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ABSTRACT: We report a unified total synthesis of five bufadienolides:
bufalin (1), bufogenin B (2), bufotalin (3), vulgarobufotoxin (4), and 3-(N-
succinyl argininyl) bufotalin (5). After the steroidal ABCD ring 8 was
produced, the D ring was cross-coupled with a 2-pyrone moiety and
stereoselectively epoxidized to generate 6. TMSOTf promoted a stereo-
specific 1,2-hydride shift from 6 to establish the β-oriented 2-pyrone of 19.
Functional group manipulations from 19 furnished 1−5, which potently
inhibited cancer cell growth.

Bufadienolides have been identified in both animals and
plants over the years, comprising a large group of steroidal

natural products (e.g., 1−5; Scheme 1).1 These compounds
are known as the bioactive ingredients of the traditional
Chinese drug Chansu. Chansu is a dried skin gland secretion of

toads and has been used for hundreds of years to treat various
diseases, including heart failure, cancer, inflammation, and
respiratory infections. Recent biological studies confirmed the
significant anticancer activities of bufadienolides in vitro and in
vivo.2

Bufadienolides are structurally related to cardenolides,
another steroid family with potent cardiotonic effects.3 Both
of these steroid family members share atypical cis-fused A/B
and C/D ring systems but differ in the β-oriented heterocyclic
ring substituted at C17. A five-membered unsaturated γ-
butyrolactone (butenolide) in cardenolides is replaced with a
six-membered doubly unsaturated δ-valerolactone (2-pyrone)
in bufadienolides. The complex structures of bufadienolides
and their high potential as anticancer agents have attracted the
widespread attention of synthetic organic chemists. However,
while modern and efficient routes to cardenolides have been
recently developed,4,5 total syntheses of bufadienolides were
reported only in the 1970s and 1980s.6,7 Construction of the 2-
pyrone ring in these syntheses involves tedious and harsh
stepwise manipulations from a linear or saturated precursor.
Direct introduction of the 2-pyrone moiety would streamline
the synthesis, but this has yet to be achieved, reflecting the
synthetic challenge posed by bufadienolide structures. Herein
we devised a new method for installing the C17β-attached 2-
pyrone employing direct Stille coupling of the pyrone,
stereoselective epoxidation, and stereospecific epoxide rear-
rangement. These key transformations efficiently assembled a
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Scheme 1. Structures of Bufalin (1), Bufogenin B (2),
Bufotalin (3), Vulgarobufotoxin (4), and 3-(N-Succinyl
argininyl) Bufotalin (5), and the Synthetic Plan for the Five
Bufadienolides
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highly functionalized intermediate that was utilized for a
unified total synthesis of the five bufadienolides 1−5.8 The
synthesized steroids were subjected to growth inhibition assays
against MCF-7 human breast cancer cells to investigate their
activities.9

Our synthetic plan for the chemical construction of 1−5 is
illustrated in Scheme 1. Bufalin (1)10 possesses C3- and C14-
hydroxy groups, and bufogenin B (2)11 has an additional C16-
OH on the D ring. Bufotalin (3)12 is C16O-acetylated 2, while
vulgarobufotoxin (4)13 and 3-(N-succinyl argininyl) bufotalin
(5)14 are the N-suberyl arginine and N-succinyl arginine esters
of 3, respectively. Considering the structural relationship of the
targets, we planned to prepare an appropriately protected form
of 2 as a common intermediate. This intermediate would then
be derivatized to 1 via C16-deoxygenation and to 3−5 through
acylation. Protected 2 was in turn retrosynthetically converted
to β-epoxide 6. In the synthetic direction, a Lewis acid would
be expected to promote a stereospecific 1,2-hydride shift15 to
control the β-orientation of the 2-pyrone structure. Compound
6 would be synthesized through Stille coupling16 between the
known 2-pyrone unit 717 and tetracycle 8, followed by
stereoselective epoxidation. Thus, commercially available 4-
androstene-3,17-dione (9) was selected as a starting material.
As 9 has the four correct stereocenters of bufadienolides
(C8,9,10,13), 9 would be readily altered into the AB-cis/CD-cis
ring skeleton 8 by introducing C3β-OH, C5β-H, and C14β-
OH.
First, the preparation of tetracycle 8 started with

functionalization of the A ring of 9 (Scheme 2). The C5-
double bond of 9 was stereoselectively hydrogenated from the
opposite face of the C10-methyl group by catalysis of Pd/C in
pyridine, providing the cis-fused AB ring 10 as a major

diastereomer (β-H:α-H at C5 = 9.3:1).18 The C3-ketone of 10
was stereoselectively reduced in the presence of the C17-
ketone by the action of the bulky reductant KBH(s-Bu)3.

19

The resultant C3-OH was protected as its tert-butyldimethyl-
silyl (TBS) ether to generate 11 after separating the
diastereomers. The cis-fused CD ring was then built according
to the protocol developed by Baran.5b Trimethylsilyl (TMS)
enol ether formation and subsequent Ito−Saegusa oxidation20
with Pd(OAc)2 transformed ketone 11 to the α,β-unsaturated
ketone 12. The conjugated C16-olefin of 12 was isomerized to
the more substituted nonconjugated C14-olefin of 1321 by
employing i-Pr2NEt and SiO2 in C6F5CF3. A Co(acac)2-
catalyzed Mukaiyama hydration22 of olefin 13 using O2 and
PhSiH3 stereoselectively introduced the requisite β-configured
C14 tertiary alcohol of 14 (β-OH:α-OH at C14 = 2.3:1). To
prepare for the Stille coupling reaction, the C17-ketone of 14
was changed to the corresponding vinyl iodide of 8 through
sequential treatment with NH2NH2 and then with I2 and
Et3N.

23

A Stille reaction and subsequent epoxidation successfully
functionalized the sterically shielded C17 position proximal to
the C13,14-tetrasubstituted carbons. When 8 was treated with
7 (3.3 equiv) in the presence of Pd(PPh3)4 (0.5 equiv), CuCl
(5.0 equiv), and LiCl (6.0 equiv) in dimethyl sulfoxide
(DMSO) and tetrahydrofuran (THF) at 60 °C,4,24 the
C(sp2)−C(sp2) bond was formed to furnish adduct 15,
thereby directly introducing the 2-pyrone moiety to the
ABCD ring. Upon using m-chloroperoxybenzoic acid (m-
CPBA) with the acid scavenger Na2CO3 in CH2Cl2 at −20 °C,
the most electron rich C17-double bond of 15 was epoxidized
chemoselectively over the potentially more exposed diene of
the 2-pyrone ring. The reaction proceeded from the convex β-

Scheme 2. Construction of C17β-2-Pyrone 19
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face of the cis-fused CD ring, giving rise to pyrone-attached
epoxide 6 as a single diastereomer. The X-ray crystallographic
analysis of 6 uncovered the entire stereostructure, showing the
U shape of the steroidal skeleton and the α-configured 2-
pyrone at the hindered C17 position.
The epoxide rearrangement from 6 to 19 was not easily

accomplished because of the unusual reactivity of 2-pyrone.
The conditions greatly affected the reaction outcome. For
example, InCl3 activated the epoxide of 6, but the desired
product 19 was not detected. The major compound was fused-
hexacycle 16, which was isolated in 60% yield. Compound 16
was derivatized into p-bromobenzoate 18, whose structure was
determined by X-ray crystallographic analysis. After the
reagents were screened, the combination of trimethylsilyl
trifluoromethanesulfonate (TMSOTf) and 2,6-lutidine25 was
found to induce the requisite rearrangement. TMSOTf (2.4
equiv) and 2,6-lutidine (5.1 equiv) in CH2Cl2 promoted the
C14O-TMS ether formation and the 1,2-hydride shift from 6,
leading to 19. The β-orientation of all the substituents at C13,
C14, and C17 of 19 was confirmed by nuclear Overhauser
effect (NOE) correlations. Consequently, the three-step
transformations under mild conditions constructed the densely
substituted D ring structure without affecting the acid-sensitive
C14-tertiary alcohol.
A plausible mechanism of the two distinct pathways is

depicted in Scheme 3. The InCl3-induced opening of the

oxirane ring is assisted by electron donation from the oxygen
lone pair of the 2-pyrone ring, producing cation 21. The
nucleophilic indium alkoxide in 21 attacks the electrophilic
oxocarbenium ion to afford the chemically unstable acetal 22.
Further activation of 22 with InCl3 cleaves the acetal, and the
ejected carboxylate of 23 adds to the C17 position from the
opposite face of the C13-methyl group, providing the rigid
hexacycle 16. On the other hand, TMSOTf and 2,6-lutidine
activate the oxirane ring and cap both C14- and C16-alcohols
with TMS groups. Introduction of the bulky and electron-
donating C16O-TMS group of 20 decelerates the nucleophilic
attack on the oxocarbenium ion and accelerates the 1,2-hydride
shift. Hence, the α-oriented C16-hydride stereospecifically
adds to the C17 position to invert the C17 stereoconfiguration,
thereby rendering the β-configured 2-pyrone of 19.
The common intermediate 24 was prepared for the total

synthesis of bufadienolides 1−5 (Scheme 4). Since the C14O-

TMS group of 19 that was introduced at the prior step
shielded the β-face, NaBH4 reduction occurred from an
opposite side, stereoselectively leading to C16β-alcohol 24.
The two silyl protecting groups of 24 were then removed using
HF·pyridine in pyridine and THF to provide bufogenin B (2).
Alternatively, the free C16-alcohol of 24 was acetylated before
the HF·pyridine-mediated deprotection, giving rise to bufotalin
(3).
Reductive removal of the C16-alcohol of 24 in turn

produced bufalin (1). Application of the typical Barton−
McCombie-type deoxygenation to 24 was unsuccessful,
presumably due to the unwanted participation of 2-pyrone in
the reaction. Accordingly, alcohol 24 was subjected to a neutral
halogenation/dehalogenation process. CBr4, PPh3, and imida-
zole26 transformed 24 to the desired bromide 26 and the
undesired olefin 27 via an SN2 reaction and an E2 elimination,
respectively. Compounds 26 and 27 were together subjected to
radical deoxygenation conditions using Et3B and n-Bu3SnH
under an O2 atmosphere. In one pot, aqueous HCl and MeOH
were added for deprotection to afford 1 along with the
byproduct 28.27

Finally, esterification of the C3-hydroxy group of bufotalin
(3) delivered vulgarobufotoxin (4) and 3-(N-succinyl
argininyl) bufotalin (5). Argininyl suberic acid 29a and
argininyl succinic acid 29b were prepared as the protected
forms: the carboxylic acid and the guanidine were capped with
the t-Bu group and the 2,2,4,6,7-pentamethyldihydrobenzofur-
an-5-sulfonyl (Pbf) group,28 respectively. C3-alcohol 3 was
conjugated with the carboxylic acid of 29a/29b using N,N-
dimethyl-4-aminopyridine (DMAP) and N,N′-diisopropylcar-
bodiimide (DIC) to form 30a/30b. Removal of the t-Bu and
Pbf groups was realized by applying a mixture of CF3CO2H,
PhOMe, PhSMe, and HSCH2CH2SH in CH2Cl2,

29 leading to
4/5.30

The total synthesis of bufadienolides 1−5 permitted us to
study their structure−activity relationship (SAR).31 The cell
growth inhibitory activities of 1−5 and the byproduct C17-
olefin 28 were assessed against MCF-7 human breast cancer
cells using the sulforhodamine B assay (Table 1).4c,32 Among
the six tested compounds, 1 with no C16-oxygen functional
group exhibited the highest activity (50% growth inhibitory
concentration (GI50) = 13.3 nM). C16-OH 2 and C16-OAc 3
were 4.1-fold and 2.1-fold weaker than 1 while they retained
two-digit nanomolar activity. The three data suggested that the
C16-hydroxy group had an unfavorable effect on the potency.
The GI50 values of C3O-acylated 4 and 5 were at least 10-fold
larger than that of C3O-nonacylated 3, corroborating that their
C3O-acyl chains negatively influenced the activity. The least
potent compound was 28, which is the C16,17-didehydro
analogue of the most potent compound 1. The 180-fold
weaker activity (2390 nM) of 28 in comparison with 1
confirmed the biological significance of the β-orientation of the
2-pyrone group.
In summary, we accomplished a unified total synthesis of the

5 bufadienolides 1−5 in 13−16 steps from the commercially
available steroid 9. The two sequences of transformations
played crucial roles in the syntheses. C5-hydrogenation, C3-
reduction, and C14-hydroxylation constructed the AB-cis/CD-
cis ring system of 8, while Stille coupling, stereoselective
epoxidation, and a stereospecific TMSOTf-mediated 1,2-
hydride shift installed the β-oriented 2-pyrone of 19. The
following stereoselective hydride addition produced 24, which
served as the common intermediate for the total synthesis of

Scheme 3. Plausible Mechanism of Lewis Acid-Mediated
Reactions of Epoxide 6
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1−5. The SAR study of 1−5 and 28 revealed the importance
of the hydrophobic functionality at C16, the free alcohol at C3,
and the β-oriented 2-pyrone at C17 for the strong growth
inhibitory activity against MCF-7 cells. As this newly
developed method for attaching the 2-pyrone moiety is mild
and efficient, it should be applicable to a wide range of
structurally different bufadienolides with potent anticancer
activities.
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compound GI50 (nM)a
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providing us with 1H and 13C NMR spectra of 3-(N-succinyl
argininyl) bufotalin (5).
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