234 Communications SYNTHESIS

The bromophenyl phenyl ethers **6a-d** were prepared by coupling the appropriately substituted fluorobenzene **4a-d** with sodium 2-bromophenoxide **(5)**. The reaction requires the substituted fluorobenzene to be activated by an electron-withdrawing group and, in the case of strong activation as in **4c**, the coupling occurs at room temperature. The other bromophenyl ethers **6e-h** were prepared by standard methods (Table 1).

$$R \leftarrow F + Na \oplus \Theta_0$$

$$A = A - d$$

$$Na_2CO_3 / Pd(OAc)_2 / DMA$$

$$R \leftarrow G$$

The dibenzofurans 2a-h were prepared in good yield by heating 2-bromophenyl phenyl ethers 6a-h under nitrogen with 0.1 equivalent of palladium(II) acetate in N, N-dimethylacetamide (DMA) in the presence of sodium carbonate. In example 6b, it might be possible to obtain two products, 1-nitroand 3-nitrodibenzofuran, but only 3-nitrodibenzofuran was isolated. However when 6g was used, a mixture of two products was obtained and these were not separated; the ¹H-N.M.R. spectrum (in CDCl₃) of the mixture showed an aliphatic to aromatic proton ratio of 7:3 which indicated that cyclisation had occurred. Two methyl singlets were observed, one at $\delta = 2.4$ ppm, attributed to the methyl group of 3-methyldibenzofuran, and the other at $\delta = 2.65$ ppm, due to the methyl group of 1-methyldibenzofuran. G.L.C. and ¹H-N.M.R. data showed the ratio of 3-methyl to 1-methyldibenzofuran to be 9:1.

As can be seen from Table 2, the reaction tolerates strongly electron-withdrawing groups as well as electron-releasing groups, unlike the dehydrogenative coupling performed in acidic solvents¹. Also the reaction proceeds catalytically, though no attempt was made to reduce the amount of catalyst to less than 10 mol% with respect to the bromodiphenyl ether.

2-Fluoronitrobenzene (4a), 3-fluoronitrobenzene (4b), 4-fluoronitrobenzene (4c), and 4-cyanofluorobenzene (4d) were obtained from Aldrich Chemical Co., Ltd.

2-Bromodiphenyl ether (6e) was prepared from 2-aminodiphenyl ether according to Ref.⁶; 2-bromo-4'-hydroxymethyldiphenyl ether (6f) was prepared by sodium borohydride reduction of 2-bromo-4'-formyldiphenyl ether (m.p. 53-55 °C), obtained by coupling of 4-fluorobenzaldehyde with 5 at 100 °C for 15 h; 2-bromo-3-methyldiphenyl ether (6g) was prepared from 1,2-dibromobenzene and m-cresol according to Ref.⁷; 2-bromo-4'-carboxydiphenyl ether (4h) was prepared by basic hydrolysis of the corresponding ethyl ester obtained by coupling of ethyl 4-fluorobenzoate with 5 at 150 °C for 24 h.

2-Bromo-4'-nitrodiphenyl Ether (6c); Typical Procedure:

Sodium hydride (4.8 g, 50% dispersion in oil) is washed with toluene, then suspended in dry dimethyl sulphoxide (90 ml). 2-Bromophenol (17.3 g) is added dropwise to the stirred suspension and, after hydrogen evolution has ceased, the solution is heated to 80 °C. To the stirred solution of 5 is added 4-fluoronitrobenzene (4c; 14.1 g) and stirring is continued at room temperature for 18 h. Water (500 ml) is added and the precipitated solid is collected, dried, and recrystallised from ethanol to give 2-bromo-4'-nitrodiphenyl ether (6c); yield: 23.1 g (78%); m.p. 80-82 °C (Ref. 9, m.p. 82 °C).

2-Nitrodibenzofuran (2c):

2-Bromo-4'-nitrodiphenyl ether (6c; 2.94 g, 10 mmol), anhydrous sodium carbonate (1.3 g), and palladium(II) acetate (0.22 g, 1 mol) in di-

Synthesis of Dibenzofurans by Palladium-Catalysed Intramolecular Dehydrobromination of 2-Bromophenyl Phenyl Ethers

D. E. AMES*, A. OPALKO

Chemistry Department, Chelsea College, Manresa Road, London SW3 6LX, England

Previous preparations of substituted dibenzofurans 2 by the palladium-promoted intramolecular cyclisation of substituted diphenyl ethers 1 have required heating these with stoichiometric amounts of palladium(II) acetate (more than 1 equivalent if an electron-withdrawing group is present) in acidic solvents ^{1, 2}. This dehydrogenative process can be made catalytic with respect to palladium, by performing the reaction at high pressure in a 1 to 1 mixture of oxygen and nitrogen under neutral conditions. Unfortunately the reaction suffers from lack of selectivity due to the formation of the coupled products 3 by competing intermolecular dehydrogenative coupling³.

We report here a convenient, general process using a catalytic amount of palladium(II) acetate for the cyclisation of substituted 2-bromophenyl phenyl ethers **6a-h** to substituted dibenzofurans **2a-h**, under basic conditions. This reaction is based on a previously reported dehydrohalogenative process⁴, which is not directly applicable in this series⁵.

Table 1. 2-Bromodiphenyl Ethers 6a-h prepared

Product		Reaction Conditions	Yield	m.p. [°C] ^a or	Molecular Formulab	
No.	R	temp./time	[%]	b.p. [°C]/torr	or Lit. m.p. [°C]	
6a	2-O ₂ N—	100 °C/18 h	42	49~51°	54°8	
6b	3-O ₂ N—	140 °C/24 h	53	164°/1.5	C ₁₂ H ₈ BrNO ₃	(294.1)
6c	4-O ₂ N—	25°/18 h	78	80-82°	82°9	
6d	4-NC—	100°/18 h	24	63~65°	C ₁₃ H ₈ BrNO	(274.1)
6e	Н	see text	28	43 -44°	43.5-44.5°6	
6f	4-HO-CH2-	see text	99	oil	$C_{13}H_{11}BrO_2$	(279.1)
6g	3-H ₃ C-	see text	9	102-104°/0.15	C ₁₃ H ₁₁ BrO	(263.1)
6h	4-HOOC	see text	90	151~153°	C ₁₃ H ₉ BrO ₃	(293.1)

a Not corrected.

Table 2. Dibenzofurans 2a-h prepared

Product No.	R	Reaction time	Yield [%]	m.p. [°C] ^a		
NO.	K	time		found (solvent)	reported	
2a	4-O ₂ N	2 h	78	137-138° (C ₂ H ₅ OH)	141 ° 10	
2b	3-O ₂ N—	3 h	68	181-182° (C ₂ H ₅ OH)	181-182°10	
2c	2-O ₂ N—	4 h	76	153-155° (C ₂ H ₅ OH)	150°11	
2d	2-NC—	1.5 h	80	141-143° (C ₂ H ₅ OH)	137.5-138°11	
2e	H	0.75 h	74 ^b	86-87° (<i>i</i> -C ₃ H ₇ OH)	87°12	
2f	2-HO—CH ₂ —	24 h	56 ^b	120-122° (C ₂ H ₅ OH)	124°13	
2g	$1-H_3C - + 3-H_3C -$	0.75 h	73 ^b	c	-	
2h	2-HOOC	7 h	66	253-255° (C ₂ H ₅ OH)	252-255°14	

^a Not corrected.

methylacetamide (20 ml) are heated and stirred under nitrogen at 170 °C for 2 h. Water (100 ml) is added to the cooled solution and the precipitated solid is collected by filtration. Crystallisation from ethanol gives 2-nitrobenzofuran (2c); yield: 1.62 g (78%); m.p. 153-155 °C (Ref.¹¹, m.p. 150 °C).

We thank Dr. K. Heatherington and his staff for spectra and analyses and Wyeth Laboratories for financial support and facilities.

Received: November 29, 1982

¹⁰ S. Yamasiro, Bull. Chem. Soc. Jpn. 16, 61 (1941).

^b Satisfactory microanalyses obtained: C ± 0.41 , H ± 0.31 , N ± 0.30 ; exception: 6f, C -0.50.

^b Purified by chromatography on silica gel.

c 1:9 mixture of 1-methyl- and 3-methyldibenzofuran.

^{*} Author to whom correspondence should be addressed.

B. Åkermark, L. Eberson, U. Jonsson, E. Pettersson, J. Org. Chem.
 40, 1365 (1975); German Patent (DOS) 2418 503 (1974); C. A. 84, 30929 (1976).

² M. V. Sargent, P. O. Stransky, J. Chem. Soc. Perkin Trans. 1 1982, 1605.

³ A. Shiotani, H. Itatani, J. Chem. Soc. Perkin Trans. 1 1976, 1236.

⁴ D. E. Ames, D. Bull, Tetrahedron 38, 383 (1982).

When 2-iododiphenyl ether, triethylamine, and a catalytic amount of palladium(II) acetate in acetonitrile were heated under nitrogen at 140 °C for 15 h in an autoclave as described in Ref.⁴, a mixture of dibenzofuran, diphenyl ether and 2,2'-diphenoxybiphenyl was obtained.

⁶ K. J. Sax, W. S. Saari, C. L. Mahoney, J. M. Gordon, J. Org. Chem. 25, 1590 (1960).

⁷ T. R. Lea, R. Robinson, J. Chem. Soc. 1926, 411.

⁸ H. McCombie, W. G. Macmillan, H. A. Scarborough, J. Chem. Soc. 1930, 1202.

⁹ L. C. Railford, G. W. Thiessen, I. J. Wernert, J. Am. Chem. Soc. 52, 1205 (1930).

¹¹ M. Kuroki, Nippon Kagaku Zasshi 89, 527 (1968); C. A. 70, 3680 (1969).

N. M. Cullinane, C. G. Davies, Recl. Trav. Chim. Pays-Bas 55, 881 (1936).

¹³ F. Weygand, R. Mitgau, Chem. Ber. 88, 301 (1955).

¹⁴ F. Mayer, W. Kreiger, Ber. Dtsch. Chem. Ges. 55, 1659 (1922).