCHOHPh (δ (CH) 5.10 ppm (s) C₆D₆). Le mélange réactionnel est alors réduit par un excès de LiAlH₄ dans l'éther à 0°C. Après hydrolyse, séchage sur Na₂SO₄, distillation sous pression réduite, 1.88 g de PhH₂GeCHOHPh (Rdt. 48%) sont obtenus. (Eb.108–110°C/4 × 10⁻² mmHg, IR: ν (GeH) 2075, ν (OH) 3330 cm⁻¹. RMN (C₆D₆): δ (CH) 4.83 (t), δ (GeH₂) 4.66 ppm (d), J(HC–GeH) 3 Hz. Analyse Trouvé: C, 60.18; H, 5.36. C₁₃H₁₄OGe calc.: C, 60.34; H, 5.41%).

Synthèse de PhH₂GeCHOHCH₃

3.30 g (0.015 mole) de PhCl₂GeH et 0.66 (0.015 mole) de CH₃CHO sont chauffés 5 h à 80°C en tube scellé. L'analyse par RMN du mélange réactionnel montre la formation quasi quantitative de PhCl₂GeCHOHCH₃ (δ (CH) 4.63 (q), δ (CH₃) 1.27 ppm (d), J(CH · CH) 6.5 Hz C₆D₆)).

Après réduction par un excès de LiAlH₄ dans l'éther à 0°C, hydrolyse,

séchage sur Na₂SO₄, distillation sous pression réduite 1.17 g (Rdt. 40%) de PhH₂GeCHOHCH₃ sont obtenus (Eb. 130°C/18 mmHg, IR ν (GeH) 2070, ν (OH) 3320 cm⁻¹. RMN (C₆D₆): δ (CH) 4.00 ppm (q.d), J(HC–CH) 7 Hz, δ (GeH₂) 4.53 ppm (d), J(HC–GeH) 3 Hz, δ (CH₃) 1.33 ppm (d). Analyse: Trouvé: C, 48.62; H, 6.02. C₈H₁₂OGe calc.: C, 48.85; H, 6.10%.

Bibliographie

- 1 P. Rivière, A. Castel et J. Satgé, J. Organometal. Chem., 232 (1982) 131.
- 2 M. Lesbre, P. Mazerolles et J. Satgé, The Organic Compounds of Germanium, Wiley-Interscience, New York, 1971.
- 3 P. Rivière, Thèse, Univ. de Toulouse, 1971.
- 4 M. Massol, J. Barrau et J. Satgé, Inorg. Nucl. Chem. Letters, 7 (1971) 895.
- 5 N.S. Nametkin, V.K. Korolev et O.V. Kuz'min, Dokl. Akad. Nauk SSSR, 205 (1972) 1111.
- 6 M. Massol, J. Barrau, P. Rivière et J. Satgé, J. Organometal. Chem., 30 (1971) 27.
- 7 J. Satgé et P. Rivière, J. Organometal. Chem., 16 (1969) 71.
- 8 A.G. Brook, J.M. Duff, P.F. Jones et N.R. Davis, J. Amer. Chem. Soc., 89 (1967) 431.
- 9 A.G. Brook, P.F. Jones et G.J.D. Peddle, Can. J. Chem., 46 (1968) 2119.
- 10 A.G. Brook et S.A. Fiedhouse, J. Organometal. Chem., 10 (1967) 235.
- 11 Ph. Cazeau, F. Moulines, O. Laporte et F. Duboudin, J. Organometal. Chem., 201 (1980) C9.
- 12 J. Satgé, Ann. Chim., Paris, 6 (1961) 519.
- 13 M. Massol, P. Rivière, J. Barrau et J. Satgé, C.R. Acad. Sci. Paris, Sér. C, 270 (1970) 237.
- 14 P. Rivière, A. Castel et J. Satgé, J. Amer. Chem. Soc., 102 (1980) 5415.
- 15 P. Rivière, J. Satgé et A. Castel, C.R. Acad. Sci., Paris, Sér. C, 281 (1975) 835.