DOI: 10.1002/ejoc.201000596

Water-Accelerated Cationic π -(7-endo) Cyclisation: Application to Indole-Based Peri-Annulated Polyheterocycles^[‡]

Mohammad Saifuddin,^[a] Piyush K. Agarwal,^[a] Sudhir K. Sharma,^[a] Anil K. Mandadapu,^[a] Sahaj Gupta,^[a] Vimal K. Harit,^[a] and Bijoy Kundu^{*[a]}

Keywords: Nitrogen heterocycles / Medicinal chemistry / Cyclization / Cations

An efficient and versatile method for the synthesis of indolebased polycyclic indolo-benzazepine and its derivatives through water-accelerated cationic π -cyclisation is described. The strategy involves condensation of arylamine moieties linked to C-4 in indole/azaindole systems with arylaldehydes in water containing catalytic amount of Brønsted acids. The C–C bond formation in water is complete within 10–30 min, furnishing the title compounds in excellent yields and purities, whereas in organic solvents 10–12 h are required. Furthermore, aldehydes both with electron-donating and-withdrawing substituents facilitate the π -cyclisation equally.

Introduction

Indole-based fused heterocycles belong to the most widely distributed naturally occurring compounds, isolated from plants, fungi and marine organisms.^[1] The range of applications for these therapeutically relevant compounds includes

as protein kinase C inhibitors, as 5-HT agonists, as melatonin agonists and as glucocorticoid receptor modulators, displaying cytotoxic, antiviral, antimicrobial, antiparasitic, antiinflammatory, antiserotonin, Ca2b, calmodulinantagonistic and antitopoisomerase-I activities.^[2] These polyheterocycles frequently feature structurally diverse

Figure 1. Structures of naturally occurring indole-based peri-annulated frameworks and the target molecule.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201000596.

novel frameworks and remain a source of new naturalproduct-inspired^[3] chemical entities for chemical biologyresearch.

Of the myriad reactions devoted to the synthesis of indole-based polyheterocycles, π -cyclisation reactions have remained a method of choice, and chemists continue to develop efficient and practical variants of these reactions to

View this journal online at wileyonlinelibrary.com

5108

make use of mild reaction conditions, substrate manipulation, and environmentally friendly catalysts/conditions.^[4] In continuation of our ongoing studies relating to the synthesis of indole-based polyheterocycles indolo-quinolines^[5] and azepino-indoles^[6] through π -cyclisations, coupled with our interest in carrying out organic reactions in water,^[7] we were prompted to use π -cyclisation reactions in aqueous media for the generation of indole-based polyheterocycles. In recent years, water has been demonstrated as an ideal medium for many organic transformations even if the starting materials and products appear to be insoluble.^[8] In fact, ever since the application of water as a solvent in organic chemistry was rediscovered by Breslow,^[9] a variety of organic reactions, including allylation, the Diels-Alder reaction,^[10] the Wittig reaction,^[11] the aldol reaction,^[12] Mannich-type reactions,^[13] the Michael reaction,^[14] the Claisen rearrangement,^[15] Sonogashira coupling,^[16] Tsuji-Trost-type reactions,^[17] the Heck reaction^[18] and even dehydration reactions,^[19] have been achieved in water with significant enhancements of the reaction rates.^[20] This has been attributed to hydrophobic packing,^[9] solvent polarity,^[21] hydration^[22] and hydrogen bonding.^[23] Here we describe the water-accelerated synthesis of indolo[3,4-cd][1]benzazepine and its derivatives through π -cyclisation reactions.

For our studies involving π -cyclisation reactions in aqueous media, the target structure indolo[3,4-*cd*][1]benzazepine (Figure 1) was inspired by several naturally occurring indole-based peri-fused frameworks in which the indole rings are fused through C-3 and C-4 to six-, seven- and eightmembered rings.^[24] To the best of our knowledge this is the first report dealing with the cationic π -(7-*endo-trig*) cyclisation in water. Literature reports dealing with the synthesis of peri-fused indoles are scarce and have been predominantly reported in organic solvents.^[25]

Results and Discussion

The synthetic strategy for the indolo-benzazepines involved the preparation of a key intermediate of type 3 (Scheme 1) in which an arylamine is tethered to the indole at C-4. We envisaged that condensation of intermediates of type 3 with aldehydes might facilitate cationic π -cyclisation in the resulting aldimines to furnish indole-annulated sevenmembered rings through the involvement of the nucleophilic indole C-3, which is in the "meta" position relative to C-4. The substrates of type 3 differ from our previous indole-based arylamine substrates^[4] with respect to the location of the arylamine, which is generally "ortho"-oriented instead of "meta" with respect to the nucleophilic carbon (C-2/C-3). Our studies commenced with the synthesis of the substrate 3a (Scheme 1), required as a key intermediate for the Pictet-Spengler reaction, which was carried out by means of a Suzuki coupling reaction between 4-bromoindole (1a) and 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)phenylamine (2a, Scheme 1). In order to increase the diversity in compounds 3, the strategy was then successfully also applied to the synthesis of substrates 3b-d. Compound

3e, however, was synthesised through the coupling of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1*H*-indole (1c) with 2-bromopyridin-3-amine.

Scheme 1. Reagents and conditions: i) PdCl₂(PPh₃)₂, Na₂CO₃, 80 °C, DMF, 4 h.

The boronates were in general prepared by treatment of bromo compounds with bis[pinacolato]diboron by the procedure published elsewhere^[26] and were used in situ for the Suzuki coupling. Similarly, 4-bromo-7-azaindole, required for the synthesis of substrates **3c** and **3d**, was obtained by treatment of 7-azaindole with *m*CPBA in ethyl acetate to give the *N*-oxide, which was then treated with methane-sulfonic anhydride and tetramethylammonium bromide in DMF at room temp. to give the desired product.^[27]

Once we had the desired substrates **3a-e** to hand, we next investigated their abilities to undergo cationic π -(7-endo) cyclisation when condensed with aldehydes both in water and in organic solvent. Because Pictet-Spengler reactions are in general more favoured with aldehydes bearing electron-withdrawing groups as substituents than with aldehydes bearing electron-donating groups, we initially examined the capability of the substrate 3a to undergo 7-endo cyclisation (Table 1) with aldehydes bearing either an electron-donating or an electron-withdrawing substituent. Interestingly, the cationic π -cyclisation occurred both in organic and in aqueous media through the attack of the electron-rich C-3 nucleophile of the indole ring on the iminium ion, thereby resulting in a seven-membered ring annulated to the indole ring. The final compound after crystallisation was characterised by NMR and ESMS as the indolo-benzazepine 4b. Interestingly, out of the different acidic protocols (Table 1) used, the best results were obtained when the substrate 3a was treated with 4-nitrobenzaldehyde in TFA in water (5%) at room temp. for 10 min, which effected complete conversion of **3a** and afforded **4b** with >95% purity based on HPLC and in >90% isolated yield. Out of the

Table 1. Optimisation	of reaction	conditions for	or the	conversion	of 3a	into 4b an	d 4f.
-----------------------	-------------	----------------	--------	------------	-------	------------	-------

Entry	Reaction conditions	Temp (°C)	Time	4-Nitrobenzaldehyde	4-Ethoxybenzaldehyde
1	TFA in CH ₃ CN (2%)	r.t.	24 h	46	41
2	Yb(OTf) ₃ in CH ₃ CN	r.t.	24 h	35	30
3	<i>p</i> -TsOH in CH ₃ CN (1%)	r.t.	24 h	36	28
4	triflic acid in DMF (1%)	r.t.	24 h	36	29
5	TFA in DCM (2%)	r.t.	12 h	90	83
6	TFA in water (5%)	r.t.	10 min	94	87
7	Yb(OTf) ₃ in water	r.t.	12 h	n.r. ^[a]	n.r.

[a] n.r. = no reaction.

Table 2. Optimisation of reaction conditions for the conversion of **3c** into **6c** and **6e**.

Entry	Reaction conditions	Temp. [°C]	Time	4-Nitrobenzaldehyde	3,4-Dimethoxybenzaldehyde
1	TFA in water (1%)	room temp.	30 min	33	21
2	TFA in water (2%)	room temp.	30 min	42	29
3	TFA in water (5%)	room temp.	30 min	93	37
4	TFA in water (5%)	80 °C	30 min	90	82
5	TFA in water (10%)	80 °C	30 min	94	85

organic solvents studied, TFA in dry DCM (2%) at room temp. for 12 h effected complete conversion of 3a into 4b. The use of water as a reaction medium had thus significantly enhanced the rate of cationic π -cyclisation relative to the organic solvent protocol.

Similarly, condensation of 4-ethoxybenzaldehyde with the substrate 3a furnished the peri-fused product 4f in the presence of TFA in water (5%) at room temp. in 10 min (Method A) whereas in organic solvents such as TFA in dry DCM (2%) at room temp. it took 12 h for completion of the reaction. The use of other acid/Lewis acid catalysts traditionally used under Pictet-Spengler protocols, such as pTsOH and Yb(OTf)₃ either at room temp. or in the complete absence of an acid catalyst, failed to produce endocyclised products both in the organic solvent and in water.

We next examined the efficacy of the 7-azaindole-based substrate 3c in undergoing π -cyclisation under aqueous conditions. Surprisingly, treatment of 3c with 4-nitrobenzaldehyde or with 3,4-dimethoxybenzaldehyde in TFA in water (5%) at room temp. failed to result in complete cyclisation, furnishing the desired products 6c and 6e only in poor yield. This prompted us to optimise the reaction conditions through variation of the concentration of TFA and of the temperature (Table 2). The best results were obtained when condensation of 3c with the aldehydes bearing electron-donating or electron-withdrawing groups was carried out in the presence of TFA in water (10%) at 80 °C for 30 min (Method B).

After successfully optimizing the reaction conditions for the indole- and 7-azaindole-based substrates 3, we examined the scope and limitations of the strategy by treating the substrates 3a-e with 11 different arylaldehydes and aliphatic aldehydes. In all cases, the substrates efficiently underwent π -cyclisation when condensed with aromatic aldehydes to yield 34 compounds (4a-g, 5a-i, 6a-f, 7a-f and 8a-j) in excellent yields (Table 3, Scheme 2). In general, the reactions were not sensitive to the electronic properties of the substituent on the phenyl ring, with both electron-donating groups and electron-withdrawing groups being successfully employable with equal ease. The isolated yields of the final compounds varied from 83-95%.

Table 3. Synthesis of indolo-benzazepines 4, 5, 8 and benzoazulenes 6, 7.

Entry	Substrate	R ²	Product	Yield [%]
1	3 a	4-Cl-C ₆ H ₄	4a	93
2	3a	$4-NO_2-C_6H_4$	4b	94
3	3a	$4\text{-Br-C}_6\text{H}_4$	4c	91
4	3a	$4-F-C_6H_4$	4d	89
5	3a	$4-CH_3-C_6H_4$	4 e	86
6	3a	$4-C_2H_5O-C_6H_4$	4 f	87
7	3a	$2-OH-C_6H_4$	4g	85
8	3b	$4-Cl-C_6H_4$	5a	90
9	3b	$4-NO_2-C_6H_4$	5b	92
10	3b	4-Br-C ₆ H ₄	5c	88
11	3b	$4-F-C_6H_4$	5d	87
12	3b	$4-CH_3-C_6H_4$	5e	84
13	3b	$4-C_2H_5O-C_6H_4$	5f	86
14	3b	4-N(CH ₃) ₂ -C ₆ H ₄	5g	83
15	3b	CH ₃ CH ₂	5h	45
16	3b	$(CH_3)_3C$	5i	54
17	3c	$4-Cl-C_6H_4$	6a	90
18	3c	$4-Br-C_6H_4$	6b	91
19	3c	$4-NO_2-C_6H_4$	6c	94
20	3c	$2-OH-C_6H_4$	6d	86
21	3c	3,4-di-OCH ₃ -C ₆ H ₃	6e	85
22	3c	$4-F-C_6H_4$	6f	88
23	3d	$4-Cl-C_6H_4$	7a	89
24	3d	$4-Br-C_6H_4$	7b	87
25	3d	$4-NO_2-C_6H_4$	7c	90
26	3d	$4-F-C_6H_4$	7d	88
27	3d	$4-C_2H_5O-C_6H_4$	7e	86
28	3d	$4-CH_3-C_6H_4$	7f	85
29	3e	$4-Cl-C_6H_4$	8a	91
30	3e	$4-Br-C_6H_4$	8b	93
31	3e	$4-NO_2-C_6H_4$	8c	95
32	3e	$4-F-C_6H_4$	8d	90
33	3e	$4-C_2H_5O-C_6H_4$	8e	88
34	3e	$4-CH_3-C_6H_4$	8f	86
35	3e	$2-OH-C_6H_4$	8g	85
36	3e	3,4-di-OCH ₃ -C ₆ H ₃	8h	87
37	3e	CH ₃ CH ₂	8i	51
38	3e	$(CH_3)_3C$	8j	63

Scheme 2. Reagents and conditions, Method A: R^2 CHO, TFA in H₂O (5%) at room temp., 10 min; Method B: R^2 CHO, TFA in H₂O (10%) at 80 °C, 30 min.

Condensation of the substrates **3b** and **3e** with aliphatic aldehydes (Entries 15, 16, 37 and 38) furnished the endo cyclised products in moderate yields (45–63%). Ketones failed to undergo cationic π -(7-endo) cyclisation generally, with ketimines remaining the only products isolated even after three days of heating. This may be attributed to the lower electrophilicities of ketimines than their aldimine counterparts,^[28] because the electrophilicities of imines have been documented as the driving force for cationic π -cyclisation.^[29]

Conclusions

We have developed a mild and efficient method for the synthesis of indole-based perifused polycycles through water-accelerated cationic π -cyclisation in water. The workup procedure was effortless and purification of the products did not require column chromatography, which proved to be an additional advantage for the synthesis of indolo-benzazepine and benzoazulene motifs.

Experimental Section

General: All solvents were commercially available and were used without purification. All products were characterised by ¹H NMR, ¹³C NMR, ESMS, HRMS, IR and HPLC. Analytical TLC was performed with 2.5×5 cm plates coated (0.25 mm) with silica gel 60F-254 and visualisation was accomplished with UV light and iodine. Column chromatography was performed with silica gel (100-200 mesh). ¹H NMR spectra (300 MHz and 200 MHz) are reported as follows: chemical shifts in ppm downfield from TMS as internal standard (δ scale), multiplicity [br. s = broad singlet, s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, o = overlapped, integration and coupling constant (Hz)]. All ¹³C NMR spectra (75 MHz and 50 MHz) were determined with complete proton decoupling and are reported in ppm. Analytical HPLC was performed with a reversed-phase C-18 column (250 mm \times 4.6 mm). Retention time on HPLC (C18 reversed-phase column; 150×4.6 mm; 5 µm) with a linear gradient of 10–100 % CH₃CN in water over 30 min, flow rate of 1.0 mL min⁻¹ and UV detection at 220/254 nm. Mass spectra were recorded with a electron-spray mass spectrometer.

General Procedure for the Synthesis of Substrates 3a–e by Suzuki Coupling: A solution of 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenylamine (2a, 1.00 g, 4.56 mmol) and 4-bromo-1*H*-indole (1a, 0.89 g, 4.56 mmol) in DMF (5 mL) was degassed with nitrogen for 15 min, followed by addition of Na₂CO₃ (1.45 g, 2 M in water) under a continuous flow of nitrogen. PdCl₂(PPh₃)₂ (0.32 g, 0.45 mmol) was added under nitrogen and the reaction mixture was stirred at 80 °C for 4 h. The solution was diluted with H₂O (5 mL) and the product was extracted three times with EtOAc (10 mL). The combined organic layer was dried with Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified with a silica gel column and with hexane/ethyl acetate (90:10, v/v) as eluent to afford 2-(1*H*-indol-4-yl)aniline (3a) in 71% yield.

General Procedure for the Synthesis of 2-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-2-yl)-phenylamine (2a): A solution of bis[pinacolato]diboron (3.24 g, 12.78 mmol), 2-bromoaniline (2.0 g, 11.62 mmol), tricyclohexylphosphane (0.39 g, 1.39 mmol) and potassium acetate (1.7 g, 17.43 mmol) in dry dioxane (15 mL) was purged with nitrogen for 15 min, followed by the addition of tris[dibenzylideneacetone]dipalladium(0) (0.53 g, 0.58 mmol). The reaction mixture was heated at 80 °C for 16 h, filtered through celite, washed with ethyl acetate and concentrated to provide the product, which was used without further purification.

General Procedure for the Pictet–Spengler Reaction Leading to the Synthesis of the Indolo-benzazepine and Benzoazulene Derivatives 4, 5, 6, 7 and 8: A solution of a compound 3 (1 equiv.) and a corresponding aldehyde \mathbb{R}^2 (1.1. equiv.) was treated with a solution of trifluoroacetic acid in H₂O (5%, 5 mL). The reaction mixture was stirred at room temp. for 10 min. After completion of the reaction, NaHCO₃ solution was added and the product was extracted three times with EtOAc (5 mL). The combined organic layer was dried with Na₂SO₄ and the solvent was removed in vacuo. The crude product was purified by trituration with Et₂O in hexane, (5%) to afford the pure compound.

2-(1*H***-Indol-4-yl)phenylamine (3a):** Yield 1.51 g (71%), light yellow solid, m.p. 135–136 °C, $R_{\rm f} = 0.83$ (EtOAc/hexane, 1:1). ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 11.17$ (br. s, 1 H, ArNH), 7.39 (d, J = 8.1 Hz, 1 H, ArH), 7.35–7.33 (m, 1 H, ArH), 7.16 (t, J = 7.3 Hz, 1 H, ArH), 7.10–7.04 (m, 2 H, ArH), 6.95 (d, J = 7.1 Hz, 1 H, ArH), 6.80–6.77 (m, 1 H, ArH), 6.68–6.63 (m, 1 H, ArH), 6.18–6.17 (m, 1 H, ArH), 4.57 (br. s, 2 H, NH₂) ppm. ¹³C NMR (100 MHz, [D₆]DMSO): $\delta = 145.1$, 136.1, 131.2, 130.3, 126.7, 125.5, 125.3, 125.2, 110.5, 110.3, 100.7 ppm. IR (KBr): $\tilde{v}_{max} = 3393$, 1603, 1481 cm⁻¹. MS (ES⁺): m/z = 209.3 [M + 1]⁺. C₁₄H₁₂N₂ (208.26): calcd. C 80.74, H 5.81, N 13.45; found C 80.65, H 5.92, N 13.51.

2-(1*H***-Indol-4-yl)-4-methylphenylamine (3b):** Yield 1.52 g (67%), brown liquid, $R_{\rm f} = 0.78$ (EtOAc/hexane, 1:1). ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 11.18$ (br. s, 1 H, ArNH), 7.37 (d, J = 8.8 Hz, 2 H, ArH), 7.14 (t, J = 7.7 Hz, 1 H, ArH), 6.94–6.90 (m, 3 H, ArH), 6.71 (t, J = 6.8 Hz, 1 H, ArH), 6.17 (s, 1 H, ArH), 4.38 (br. s, 2 H, NH₂), 2.19 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 142.6$, 136.1, 131.4, 130.7, 128.3, 126.2, 125.4, 125.3, 124.6, 121.2, 119.3, 115.2, 110.4, 100.7, 24.9 ppm. IR (neat): $\tilde{v}_{max} = 3382$, 1614, 1494 cm⁻¹. MS (ES⁺): m/z = 223.2 [M + 1]⁺. C₁₅H₁₄N₂ (222.29): calcd. C 81.05, H 6.35, N 12.60; found C 81.10, H 6.29, N 12.57.

2-(1*H***-Pyrrolo[2,3-***b***]pyridin-4-yl)phenylamine (3c):** Yield 1.49 g (70%), yellow solid, m.p. 159–163 °C, $R_{\rm f} = 0.16$ (EtOAc/hexane, 1:1). ¹H NMR (200 MHz, CDCl₃): $\delta = 10.70$ (br. s, 1 H, ArNH), 8.40 (d, J = 4.5 Hz, 1 H, ArH), 7.39–7.16 (m, 4 H, ArH), 6.91–6.82 (m, 2 H, ArH), 6.47 (s, 1 H, ArH), 3.83 (br. s, 2 H, NH₂) ppm.

¹³C NMR (50 MHz, [D₆]DMSO): δ = 148.9, 145.2, 142.8, 139.5, 130.1, 128.9, 125.9, 122.5, 118.2, 116.4, 115.5, 115.4 ppm. IR (KBr): \tilde{v}_{max} = 3454, 3379, 2365, 1608 cm⁻¹. MS (ES⁺): *m/z* = 210.4 [M + 1]⁺. C₁₃H₁₁N₃ (209.25): calcd. C 74.62, H 5.30, N 20.08; found C 74.56, H 5.38, N 20.05.

4-Methyl-2-(1*H***-pyrrolo[2,3-***b***]pyridin-4-yl)phenylamine (3d):** Yield 1.48 g (65%), pale yellow solid, m.p. 196–198 °C, $R_f = 0.13$ (EtOAc/hexane, 1:1). ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 11.69$ (br. s, 1 H, ArNH), 8.31–8.22 (m, 1 H, ArH), 7.46 (s, 1 H, ArH), 7.04–6.95 (m, 3 H, ArH), 6.73 (d, J = 8.5 Hz, 1 H, ArH), 6.26 (s, 1 H, ArH), 4.59 (br. s, 2 H, NH₂), 2.19 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 148.9$, 142.8, 142.7, 139.6, 130.4, 129.5, 125.9, 124.8, 122.7, 118.2, 115.7, 115.6, 99.6, 20.1 ppm. IR (KBr): $\tilde{v}_{max} = 3357$, 3141, 2916, 1602 cm⁻¹. MS (ES⁺): m/z = 224.3 [M + 1]⁺. C₁₄H₁₃N₃ (223.28): calcd. C 75.31, H 5.87, N 18.82; found C 75.25, H 5.90, N 18.75.

2-(1*H***-Indol-4-yl)pyridin-3-amine (3e):** Yield 1.62 g (76%), light brown solid, m.p. 167–169 °C, $R_{\rm f} = 0.22$ (EtOAc/hexane, 1:1). ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 11.21$ (br. s, 1 H, ArNH), 7.93 (dd, J = 4.3, 1.7 Hz, 1 H, ArH), 7.44 (d, J = 7.4 Hz, 1 H, ArH), 7.35 (t, J = 2.8 Hz, 1 H, ArH), 7.23–7.05 (m, 4 H, ArH), 6.27–6.25 (m, 1 H, ArH), 3.39 (br. s, 2 H, NH₂) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 143.8$, 141.7, 137.3, 136.3, 130.6, 125.9, 125.5, 122.7, 121.5, 120.9, 119.3, 111.2, 101.1 ppm. IR (KBr): $\tilde{v}_{max} = 3453$, 3151, 1610 cm⁻¹. MS (ES⁺): m/z = 210.4 [M + 1]⁺. C₁₃H₁₁N₃ (209.25): calcd. C 74.62, H 5.30, N 20.08; found C 74.56, H 5.34, N 20.12.

6-(4-Chlorophenyl)-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (4a**): Yield 0.148 g (93%), dark brown solid, m.p. 136–138 °C, $R_{\rm f}$ = 0.20 (EtOAc/hexane, 1:4), $t_{\rm R}$ = 15.76 min. ¹H NMR (300 MHz, [D₆]DMSO): δ = 10.96 (s, 1 H, ArNH), 7.78 (d, *J* = 7.5 Hz, 1 H, ArH), 7.39–7.18 (m, 7 H, ArH), 7.02–6.81 (m, 4 H, ArH), 5.96 (d, *J* = 2.8 Hz, 1 H, NH), 5.52 (d, *J* = 2.4 Hz, 1 H, CH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): δ = 147.8, 143.0, 136.7, 131.1, 130.6, 129.6, 129.1, 128.2, 127.8, 127.3, 125.5, 123.4, 121.9, 121.4, 120.8, 58.7 ppm. IR (KBr): $\tilde{v}_{\rm max}$ = 3159, 1596, 1468 cm⁻¹. MS (ES⁺): *m*/*z* = 331.2 [M + 1]⁺. C₂₁H₁₅ClN₂ (330.82): calcd. C 76.24, H 4.57, N 8.47; found C 76.21, H 4.58, N 8.49.

6-(4-Nitrophenyl)-6,7-dihydro-*4H***-indolo**[**3,4-***cd*][**1**]benzazepine (4b): Yield 0.154 g (94%), green solid, m.p. 231–233 °C, $R_f = 0.63$ (EtOAc/hexane, 1:1), $t_R = 15.23$ min. ¹H NMR (300 MHz, [D₆]-DMSO): $\delta = 11.04$ (s, 1 H, ArNH), 8.06 (d, J = 8.7 Hz, 2 H, ArH), 7.78 (d, J = 7.4 Hz, 1 H, ArH), 7.42–7.39 (m, 3 H, ArH), 7.35 (d, J = 7.7 Hz, 1 H, ArH), 7.22 (t, J = 7.7 Hz, 1 H, ArH), 7.00–6.95 (m, 2 H, ArH), 6.91–6.87 (m, 2 H, ArH), 6.22 (d, J = 4.1 Hz, 1 H, NH), 5.71 (d, J = 3.8 Hz, 1 H, CH) ppm. ¹³C NMR (50 MHz, [D₆]-DMSO): $\delta = 151.9$, 147.1, 146.0, 136.7, 130.4, 129.2, 128.9, 128.3, 127.3, 125.5, 124.2, 123.4, 123.0, 121.9, 121.6, 121.2, 117.3, 117.0, 110.0, 58.5 ppm. IR (KBr): $\tilde{v}_{max} = 3399$, 1602, 1516 cm⁻¹. MS (ES⁺): m/z = 342.3 [M + 1]⁺. C₂₁H₁₅N₃O₂ (341.37): calcd. C 73.89, H 4.43, N 12.31; found C 73.87, H 4.45, N 12.31.

6-(4-Bromophenyl)-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (4c): Yield 0.164 g (91%), grey solid, m.p. 139–140 °C, R_f = 0.80 (EtOAc/hexane, 1:1), t_R = 14.21 min. ¹H NMR (300 MHz, [D₆]-DMSO): \delta = 10.99 (s, 1 H, ArNH), 7.78 (d, J = 7.8 Hz, 1 H, ArH), 7.42–7.31 (m, 4 H, ArH), 7.20 (d, J = 7.7 Hz, 1 H, ArH), 7.13 (d, J = 8.3 Hz, 2 H, ArH), 7.01 (d, J = 7.0 Hz, 1 H, ArH), 6.93–6.87 (m, 2 H, ArH), 6.80 (d, J = 2.0 Hz, 1 H, ArH), 6.00 (d, J = 3.3 Hz, 1 H, NH), 5.50 (d, J = 3.0 Hz, 1 H, CH) ppm. ¹³CNMR (50 MHz, [D₆]-DMSO): \delta = 147.7, 143.4, 136.7, 132.3, 130.7, 130.6, 129.9, 129.1, 128.2, 127.2, 125.5, 123.4, 121.8, 121.4, 120.8, 119.7, 118.1, 117.1, 109.9, 58.7 ppm. IR (KBr): \tilde{v}_{max} = 3422, 3159, 1653, 1466 cm⁻¹.** MS (ES⁺): $m/z = 375.2 [M + 1]^+$. C₂₁H₁₅BrN₂ (375.27): calcd. C 67.21, H 4.03, N 7.47; found C 67.20, H 4.07, N 7.46.

6-(4-Fluorophenyl)-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (4d): Yield 0.134 g (89%), purple solid, m.p. 155–157 °C, R_f = 0.20 (EtOAc/hexane, 1:4), t_R = 12.98 min. ¹H NMR (300 MHz, [D₆]-DMSO): \delta = 10.96 (s, 1 H, ArNH), 7.79 (d, J = 7.5 Hz, 1 H, ArH), 7.38 (d, J = 7.5 Hz, 1 H, ArH), 7.33 (d, J = 7.8 Hz, 1 H, ArH), 7.26–7.17 (m, 3 H, ArH), 7.08–6.88 (m, 5 H, ArH), 6.76 (s, 1 H, ArH), 5.90 (s, 1 H, NH), 5.50 (s, 1 H, CH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): \delta = 147.9, 140.1, 136.7, 130.6, 129.7, 129.6, 129.1, 128.2, 127.2, 125.5, 123.3, 121.8, 121.4, 120.7, 118.9, 117.1, 114.8, 114.3, 109.9, 58.8 ppm. IR (KBr): \tilde{v}_{max} = 3405, 1605, 1467 cm⁻¹. MS (ES⁺): m/z = 315.3 [M + 1]⁺. C₂₁H₁₅FN₂ (314.36): calcd. C 80.24, H 4.81, N 8.91; found C 80.23, H 4.80, N 8.90.**

6-(4-Methylphenyl)-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (4e): Yield 0.128 g (86%), brown solid, m.p. 133–134 °C, R_f = 0.82 (EtOAc/hexane, 1:1), t_R = 13.45 min. ¹H NMR (300 MHz, [D₆]-DMSO): \delta = 10.91 (s, 1 H, ArNH), 7.79 (d, J = 7.4 Hz, 1 H, ArH), 7.38–7.30 (m, 2 H, ArH), 7.21–7.16 (m, 1 H, ArH), 7.12–7.03 (m, 4 H, ArH), 7.00–6.87 (m, 3 H, ArH), 6.67 (d, J = 1.9 Hz, 1 H, ArH), 5.79 (s, 1 H, NH), 5.41 (s, 1 H, CH), 2.23 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): \delta = 141.0, 138.5, 136.7, 136.5, 130.7, 129.8, 129.6, 128.8, 128.7, 128.5, 128.4, 127.7, 127.2, 125.6, 125.3, 123.3, 121.7, 117.1, 116.9, 109.8, 59.5, 20.6 ppm. IR (KBr): \tilde{v}_{max} = 3422, 2922, 1637, 1450 cm⁻¹. MS (ES⁺):** *m***/***z* **= 311.2 [M + 1]⁺. C₂₂H₁₈N₂ (310.40): calcd. C 85.13, H 5.85, N 9.03; found C 85.10, H 5.90, N 9.09.**

6-(4-Ethoxyphenyl)-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (4f**): Yield 0.142 g (87%), grey solid, m.p. 229–231 °C, $R_f = 0.83$ (EtOAc/hexane, 1:1), $t_R = 15.60$ min. ¹H NMR (200 MHz, [D₆]-DMSO): $\delta = 10.89$ (s, 1 H, ArNH), 7.79 (d, J = 7.5 Hz, 1 H, ArH), 7.38–7.29 (m, 2 H, ArH), 7.22–7.11 (m, 3 H, ArH), 7.05–6.86 (m, 3 H, ArH), 6.79 (d, J = 8.6 Hz, 2 H, ArH), 6.66 (d, J = 2.1 Hz, 1 H, ArH), 5.73 (d, J = 2.6 Hz, 1 H, NH), 5.41 (d, J = 2.1 Hz, 1 H, CH), 3.93 (q, J = 6.9 Hz, 2 H, CH₂), 1.28 (t, J = 6.9 Hz, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 157.3$, 148.5, 136.7, 136.0, 130.7, 128.9, 128.3, 127.3, 125.6, 123.3, 121.8, 121.2, 120.6, 119.7, 117.1, 113.8, 109.8, 62.8, 59.2, 14.8 ppm. IR (KBr): $\tilde{\nu}_{max} = 3177$, 1617, 1439 cm⁻¹. MS (ES⁺): m/z = 341.3 [M + 1]⁺. C₂₃H₂₀N₂O (340.42): calcd. C 81.15, H 5.92, N 8.23; found C 81.01, H 5.98, N 8.23.

2-(6,7-Dihydro-4*H***-indolo[3,4-***cd***][1]benzazepin-6-y])phenol (4g):** Yield 0.128 g (85%), green solid, m.p. 180–181 °C, $R_f = 0.80$ (EtOAc/hexane, 1:1), $t_R = 12.55$ min. ¹H NMR (200 MHz, [D₆]-DMSO): $\delta = 10.92$ (s, 1 H, ArNH), 9.65 (br. s, 1 H, OH), 7.78 (d, J = 7.1 Hz, 1 H, ArH), 7.35 (t, J = 8.1 Hz, 2 H, ArH), 7.02–6.80 (m, 5 H, ArH), 6.75–6.65 (m, 2 H, ArH), 6.54 (t, J = 7.4 Hz, 2 H, ArH), 5.74 (br. s, 1 H, NH), 5.40 (s, 1 H, CH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 154.4$, 148.3, 136.7, 130.7, 130.0, 129.1, 128.4, 128.3, 127.8, 127.2, 126.0, 123.1, 121.7, 121.5, 120.6, 118.7, 118.4, 117.1, 114.8, 109.9, 54.1 ppm. IR (KBr): $\tilde{v}_{max} = 3368$, 1611, 1467 cm⁻¹. MS (ES⁺): m/z = 313.2 [M + 1]⁺. C₂₁H₁₆N₂O (312.37): calcd. C 80.75, H 5.16, N 8.97; found C 80.73, H 5.17, N 8.95.

6-(4-Chlorophenyl)-10-methyl-6,7-dihydro-*4H***-indolo[3,4-***cd***][1]benz-azepine (5a):** Yield 0.139 g (90%), off-white solid, m.p. 150–152 °C, $R_{\rm f} = 0.76$ (EtOAc/hexane, 1:1), $t_{\rm R} = 21.35$ min. ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 10.90$ (s, 1 H, ArNH), 7.58 (s, 1 H, ArH), 7.40–7.15 (m, 7 H, ArH), 6.81 (s, 3 H, ArH), 5.86 (s, 1 H, NH), 5.48 (s, 1 H, CH), 2.24 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 145.2$, 143.2, 136.8, 131.2, 131.1, 130.7, 129.9, 129.6, 129.4, 129.0, 128.7, 128.1, 127.8, 125.6, 123.5, 121.9, 120.8, 118.5, 117.1, 109.9, 58.8, 20.5 ppm. IR (KBr): $\tilde{v}_{\rm max} = 3430$,

3171, 1649 cm⁻¹. MS (ES⁺): $m/z = 345.2 \text{ [M + 1]}^+$. C₂₂H₁₇ClN₂ (344.84): calcd. C 76.63, H 4.97, N 8.12; found C 76.50, H 5.01, N 8.00.

10-Methyl-6-(4-nitrophenyl)-6,7-dihydro-4*H***-indolo[3,4-***cd***]**[1]benzazepine (5b): Yield 0.147 g (92%), yellow solid, m.p. >250 °C, $R_{\rm f}$ = 0.74 (EtOAc/hexane, 1:1), $t_{\rm R}$ = 20.56 min. ¹H NMR (300 MHz, [D₆]DMSO): δ = 11.06 (d, J = 1.6 Hz, 1 H, ArNH), 8.18–8.15 (m, 1 H, ArH), 8.07 (d, J = 8.7 Hz, 2 H, ArH), 7.58 (d, J = 4.0 Hz, 1 H, ArH), 7.41–7.36 (m, 3 H, ArH), 7.33 (s, 1 H, ArH), 7.26–7.19 (m, 1 H, ArH), 6.96 (d, J = 2.1 Hz, 1 H, ArH), 6.78 (s, 1 H, ArH), 6.12 (d, J = 3.9 Hz, 1 H, NH), 5.67 (d, J = 3.7 Hz, 1 H, CH), 2.22 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): δ = 145.3, 143.6, 136.8, 132.3, 131.3, 130.8, 130.0, 129.8, 129.0, 128.7, 128.1, 125.6, 123.5, 121.9, 120.8, 119.7, 118.3, 117.1, 109.9, 58.8, 20.5 ppm. IR (KBr): \tilde{v}_{max} = 3434, 3188, 1704, 1610, 1517 cm⁻¹. MS (ES⁺): *m*/*z* = 356.2 [M + 1]⁺. C₂₂H₁₇N₃O₂ (355.40): calcd. C 74.35, H 4.82, N 11.82; found C 74.01, H 5.00, N 11.50.

6-(4-Bromophenyl)-10-methyl-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (5c): Yield 0.153 g (88%), white solid, m.p. 225–226 °C, R_f = 0.83 (EtOAc/hexane, 1:1), t_R = 21.78 min. ¹H NMR (300 MHz, [D₆]DMSO): \delta = 10.98 (d, J = 1.9 Hz, 1 H, ArNH), 7.84 (s, 1 H, ArH), 7.58 (s, 1 H, ArH), 7.41–7.36 (m, 3 H, ArH), 7.31 (d, J = 7.8 Hz, 1 H, ArH), 7.19 (t, J = 7.8 Hz, 1 H, ArH), 7.12 (d, J = 8.4 Hz, 2 H, ArH), 6.80 (s, 2 H, ArH), 5.87 (d, J = 3.4 Hz, 1 H, NH), 5.46 (d, J = 3.2 Hz, 1 H, CH), 2.24 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): \delta = 152.2, 146.1, 144.6, 136.8, 130.7, 130.6, 130.0, 129.2, 128.9, 128.7, 128.2, 125.6, 124.3, 123.1, 121.9, 121.2, 117.3, 117.2, 110.0, 58.6, 20.5 ppm. IR (KBr): \tilde{v}_{max} = 3422, 3174, 1579 cm⁻¹. MS (ES⁺): m/z = 389.2 [M + 1]⁺. C₂₂H₁₇BrN₂ (389.29): calcd. C 67.88, H 4.40, N 7.20; found C 67.50, H 4.81, N 6.88.**

6-(4-Fluorophenyl)-10-methyl-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (5d): Yield 0.128 g (87%), light blue solid, m.p. 144–146 °C, R_{\rm f} = 0.20 (1:4 EtOAc/hexane), t_{\rm R} = 19.90 min. ¹H NMR (300 MHz, [D₆]DMSO): \delta = 10.91 (s, 1 H, ArNH), 7.59 (s, 1 H, ArH), 7.38 (d, J = 7.4 Hz, 1 H, ArH), 7.31 (d, J = 7.8 Hz, 1 H, ArH), 7.24–7.16 (m, 3 H, ArH), 7.04 (t, J = 8.8 Hz, 2 H, ArH), 6.85–6.79 (m, 2 H, ArH), 6.73 (d, J = 1.8 Hz, 1 H, ArH), 5.71 (d, J = 2.8 Hz, 1 H, NH), 5.45 (d, J = 2.4 Hz, 1 H, CH), 2.25 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): \delta = 145.6, 140.4, 140.3, 136.7, 130.7, 129.8, 129.6, 129.0, 128.7, 128.1, 125.6, 123.4, 121.8, 120.75, 119.0, 117.1, 114.8, 114.4, 109.9, 58.9, 20.5 ppm. IR (KBr): \hat{v}_{\rm max} = 3172, 1606, 1501 cm⁻¹. MS (ES⁺):** *m***/***z* **= 329.2 [M + 1]⁺. C₂₂H₁₇FN₂ (328.39): calcd. C 80.47, H 5.22, N 8.53; found C 80.50, H 5.12, N 8.61.**

10-Methyl-6-(4-methylphenyl)-6,7-dihydro-4H-indolo[3,4-*cd***]**[1]benzazepine (5e): Yield 0.122 g (84%), brown solid, m.p. 140–142 °C, R_f = 0.80 (EtOAc/hexane, 1:1), t_R = 20.56 min. ¹H NMR (300 MHz, [D₆]DMSO): δ = 10.86 (s, 1 H, ArNH), 7.60 (s, 1 H, ArH), 7.39– 7.29 (m, 2 H, ArH), 7.21–7.03 (m, 5 H, ArH), 6.87–6.82 (m, 2 H, ArH), 6.65 (s, 1 H, ArH), 5.59 (s, 1 H, NH), 5.36 (s, 1 H, CH), 2.25 (s, 3 H, CH₃), 2.24 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): δ = 145.9, 141.1, 136.7, 135.7, 130.8, 129.6, 128.9, 128.6, 128.0, 127.8, 125.6, 123.4, 121.7, 120.6, 119.5, 117.0, 109.8, 59.6, 20.7, 20.5 ppm. IR (KBr): \tilde{v}_{max} = 3428, 2930, 2359, 1657 cm⁻¹. MS (ES⁺): *m*/*z* = 325.3 [M + 1]⁺. C₂₃H₂₀N₂ (324.42): calcd. C 85.15, H 6.21, N 8.63; found C 85.10, H 6.27, N 8.50.

6-(4-Ethoxyphenyl)-10-methyl-6,7-dihydro-4H-indolo[3,4-*cd*][1]benzazepine (5f): Yield 0.137 g (86%), brown solid, m.p. 182–183 °C, $R_{\rm f}$ = 0.73 (EtOAc/hexane, 1:1), $t_{\rm R}$ = 22.27 min. ¹H NMR (300 MHz, [D₆]DMSO): δ = 10.83 (d, *J* = 1.9 Hz, 1 H, ArNH), 7.58 (s, 1 H, ArH), 7.36 (d, *J* = 7.4 Hz, 1 H, ArH), 7.30 (d, *J* = 7.7 Hz, 1 H, ArH), 7.18 (t, J = 7.7 Hz, 1 H, ArH), 7.09 (d, J = 8.5 Hz, 2 H, ArH), 6.81 (s, 2 H, ArH), 6.76 (d, J = 8.6 Hz, 2 H, ArH), 6.64 (d, J = 2.0 Hz, 1 H, ArH), 5.50 (d, J = 2.0 Hz, 1 H, NH), 5.34 (s, 1 H, CH), 3.93 (q, J = 6.9 Hz, 2 H, CH₂), 2.23 (s, 3 H, CH₃), 1.26 (t, J = 6.9 Hz, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 157.5$, 146.0, 136.9, 136.3, 131.0, 130.0, 129.1, 128.9, 128.4, 125.9, 123.6, 122.0, 120.8, 119.9, 117.3, 114.0, 110.1, 63.1, 59.5, 20.7, 14.9 ppm. IR (KBr): $\tilde{v}_{max} = 3183$, 1610, 1460 cm⁻¹. MS (ES⁺): m/z = 355.3 [M + 1]⁺. C₂₄H₂₂N₂O (354.45): calcd. C 81.33, H 6.26, N 7.90; found C 81.37, H 6.21, N 7.85.

N,*N*-Dimethyl-4-(10-methyl-6,7-dihydro-4*H*-indolo[3,4-*cd*][1]benzazepin-6-yl)aniline (5g): Yield 0.132 g (83%), orange yellow solid, m.p. 197–199 °C, $R_f = 0.60$ (EtOAc/hexane, 1:1), $t_R = 21.13$ min. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 10.83$ (s, 1 H, ArNH), 7.61 (s, 1 H, ArH), 7.37 (d, J = 7.3 Hz, 1 H, ArH), 7.29 (d, J = 7.8 Hz, 1 H, ArH), 7.17 (t, J = 7.7 Hz, 1 H, ArH), 7.07 (d, J = 8.6 Hz, 2 H, ArH), 6.91–6.82 (m, 2 H, ArH), 6.63 (d, J = 8.7 Hz, 2 H, ArH), 6.58 (s, 1 H, ArH), 5.40 (s, 1 H, NH), 5.23 (s, 1 H, CH), 2.84 [s, 6 H, N(CH₃)₂], 2.26 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]-DMSO): $\delta = 145.5$, 143.9, 136.9, 130.6, 130.0, 128.8, 127.2, 124.9, 123.6, 122.8, 119.1, 117.7, 113.9, 112.9, 112.7, 111.1, 58.6, 20.8, 20.0 ppm. IR (KBr): $\tilde{v}_{max} = 3435$, 2844, 1672, 1604 cm⁻¹. MS (ES⁺): *m*/*z* = 354.3 [M + 1]⁺. C₂₄H₂₃N₃ (353.47): calcd. C 81.55, H 6.56, N 11.89; found C 81.49, H 6.62, N 11.85.

6-Ethyl-10-methyl-6,7-dihydro-4*H***-indolo[3,4-***cd***][1]benzazepine (5h):** Yield 0.053 g (45%), yellow liquid, $R_f = 0.38$ (EtOAc/hexane, 2:8), $t_R = 20.03$ min. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 10.84$ (s, 1 H, ArNH), 7.63 (s, 1 H, ArH), 7.34 (d, J = 4.7 Hz, 1 H, ArH), 7.27 (d, J = 7.5 Hz, 1 H, ArH), 7.18–7.15 (m, 1 H, ArH), 7.09 (d, J = 2.0 Hz, 1 H, ArH), 6.98–6.91 (m, 2 H, ArH), 5.44 (s, 1 H, NH), 4.13 (t, J = 4.8 Hz, 1 H, CH), 2.30 (s, 3 H, CH₃), 1.62–1.53 (m, 2 H, CH₂), 0.97 (t, J = 7.2 Hz, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 145.3$, 136.6, 130.7, 129.2, 128.9, 128.5, 128.0, 125.4, 123.0, 121.5, 119.8, 119.0, 116.7, 109.5, 56.9, 29.2, 20.4, 10.9 ppm. IR (neat): $\tilde{v}_{max} = 3423$, 2930, 1649 cm⁻¹. MS (ES⁺): *m*/*z* = 263.3 [M + 1]⁺. C₁₈H₁₈N₂ (262.35): calcd. C 82.41, H 6.92, N 10.68; found C 81.03, H 6.30, N 11.00.

6-*tert*-**Butyl-10**-**methyl-6**,7-**dihydro**-4*H*-**indolo**[**3**,4-*cd*][**1**]**be**nzazepine (**5**): Yield 0.070 g (54%), brown solid, m.p. 112–113 °C, $R_{\rm f} = 0.38$ (EtOAc/hexane, 2:8), $t_{\rm R} = 19.23$ min. ¹H NMR (300 MHz, [D₆]-DMSO): $\delta = 10.90$ (s, 1 H, ArNH), 7.57 (s, 1 H, ArH), 7.34–7.24 (m, 2 H, ArH), 7.15–7.06 (m, 2 H, ArH), 6.91 (s, 2 H, ArH), 5.74 (d, J = 4.2 Hz, 1 H, NH), 4.05 (s, 1 H, CH), 2.28 (s, 3 H, CH₃), 0.77 [s, 9 H, (CH₃)₃] ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 145.4$, 136.4, 130.7, 128.6, 128.4, 128.3, 126.6, 122.5, 121.5, 121.2, 116.7, 115.8, 109.4, 64.6, 27.7, 20.4 ppm. IR (KBr): $\tilde{v}_{\rm max} = 3407$, 2949, 1618, 1479 cm⁻¹. MS (ES⁺): m/z = 291.3 [M + 1]⁺. C₂₀H₂₂N₂ (290.41): calcd. C 82.72, H 7.64, N 9.65; found C 83.01, H 6.50, N 8.75.

6-(4-Chlorophenyl)-6,7-dihydro-4H-3,4,7-triazadibenzo[*cd*,*f*]azulene (6a): Yield 0.142 g (90%), pale yellow solid, m.p. >250 °C, $R_f = 0.13$ (EtOAc/hexane, 1:1), $t_R = 14.26$ min. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 11.50$ (d, J = 1.5 Hz, 1 H, ArNH), 8.26 (d, J = 5.2 Hz, 1 H, ArH), 7.91 (d, J = 7.4 Hz, 1 H, ArH), 7.40 (d, J = 5.4 Hz, 1 H, ArH), 7.27 (d, J = 8.5 Hz, 2 H, ArH), 7.17 (d, J = 8.4 Hz, 2 H, ArH), 7.14–7.09 (m, 1 H, ArH), 7.00–6.91 (m, 3 H, ArH), 6.33 (d, J = 3.7 Hz, 1 H, NH), 5.57 (d, J = 3.4 Hz, 1 H, CH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 149.3$, 148.8, 143.2, 142.5, 137.9, 131.2, 129.5, 129.3, 128.2, 128.0, 126.0, 123.7, 121.1, 120.4, 117.8, 116.8, 111.8, 58.1 ppm. IR (KBr): $\tilde{v}_{max} = 2867$, 1598, 1461 cm⁻¹. MS (ES⁺): *m*/*z* = 332.3 [M + 1]⁺. C₂₀H₁₄CIN₃

(331.80): calcd. C 72.40, H 4.25, N 12.66; found C 71.10, H 4.50, N 12.80.

6-(4-Bromophenyl)-6,7-dihydro-4*H***-3,4,7-triazadibenzo**[*cd*,*f*]azulene **(6b):** Yield 0.163 g (91%), yellow solid, m.p. >250 °C, $R_f = 0.16$ (EtOAc/hexane, 1:1), $t_R = 13.49$ min. ¹H NMR (300 MHz, [D₆]-DMSO): $\delta = 11.49$ (s, 1 H, ArNH), 8.26 (d, J = 5.2 Hz, 1 H, ArH), 7.91 (d, J = 7.5 Hz, 1 H, ArH), 7.42–7.39 (m, 3 H, ArH), 7.11 (d, J = 8.3 Hz, 3 H, ArH), 6.99–6.91 (m, 3 H, ArH), 6.32 (d, J = 3.6 Hz, 1 H, NH), 5.55 (d, J = 3.4 Hz, 1 H, CH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 149.4$, 148.8, 143.3, 142.9, 137.9, 130.9, 129.9, 129.4, 128.3, 126.0, 123.8, 121.3, 120.5, 119.9, 117.8, 116.7, 111.9, 58.2 ppm. IR (KBr): $\tilde{v}_{max} = 3438$, 3100, 2867, 1593, 1465 cm⁻¹. MS (ES⁺): m/z = 376.3 [M + 1]⁺. C₂₀H₁₄BrN₃ (376.25): calcd. C 63.84, H 3.75, N 11.17; found C 64.40, H 3.95, N 12.20.

6-(4-Nitrophenyl)-6,7-dihydro-4*H***-3,4,7-triazadibenzo[***cd***,***f***]azulene (6c): Yield 0.154 g (94%), yellow solid, m.p. >250 °C, R_{\rm f} = 0.12 (EtOAc/hexane, 1:1), t_{\rm R} = 12.98 min. ¹H NMR (200 MHz, [D₆]-DMSO): \delta = 11.56 (br. s, 1 H, ArNH), 8.27 (d, J = 4.0 Hz, 1 H, ArH), 8.06 (d, J = 7.1 Hz, 2 H, ArH), 7.90 (d, J = 7.7 Hz, 1 H, ArH), 7.38 (d, J = 8.0 Hz, 3 H, ArH), 7.10 (s, 2 H, ArH), 6.94 (d, J = 7.1 Hz, 2 H, ArH), 6.53 (s, 1 H, NH), 5.74 (s, 1 H, CH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): \delta = 151.3, 149.5, 148.2, 146.2, 143.4, 137.8, 129.5, 128.9, 128.3, 126.2, 123.7, 123.2, 121.5, 120.9, 117.8, 115.7, 111.9, 58.1 ppm. IR (KBr): \tilde{v}_{\rm max} = 3343, 3102, 1595, 1510 cm⁻¹. MS (ES⁺): m/z = 343.3 [M + 1]⁺. C₂₀H₁₄N₄O₂ (342.36): calcd. C 70.17, H 4.12, N 16.37; found C 71.10, H 3.98, N 18.12.**

2-(6,7-Dihydro-4*H***-3,4,7-triazadibenzo[***cd***,***f***]azulen-6-yl)phenol (6d):** Yield 0.129 g (86%), light pink solid, m.p. 235–238 °C, $R_f = 0.10$ (EtOAc/hexane, 1:1), $t_R = 11.20$ min. ¹H NMR (300 MHz, [D₆]-DMSO): $\delta = 11.42$ (s, 1 H, ArNH), 9.73 (s, 1 H, OH), 8.26 (s, 1 H, ArH), 7.92 (d, J = 7.4 Hz, 1 H, ArH), 7.41 (d, J = 5.2 Hz, 1 H, ArH), 7.12–6.83 (m, 6 H, ArH), 6.63–6.52 (m, 2 H, ArH), 5.79 (d, J = 2.1 Hz, 1 H, NH), 5.69 (s, 1 H, CH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 154.5$, 149.3, 143.1, 137.9, 129.5, 129.2, 128.2, 128.0, 126.0, 123.5, 121.3, 120.1, 118.7, 117.0, 114.9, 53.6 ppm. IR (KBr): $\tilde{v}_{max} = 3042$, 1592 cm⁻¹. MS (ES⁺): m/z = 314.3 [M + 1]⁺. C₂₀H₁₅N₃O (313.36): calcd. C 76.66, H 4.82, N 13.41; found C 76.68, H 4.83, N 13.39.

6-(3,4-Dimethoxyphenyl)-6,7-dihydro-4*H***-3,4,7-triazadibenzo**[*cd*,*f*]**azulene (6e):** Yield 0.133 g (85%), yellow solid, m.p. 150–152 °C, $R_{\rm f}$ = 0.13 (EtOAc/hexane, 1:1), $t_{\rm R}$ = 11.87 min. ¹H NMR (300 MHz, [D₆]DMSO): δ = 11.42 (s, 1 H, ArNH), 8.24 (d, *J* = 5.2 Hz, 1 H, ArH), 7.92 (d, *J* = 7.8 Hz, 1 H, ArH), 7.39 (d, *J* = 5.4 Hz, 1 H, ArH), 7.16–7.05 (m, 2 H, ArH), 6.99–6.92 (m, 2 H, ArH), 6.88 (d, *J* = 1.9 Hz, 1 H, ArH), 6.71 (d, *J* = 8.2 Hz, 1 H, ArH), 6.59–6.56 (m, 1 H, ArH), 6.12 (d, *J* = 2.8 Hz, 1 H, NH), 5.44 (d, *J* = 2.3 Hz, 1 H, CH), 3.34 (s, 6 H, 2×OCH₃) ppm. ¹³C NMR (75 MHz, [D₆]-DMSO): δ = 156.7, 149.3, 146.2, 140.0, 142.5, 136.9, 133.3, 130.5, 125.6, 124.0, 120.9, 117.9, 116.4, 113.3, 112.0, 111.6, 59.5, 55.9 ppm. IR (KBr): \tilde{v}_{max} = 3117, 2834, 1594 cm⁻¹. MS (ES⁺): *m*/*z* = 358.3 [M + 1]⁺. C₂₂H₁₉N₃O₂ (357.41): calcd. C 73.93, H 5.36, N 11.76; found C 73.93, H 5.36, N 11.76.

6-(4-Fluorophenyl)-6,7-dihydro-4*H***-3,4,7-triazadibenzo**[*cd*,*f*]azulene (**6f**): Yield 0.145 g (88%), yellow solid, m.p. >250 °C, $R_{\rm f}$ = 0.14 (EtOAc/hexane, 1:1), $t_{\rm R}$ = 13.15 min. ¹H NMR (200 MHz, [D₆]-DMSO): δ = 11.47 (br. s, 1 H, ArNH), 8.25 (d, J = 5.3 Hz, 1 H, ArH), 7.91 (d, J = 7.8 Hz, 1 H, ArH), 7.40 (d, J = 5.5 Hz, 1 H, ArH), 7.25–7.16 (m, 2 H, ArH), 7.12–6.97 (m, 4 H, ArH), 6.92–6.91 (m, 2 H, ArH), 6.25 (d, J = 3.5 Hz, 1 H, NH), 5.55 (d, J = 3.0 Hz, 1 H, CH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): δ = 149.4, 149.0, 143.2, 139.7, 137.9, 129.6, 129.5, 129.3, 128.2, 125.9, 123.6, 121.2, 120.3, 117.8, 117.3, 114.8, 114.5, 111.7, 58.2 ppm. IR

(KBr): \tilde{v}_{max} = 3125, 2875, 1595 cm⁻¹. MS (ES⁺): *m*/*z* = 316.4 [M + 1]⁺. C₂₀H₁₄FN₃ (315.35): calcd. C 76.18, H 4.47, N 13.33; found C 76.23, H 4.38, N 13.35.

6-(4-Chlorophenyl)-10-methyl-6,7-dihydro-4H-3,4,7-triazadibenzo-[*cd,f*]azulene (7a): Yield 0.137 g (89%), brown solid, m.p. >250 °C, $R_{\rm f} = 0.16$ (EtOAc/hexane, 1:1), $t_{\rm R} = 15.14$ min. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 11.44$ (s, 1 H, ArNH), 8.25 (d, J = 5.2 Hz, 1 H, ArH), 7.71 (s, 1 H, ArH), 7.40 (d, J = 5.4 Hz, 1 H, ArH), 7.27 (d, J = 8.4 Hz, 2 H, ArH), 7.16 (d, J = 8.4 Hz, 2 H, ArH), 6.98–6.86 (m, 3 H, ArH), 6.14 (d, J = 3.7 Hz, 1 H, NH), 5.52 (d, J = 3.4 Hz, 1 H, CH), 2.25 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 149.4$, 146.2, 143.1, 142.6, 137.9, 131.2, 130.2, 129.7, 129.5, 128.4, 127.9, 125.9, 123.7, 120.3, 117.8, 116.9, 111.7, 58.1, 20.2 ppm. IR (KBr): $\tilde{v}_{\rm max} = 3141$, 2861, 1590, 1466 cm⁻¹. MS (ES⁺): m/z = 346.3 [M + 1]⁺. C₂₁H₁₆ClN₃ (345.83): calcd. C 72.93, H 4.66, N 12.15; found C 72.93, H 4.66, N 12.15

6-(4-Bromophenyl)-10-methyl-6,7-dihydro-4H-3,4,7-triazadibenzo-[*cd,***f**]azulene (7b): Yield 0.152 g (87%), white solid, m.p. >250 °C, $R_{\rm f} = 0.16$ (EtOAc/hexane, 1:1), $t_{\rm R} = 14.21$ min. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 11.45$ (s, 1 H, ArNH), 8.25 (d, J = 5.2 Hz, 1 H, ArH), 7.71 (s, 1 H, ArH), 7.41–7.38 (m, 3 H, ArH), 7.10 (d, J = 8.3 Hz, 2 H, ArH), 6.97–6.85 (m, 3 H, ArH), 6.15 (d, J = 3.3 Hz, 1 H, NH), 5.51 (d, J = 3.2 Hz, 1 H, CH), 2.25 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): $\delta = 149.4$, 146.2, 143.1, 143.0, 137.9, 130.8, 130.2, 129.9, 129.8, 128.4, 125.9, 123.7, 120.3, 119.8, 117.8, 116.7, 111.7, 58.1, 20.2 ppm. IR (KBr): $\tilde{v}_{max} = 3141$, 2864, 1583, 1468 cm⁻¹. MS (ES⁺): *m*/*z* = 390.3 [M + 1]⁺. C₂₁H₁₆BrN₃ (390.28): calcd. C 64.63, H 4.13, N 10.77; found C 64.70, H 4.08, N 10.74.

10-Methyl-6-(4-nitrophenyl)-6,7-dihydro-4H-3,4,7-triazadibenzo-[*cd,f*]azulene (7c): Yield 0.144 g (90%), yellow solid, m.p. >250 °C, $R_{\rm f} = 0.12$ (EtOAc/hexane, 1:1), $t_{\rm R} = 15.35$ min. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 11.54$ (s, 1 H, ArNH), 8.28–8.24 (m, 1 H, ArH), 8.07 (d, J = 8.6 Hz, 2 H, ArH), 7.71 (s, 1 H, ArH), 7.44–7.36 (m, 3 H, ArH), 7.10 (d, J = 2.0 Hz, 1 H, ArH), 6.92 (d, J = 8.1 Hz, 1 H, ArH), 6.84 (d, J = 8.0 Hz, 1 H, ArH), 6.38 (d, J = 4.2 Hz, 1 H, NH), 5.70 (d, J = 3.8 Hz, 1 H, ArH), 6.38 (d, J = 4.2 Hz, 1 H, NH), 5.70 (d, J = 3.8 Hz, 1 H, CH), 2.23 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 151.6$, 149.5, 146.4, 145.8, 143.5, 138.1, 130.8, 130.5, 130.3, 128.9, 128.7, 126.3, 124.4, 124.0, 123.9, 123.3, 120.9, 117.9, 115.9, 58.2, 20.4 ppm. IR (KBr): $\hat{v}_{max} = 2862$, 2361, 1590, 1510 cm⁻¹. MS (ES⁺): *m*/*z* = 357.3 [M + 1]⁺. C₂₁H₁₆N₄O₂ (356.38): calcd. C 70.77, H 4.53, N 15.72; found C 70.74, H 4.58, N 15.74.

6-(4-Fluorophenyl)-10-methyl-6,7-dihydro-4H-3,4,7-triazadibenzo-[*cd,f*]azulene (7d): Yield 0.130 g (88%), brown solid, m.p. >250 °C, $R_{\rm f} = 0.16$ (EtOAc/hexane, 1:1), $t_{\rm R} = 14.98$ min. ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 11.47$ (s, 1 H, ArNH), 8.25 (d, J = 5.2 Hz, 1 H, ArH), 7.71 (s, 1 H, ArH), 7.40 (d, J = 5.5 Hz, 1 H, ArH), 7.25–7.19 (m, 2 H, ArH), 7.04 (t, J = 8.9 Hz, 2 H, ArH), 6.91 (m, 3 H, ArH), 6.12 (d, J = 3.8 Hz, 1 H, NH), 5.51 (d, J = 3.0 Hz, 1 H, CH), 2.25 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 149.4$, 146.5, 143.1, 139.8, 137.8, 130.1, 129.7, 129.6, 129.5, 128.4, 125.9, 123.7, 120.2, 117.8, 117.4, 114.8, 114.5, 111.7, 58.3, 20.2 ppm. IR (KBr): $\tilde{v}_{\rm max} = 3141$, 2873, 1639, 1441 cm⁻¹. MS (ES⁺): m/z = 330.4 [M + 1]⁺. C₂₁H₁₆FN₃ (329.38): calcd. C 76.58, H 4.90, N 12.76; found C 76.60, H 4.83, N 12.71.

6-(4-Ethoxyphenyl)-10-methyl-6,7-dihydro-4*H***-3,4,7-triazadibenzo-**[*cd*,*f*]azulene (7e): Yield 0.137 g (86%), pale yellow solid, m.p. >250 °C, $R_f = 0.16$ (EtOAc/hexane, 1:1), $t_R = 13.57$ min. ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 11.39$ (s, 1 H, ArNH), 8.24 (d, J = 5.2 Hz, 1 H, ArH), 7.71 (s, 1 H, ArH), 7.39 (d, J = 5.4 Hz, 1 H, ArH), 7.09 (d, J = 8.6 Hz, 2 H, ArH), 6.93 (s, 2 H, ArH), 6.82–

6.75 (m, 3 H, ArH), 5.95 (d, J = 2.6 Hz, 1 H, NH), 5.40 (d, J = 2.2 Hz, 1 H, CH), 3.93 (q, J = 6.9 Hz, 2 H, CH₂), 2.26 (s, 3 H, CH₃), 1.27 (t, J = 6.9 Hz, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 157.3$, 149.4, 146.9, 143.0, 138.0, 135.5, 130.1, 129.6, 128.8, 128.4, 125.8, 123.7, 120.0, 118.1, 117.9, 113.8, 111.7, 62.8, 58.6, 20.3, 14.7 ppm. IR (KBr): $\tilde{v}_{max} = 3133$, 2900, 1593, 1465 cm⁻¹. MS (ES⁺): m/z = 356.3 [M + 1]⁺. C₂₃H₂₁N₃O (355.44): calcd. C 77.72, H 5.96, N 11.82; found C 77.69, H 5.94, N 11.88.

10-Methyl-6-(4-methylphenyl)-6,7-dihydro-4*H***-3,4,7-triazadibenzo-**[*cd,f***]azulene (7f):** Yield 0.124 g (85%), yellow solid, m.p. >250 °C, $R_f = 0.29$ (EtOAc/hexane, 1:1), $t_R = 14.53$ min. ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 11.40$ (s, 1 H, ArNH), 8.24 (d, J = 5.2 Hz, 1 H, ArH), 7.71 (s, 1 H, ArH), 7.39 (d, J = 5.4 Hz, 1 H, ArH), 7.10–7.00 (m, 4 H, ArH), 6.92 (s, 2 H, ArH), 6.84 (d, J = 2.2 Hz, 1 H, ArH), 6.00 (d, J = 3.3 Hz, 1 H, NH), 5.43 (d, J = 3.0 Hz, 1 H, CH), 2.25 (s, 3 H, CH₃), 2.22 (s, 3 H, CH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 149.4$, 146.8, 143.0, 140.6, 138.0, 135.8, 130.1, 129.6, 128.6, 128.4, 127.6, 125.8, 123.7, 120.0, 117.8, 111.6, 58.8, 20.6, 20.3 ppm. IR (KBr): $\tilde{v}_{max} = 3117$, 2900, 1588, 1464 cm⁻¹. MS (ES⁺): *m*/*z* = 326.3 [M + 1]⁺. C₂₂H₁₉N₃ (325.41): calcd. C 81.20, H 5.89, N 12.91; found C 81.25, H 5.83, N 12.87.

6-(4-Chlorophenyl)-6,7-dihydro-4*H***-pyrido**[2',3':6,7]azepino[3,4,5*cd***]**indole (8a): Yield 0.144 g (91%), light yellow solid, m.p. 180– 181 °C, $R_{\rm f}$ = 0.60 (EtOAc/hexane, 1:1), $t_{\rm R}$ = 14.87 min. ¹H NMR (300 MHz, [D₆]DMSO): δ = 11.07 (d, J = 1.6 Hz, 1 H, ArNH), 8.15–8.05 (m, 1 H, ArH), 8.06 (d, J = 7.6 Hz, 1 H, ArH), 7.40 (d, J = 7.4 Hz, 1 H, ArH), 7.30–7.20 (m, 4 H, ArH), 7.15 (d, J = 8.4 Hz, 2 H, ArH), 7.03–6.99 (m, 1 H, ArH), 6.96 (d, J = 2.2 Hz, 1 H, ArH), 6.30 (d, J = 3.7 Hz, 1 H, NH), 5.60 (d, J = 3.5 Hz, 1 H, CH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): δ = 143.8, 143.0, 141.4, 136.8, 131.6, 131.5, 131.3, 129.9, 129.5, 128.9, 128.7, 128.0, 125.4, 122.0, 121.5, 118.7, 117.3, 111.0, 57.7 ppm. IR (KBr): $\tilde{v}_{\rm max}$ = 3250, 2930, 1598, 1423 cm⁻¹. MS (ES⁺): m/z = 332.3 [M + 1]⁺. C₂₀H₁₄CIN₃ (331.80): calcd. C 72.40, H 4.25, N 12.66; found C 72.43, H 4.21, N 12.65.

6-(4-Bromophenyl)-6,7-dihydro-4*H***-pyrido[2',3':6,7]azepino[3,4,5***cd***]indole (8b): Yield 0.167 g (93%), orange solid, m.p. 135–137 °C, R_{\rm f} = 0.77 (EtOAc/hexane, 1:1), t_{\rm R} = 15.45 min. ¹H NMR (300 MHz, [D₆]DMSO): \delta = 11.07 (d, J = 2.0 Hz, 1 H, ArNH), 8.14 (dd, J = 4.3, 1.4 Hz, 1 H, ArH), 8.06 (dd, J = 7.4, 0.6 Hz, 1 H, ArH), 7.42–7.38 (m, 3 H, ArH), 7.28 (dd, J = 8.0, 1.4 Hz, 1 H, ArH), 7.23 (d, J = 7.8 Hz, 1 H, ArH), 7.10 (d, J = 8.4 Hz, 2 H, ArH), 7.04–6.99 (m, 1 H, ArH), 6.95 (d, J = 2.3 Hz, 1 H, ArH), 6.31 (d, J = 3.8 Hz, 1 H, NH), 5.58 (d, J = 3.7 Hz, 1 H, CH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): \delta = 145.2, 143.8, 143.4, 141.3, 136.8, 131.6, 131.4, 130.9, 129.8, 128.8, 128.6, 125.3, 122.0, 121.5, 121.3, 119.8, 118.6, 117.2, 111.0, 57.7 ppm. IR (KBr): \tilde{v}_{max} = 3254, 2930, 1585, 1423 cm⁻¹. MS (ES⁺): m/z = 376.4 [M + 1]⁺. C₂₀H₁₄BrN₃ (376.25): calcd. C 63.84, H 3.75, N 11.17; found C 63.81, H 3.76, N 11.13.**

6-(4-Nitrophenyl)-6,7-dihydro-4H-pyrido[2',3':6,7]azepino[3,4,5*cd*]indole (8c): Yield 0.155 g (95%), brown solid, m.p. 206–209 °C, $R_f = 0.43$ (EtOAc/hexane, 1:1), $t_R = 15.89$ min. ¹H NMR (200 MHz, [D₆]DMSO): $\delta = 11.16$ (s, 1 H, ArNH), 8.31 (s, 1 H, ArH), 8.10–8.06 (m, 3 H, ArH), 7.44–7.35 (m, 3 H, ArH), 7.24 (t, J = 7.7 Hz, 2 H, ArH), 7.07–6.97 (m, 2 H, ArH), 6.52 (d, J =4.3 Hz, 1 H, NH), 5.78 (d, J = 4.1 Hz, 1 H, CH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 151.8$, 146.2, 145.4, 143.3, 141.5, 136.8, 131.5, 131.4, 130.2, 129.9, 128.8, 125.3, 123.3, 122.1, 121.7, 121.6, 118.3, 116.2, 111.2, 57.6 ppm. IR (KBr): $\tilde{v}_{max} = 3163$, 1676, 1591, 1510 cm⁻¹. MS (ES⁺): m/z = 343.3 [M + 1]⁺. C₂₀H₁₄N₄O₂ (342.36): calcd. C 70.17, H 4.12, N 16.37; found C 70.15, H 4.13, N 16.35. **6-(4-Fluorophenyl)-6,7-dihydro-4***H***-pyrido[2',3':6,7]azepino[3,4,5***cd***]indole (8d): Yield 0.135 g (90%), brown solid, m.p. 185–186 °C, R_f = 0.40 (EtOAc/hexane, 1:1), t_R = 17.07 min. ¹H NMR (300 MHz, [D₆]DMSO): \delta = 11.02 (s, 1 H, ArNH), 8.15 (dd, J = 4.3, 1.3 Hz, 1 H, ArH), 8.07 (d, J = 7.7 Hz, 1 H, ArH), 7.39 (d, J = 7.4 Hz, 1 H, ArH), 7.18 (dd, J = 8.0, 1.4 Hz, 1 H, ArH), 7.25– 7.18 (m, 3 H, ArH), 7.07–6.99 (m, 3 H, ArH), 6.88 (d, J = 1.9 Hz, 1 H, ArH), 6.20 (d, J = 3.3 Hz, 1 H, NH), 5.58 (d, J = 2.9 Hz, 1 H, CH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): \delta = 145.2, 143.9, 141.3, 136.8, 131.4, 130.4, 129.9, 129.6, 128.8, 125.4, 121.9, 121.5, 121.2, 118.6, 117.8, 114.8, 114.6, 111.0, 57.7 ppm. IR (KBr): \tilde{v}_{max} = 2925, 2363, 1647, 1609, 1435 cm⁻¹. MS (ES⁺): m/z = 316.4 [M + 1]⁺. C₂₀H₁₄FN₃ (315.35): calcd. C 76.18, H 4.47, N 13.33; found C 76.19, H 4.43, N 13.30.**

6-(4-Ethoxyphenyl)-6,7-dihydro-4*H***-pyrido**[2',3':6,7]azepino[3,4,5*cd***[indole (8e):** Yield 0.128 g (88%), orange solid, m.p. 235–236 °C, *R*_f = 0.12 (EtOAc/hexane, 1:9), *t*_R = 14.26 min. ¹H NMR (300 MHz, [D₆]DMSO): δ = 10.98 (s, 1 H, ArNH), 8.15 (dd, *J* = 4.3, 1.4 Hz, 1 H, ArH), 8.06 (dd, *J* = 7.6, 0.8 Hz, 1 H, ArH), 7.40– 7.34 (m, 2 H, ArH), 7.22 (t, *J* = 7.8 Hz, 1 H, ArH), 7.10 (d, *J* = 8.6 Hz, 2 H, ArH), 7.05–7.01 (m, 1 H, ArH), 6.82–6.76 (m, 3 H, ArH), 6.11 (s, 1 H, NH), 5.49 (s, 1 H, CH), 3.94 (q, *J* = 6.9 Hz, 2 H, CH₂), 1.28 (t, *J* = 6.9 Hz, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): δ = 157.4, 145.0, 144.4, 141.0, 136.8, 135.8, 130.3, 130.0, 128.8, 125.4, 122.0, 121.4, 121.1, 118.6, 118.4, 113.8, 111.0, 62.8, 58.0, 14.7 ppm. IR (KBr): \tilde{v}_{max} = 3145, 1611, 1403 cm⁻¹. MS (ES⁺): *m*/*z* = 342.3 [M + 1]⁺. C₂₂H₁₉N₃O (341.41): calcd. C 77.40, H 5.61, N 12.31; found C 77.43, H 5.62, N 12.33.

6-(4-Methylphenyl)-6,7-dihydro-4*H***-pyrido[2',3':6,7]azepino[3,4,5***cd***]indole (8f): Yield 0.144 g (86%), brown solid, m.p. 195–196 °C, R_f = 0.63 (EtOAc/hexane, 1:1), t_R = 17.53 min. ¹H NMR (200 MHz, [D₆]DMSO): \delta = 11.01 (s, 1 H, ArNH), 8.12–8.04 (m, 2 H, ArH), 7.40–7.17 (m, 3 H, ArH), 7.04 (s, 5 H, ArH), 6.84 (s, 1 H, ArH), 617 (s, 1 H, NH), 5.51 (s, 1 H, CH), 2.21 (s, 3 H, CH₃) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): \delta = 144.3, 140.9, 136.8, 135.8, 130.5, 129.9, 128.6, 127.6, 125.5, 121.9, 121.4, 121.1, 118.6, 118.1, 110.9, 58.3, 20.7 ppm. IR (KBr): \tilde{v}_{max} = 3414, 3258, 1579 cm⁻¹. MS (ES⁺):** *m/z* **= 312.4 [M + 1]⁺. C₂₁H₁₇N₃ (311.39): calcd. C 81.00, H 5.50, N 13.49; found C 81.03, H 5.52, N 13.45.**

2-(6,7-Dihydro-4*H***-pyrido[2',3':6,7]azepino[3,4,5-***cd***]indo1-6-yl)phenol (8g): Yield 0.127 g (85%), brown solid, m.p. 220–222 °C, R_{\rm f} = 0.50 (EtOAc/hexane, 1:1), t_{\rm R} = 13.85 min. ¹H NMR (200 MHz, [D₆]DMSO): \delta = 11.01 (d, J = 1.4 Hz, 1 H, ArNH), 9.76 (br. s, 1 H, OH), 8.14 (dd, J = 4.3, 1.4 Hz, 1 H, ArH), 8.08–8.04 (m, 1 H, ArH), 7.41–7.37 (m, 1 H, ArH), 7.29–7.19 (m, 2 H, ArH), 7.02– 6.94 (m, 2 H, ArH), 6.87–6.81 (m, 2 H, ArH), 6.59–6.51 (m, 2 H, ArH), 5.81 (d, J = 2.9 Hz, 1 H, NH), 5.69 (d, J = 3.4 Hz, 1 H, CH) ppm. ¹³C NMR (50 MHz, [D₆]DMSO): \delta = 154.4, 145.3, 144.3, 141.4, 136.8, 130.5, 129.8, 128.1, 127.8, 125.9, 121.9, 121.4, 120.9, 118.6, 117.5, 114.9, 111.0, 53.0 ppm. IR (KBr): \tilde{v}_{max} = 3155, 2938, 1625, 1410 cm⁻¹. MS (ES⁺): m/z = 314.4 [M + 1]⁺. C₂₀H₁₅N₃O (313.36): calcd. C 76.66, H 4.82, N 13.41; found C 76.67, H 4.81, N 13.43.**

6-(3,4-Dimethoxyphenyl)-6,7-dihydro-4*H***-pyrido**[2',3':6,7]azepino-[3,4,5-*cd*]indole (8h): Yield 0.148 g (87%), white solid, m.p. 236– 238 °C, $R_{\rm f}$ = 0.38 (EtOAc/hexane, 1:1), $t_{\rm R}$ = 15.01 min. ¹H NMR (200 MHz, [D₆]DMSO): δ = 11.01 (s, 1 H, ArNH), 8.16–8.03 (m, 2 H, ArH), 7.38 (d, J = 7.6 Hz, 2 H, ArH), 7.21 (t, J = 7.8 Hz, 1 H, ArH), 7.06–7.01 (m, 2 H, ArH), 6.85 (s, 1 H, ArH), 6.75 (d, J= 8.1 Hz, 1 H, ArH), 6.53 (d, J = 8.4 Hz, 1 H, ArH), 6.14 (s, 1 H, NH), 5.47 (d, J = 1.6 Hz, 1 H, CH), 3.66 (s, 6 H, 2×OCH₃) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): δ = 148.5, 147.7, 145.2, 144.3,

141.1, 136.8, 136.3, 130.5, 129.8, 125.4, 121.9, 121.3, 121.1, 119.7, 118.5, 118.3, 111.7, 111.1, 110.9, 58.4, 55.4 ppm. IR (KBr): $\tilde{v}_{max} =$ 3180, 1594, 1419 cm⁻¹. MS (ES⁺): m/z = 358.3 [M + 1]⁺. C₂₂H₁₉N₃O₂ (357.41): calcd. C 73.93, H 5.36, N 11.76; found C 73.95, H 5.33, N 11.72.

6-Ethyl-6,7-dihydro-4H-pyrido[2',3':6,7]azepino[3,4,5-cd]indole (8i): Yield 0.060 g (51%), brown solid, m.p. 148–149 °C, $R_f = 0.38$ (EtOAc/hexane, 2:8), $t_R = 15.32$ min. ¹H NMR (300 MHz, [D₆]-DMSO): $\delta = 10.91$ (s, 1 H, ArNH), 8.18 (s, 1 H, ArH), 8.04–8.01 (m, 1 H, ArH), 7.41–7.31 (m, 2 H, ArH), 7.17–7.10 (m, 3 H, ArH), 5.90 (s, 1 H, NH), 4.23 (s, 1 H, CH), 1.62–1.52 (m, 2 H, ArH), 0.92 (d, J = 3.3 Hz, 3 H, NH) ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 145.1$, 143.8, 140.8, 136.8, 130.4, 129.5, 125.0, 122.0, 121.2, 119.7, 118.7, 118.3, 110.7, 56.0, 29.7, 10.8 ppm. IR (KBr): $\tilde{v}_{max} = 3300$, 2930, 2367, 1641, 1429 cm⁻¹. MS (ES⁺): m/z = 250.3 [M + 1]⁺. C₁₆H₁₅N₃ (249.31): calcd. C 77.08, H 6.06, N 16.85; found C 76.50, H 6.70, N 16.10.

6-*tert*-**Butyl-6**,7-**dihydro**-4*H*-**pyrido**[2',3':6,7]azepino[3,4,5-cd]indole (8j): Yield 0.083 g (63%), light green solid, m.p. 174–176 °C, $R_f = 0.40$ (EtOAc/hexane, 2:8), $t_R = 14.03$ min. ¹H NMR (300 MHz, [D₆]DMSO): $\delta = 11.00$ (s, 1 H, ArNH), 8.11–8.05 (m, 2 H, ArH), 7.35–7.31 (m, 2 H, ArH), 7.18–7.06 (m, 3 H, ArH), 6.09 (d, J = 5.0 Hz, 1 H, NH), 4.13 (d, J = 5.0 Hz, 1 H, CH), 0.77 [s, 9 H, (CH₃)₃] ppm. ¹³C NMR (75 MHz, [D₆]DMSO): $\delta = 144.4$, 144.4, 139.5, 136.4, 130.4, 128.2, 126.3, 122.1, 121.9, 120.8, 118.2, 114.8, 110.5, 63.8, 27.6 ppm. IR (KBr): $\tilde{v}_{max} = 3407$, 2930, 2375, 1649 cm⁻¹. MS (ES⁺): *m*/*z* = 278.3 [M + 1]⁺. C₁₈H₁₉N₃ (277.37): calcd. C 77.95, H 6.90, N 15.15; found C 77.43, H 6.23, N 15.20.

Supporting Information (see also the footnote on the first page of this article): ¹H- and ¹³C-NMR spectra of compounds 4a–f, 5a–d, 5h, 6a–c,7a–c, 7e–f, 8b, 8e, 8g–h, 8j.

Acknowledgments

The authors are grateful to SAIF, CDRI, Lucknow for supplying spectroscopic data. M. S., P. K. A., S. K. S., A. K. M. and S. G. are grateful to the Council of Scientific and Industrial Research (CSIR), New Delhi, for fellowships.

- [1] D. J. Faulkner, *Nat. Prod. Rep.* 2001, *18*, 1–49, and references cited therein.
- a) G. Xie, J. Zimmermann, T. Meyer, J. W. Lown, Bioorg. Med. [2] Chem. Lett. 1995, 5, 497-500; b) M. S. Chambers, L. J. Street, S. Goodacre, S. C. Hobbs, P. Hunt, R. A. Jelley, V. G. Matassa, A. J. Reeve, F. Sternfeld, M. S. Beer, J. A. Stanton, D. Rathbone, A. P. Watt, A. M. MacLeod, J. Med. Chem. 1999, 42, 691-705; c) R. Faust, P. J. Garratt, R. Jones, L. Yeh, J. Med. Chem. 2000, 43, 1050-1061; d) S. L. Roach, R. I. Higuchi, M. E. Adams, Y. Liu, D. S. Karanewsky, K. B. Marschke, D. E. Mais, J. N. Miner, L. Zhi, Bioorg. Med. Chem. Lett. 2008, 18, 3504-3508; e) V. S. P. Chaturvedula, S. Sprague, J. K. Schilling, D. G. I. Kingston, J. Nat. Prod. 2003, 66, 528-531; f) Z. Zhao, S. E. Wolkenberg, M. Lu, V. Munshi, G. Moyer, M. Feng, A. V. Carella, L. T. Ecto, L. J. Gabryelski, M. Lai, S. G. Prasad, Y. Yan, G. B. McGaughey, M. D. Miller, C. W. Lindsley, G. D. Hartman, J. P. Vacca, T. M. Williams, Bioorg. Med. Chem. Lett. 2008, 18, 554-559; g) A. Scribner, J. A. Moore III, G. Ouvry, M. Fisher, M. Wyvratt, P. Leavitt, P. Liberator, A. Gurnett, C. Brown, J. Mathew, D. Thompson, D. Schmatz, T. Biftu, Bioorg. Med. Chem. Lett. 2009, 19, 1517-1521; h) K. J. Doebel, J. W. F. Wasley, J. Med. Chem. 1972, 15, 1081-1082; i) D. C. Remy, K. E. Rittle, C. A. Hunt, P. S. Anderson, E. L. Engelhardt, B. V. Clineschmidt, A. Scriabine, J. Med. Chem. 1977, 20, 1681–1684; j) M. Quintanar-Audelo, A.

Fernández-Carvajal, W. V. D. Nest, C. Carreño, A. Ferrer-Montiel, F. Albericio, *J. Med. Chem.* **2007**, *50*, 6133–6143; k) M. G. Ferlin, G. Chiarelotto, V. Gasparotto, L. D. Via, V. Pezzi, L. Barzon, G. Palù, I. Castagliuolo, *J. Med. Chem.* **2005**, *48*, 3417–3427.

- [3] a) R. Frank, *Curr. Opin. Biotechnol.* 2004, 15, 573–575, and references cited therein; b) K. Kumar, H. Waldmann, *Angew. Chem. Int. Ed.* 2009, 48, 3224–3242.
- a) V. M. Muzalevskiy, V. G. Nenajdenko, A. V. Shastin, E. S. [4] Balenkova, G. Haufe, Tetrahedron 2009, 65, 7553-7561; b) R. T. Sawant, S. B. Waghmode, Tetrahedron 2009, 65, 1599-1602; c) I. Ortín, J. F. González, E. d. l. Cuesta, C. Avendaño, Tetrahedron 2009, 65, 2201-2211; d) X. W. Liao, W. Liu, W. F. Dong, B. H. Guan, S. Z. Chen, Z. Z. Liu, Tetrahedron 2009, 65, 5709-5715; e) W. Phakhodee, P. Ploypradith, P. Sahakitpichan, S. Ruchirawat, Tetrahedron 2009, 65, 351-356; f) P. D. Bailey, M. A. Beard, T. R. Phillips, Tetrahedron Lett. 2009, 50, 3645-3647; g) X. Shi, S. Liu, W. Xu, Y. Xu, Tetrahedron: Asymmetry 2008, 19, 435-442; h) Y. Ma, S. Nam, R. Jove, K. Yakushijin, D. A. Horne, Bioorg. Med. Chem. Lett. 2010, 20, 83-86; i) A. Kulkarni, M. Abid, B. Török, X. Huang, Tetrahedron Lett. 2009, 50, 1791-1794; j) T. Ito, M. Kitajima, H. Takayama, Tetrahedron Lett. 2009, 50, 4506-4508.
- [5] P. K. Agarwal, D. Sawant, S. Sharma, B. Kundu, *Eur. J. Org. Chem.* 2009, 2, 292–303.
- [6] S. K. Sharma, S. Sharma, P. K. Agarwal, B. Kundu, Eur. J. Org. Chem. 2009, 9, 1309–1312.
- [7] a) B. Saha, S. Sharma, D. Sawant, B. Kundu, *Tetrahedron Lett.* 2007, 48, 1379–1383; b) B. Saha, S. Sharma, D. Sawant, B. Kundu, *Synlett* 2007, 1591–1594.
- [8] For a review see a) M. C. Pirrung, K. D. Sarma, *Tetrahedron* 2005, 61, 11456–11472; b) H. C. Kolb, M. G. Finn, K. B. Sharpless, *Angew. Chem. Int. Ed.* 2001, 40, 2004–2021.
- [9] D. C. Rideout, R. L. Breslow, J. Am. Chem. Soc. 1980, 102, 7816–7817.
- [10] a) S. Tiwari, A. Kumar, Angew. Chem. Int. Ed. 2006, 118, 4942–4943; b) R. Breslow, U. Maitra, Tetrahedron Lett. 1984, 25, 1239–1240; c) R. Breslow, U. Maitra, Tetrahedron Lett. 1983, 24, 1901–1904; d) H. Yanai, A. Saito, T. Taguchi, Tetrahedron 2005, 61, 7087–7093; e) S. D. Larsen, P. A. Grieco, J. Am. Chem. Soc. 1985, 107, 1768–1769.
- [11] J. Dambacher, W. Zhao, A. El-Batta, R. Anness, C. Jiang, M. Bergdahl, *Tetrahedron Lett.* 2005, 27, 4473–4477.
- [12] M. Wang, C. J. Li, Tetrahedron Lett. 2002, 43, 3589-3591.
- [13] T. P. Loh, L. L. Wei, Tetrahedron Lett. 1998, 39, 323-326.
- [14] M. K. Chaudhuri, S. Hussain, M. L. Kantamb, B. Neelimab, *Tetrahedron Lett.* 2005, 46, 8329–8331.
- [15] a) J. J. Gajewski, Acc. Chem. Res. 1997, 30, 219–225; b) P. R. Andrews, G. D. Smith, I. G. Young, Biochemistry 1973, 12, 3492–3948.
- [16] M. Bakherad, A. Keivanloo, B. Bahramian, M. Hashemi, *Tetrahedron Lett.* 2009, *50*, 1557–1559.
- [17] C. Chevrin, J. L. Bras, F. Henin, J. Muzart, *Tetrahedron Lett.* 2003, 44, 8099–8102.
- [18] D. Schönfelder, O. Nuyken, R. Weberskirch, J. Organometallic. Chem. 2005, 690, 4648–4655.
- [19] S. Kobayashi, S. Iimura, K. Manabe, *Chem. Lett.* **2002**, *31*, 10–11.
- [20] a) J. E. Klijn, J. B. F. N. Engberts, *Nature* 2005, 435, 746–747;
 b) C.-J. Li, *Chem. Rev.* 1993, 93, 2023–2035; c) K. C. Majumdar, A. Taher, S. Ponra, *Tetrahedron* 2010, 51, 147–150; d) A. Lubineau, *Chem. Ind.* 1996, 123–127; e) Z. Shen, S. Ji, T. Loh, *Tetrahedron* 2008, 64, 8159–8163; f) N. Zotova, A. Franzke, A. Armstrong, D. G. Blackmond, *J. Am. Chem. Soc.* 2007, 129, 15100–15101; g) B. Liang, M. Dai, J. Chen, Z. Yang, *J. Org. Chem.* 2005, 70, 391–393; h) F. Fringuelli, O. Piermatti, F. Pizzo, in: *Targets in Heterocyclic Systems* (Eds.: O. Attanasi, D. Spinelli), *Italian Society of Chemistry*, Rome, 1997, vol. 1, pp. 57; i) *Organic Synthesis in Water* (Ed.: P. A. Grieco), Blackie Academic and Professional, London, 1998; j) A. Me-

ijer, S. Otto, J. B. F. N. Engberts, *J. Org. Chem.* **1998**, *63*, 8989–8994, and references cited therein; k) R. Breslow, *Acc. Chem. Res.* **1991**, *24*, 159–164.

- [21] C. Reichardt, *Solvent Effects in Organic Chemistry*, Verlag Chemie, Weinheim, **1979**, pp. 1–139.
- [22] a) W. Blokzijl, J. B. F. N. Engberts, Angew. Chem. Int. Ed. Engl. 1993, 32, 1545–1579; b) T. Rispens, J. B. F. N. Engberts, J. Org. Chem. 2002, 67, 7369–7377; c) W. Blokzijl, J. B. F. N. Engberts, M. J. Blandamer, J. Am. Chem. Soc. 1990, 112, 1197–1201; d) W. Blokzijl, J. B. F. N. Engberts, J. Am. Chem. Soc. 1991, 113, 5440–5442.
- [23] J. F. Blake, W. L. Jorgensen, J. Am. Chem. Soc. 1991, 113, 7430-7432.
- [24] a) R. J. Capon, F. Rooney, L. M. Murray, E. Collins, A. T. R. Sim, J. A. P. Rostas, M. S. Butler, A. R. Carrol, J. Nat. Prod. 1998, 61, 660–662; b) A. G. Kozolovskii, T. F. Solov'eva, V. G. Sahkarovskii, V. M. Adanin, Dokl. Akad. Nauk SSSR 1981, 260, 230–233; c) S. Krishnan, J. T. Bagdanoff, D. C. Ebner, Y. K. Ramtohul, U. K. Tambar, B. M. Stoltz, J. Am. Chem. Soc. 2008, 130, 13745–13754; d) C. L. Schardl, D. G. Panacione, P. Tudzynski, Ergot alkaloids biology and molecular biology, in: The Alkaloids: Chemistry and Biology, 2006, vol. 63, pp. 45–86; e) Y. Nishizuka, Nature 1984, 308, 693–697.
- [25] a) J. Kraxner, H. Hübner, P. Gmeiner, Arch. Pharm. Pharm. Med. Chem. 2000, 333, 287–292; b) A. V. Samet, A. N. Yamskov 1, Y. A. Strelenko, V. V. Semenov, Tetrahedron 2009, 65, 6868–6872.

- [26] a) G. André, Y. Han, P. Prasit, *Tetrahedron Lett.* 1997, 38, 3841–3844; b) B. Oliver, O. Baudoin, D. Guénard, F. Guéritte, J. Org. Chem. 2000, 65, 9268–9271.
- [27] C. Thibault, A. L'Heureux, R. S. Bhide, R. Ruel, Org. Lett. 2003, 5, 5023–5025.
- [28] S. J. Connon, Angew. Chem. Int. Ed. 2008, 47, 1176-1178.
- [29] a) D. Soerens, J. Sandrin, F. Ungemach, P. Mokry, G. S. Nu, E. Yamanaka, L. Hutchkins, M. DiPierro, J. M. Cook, J. Org. Chem. 1979, 44, 535-545; b) J. Sandrin, D. Soerens, P. Mokry, J. M. Cook, Heterocycles 1977, 6, 1133-1139; c) W. M. Dai, H. J. Zhu, X. J. Hao, Tetrahedron Lett. 1996, 37, 5971-5974; d) K. M. Czerwinski, L. Deng, J. M. Cook, Tetrahedron Lett. 1994, 33, 4721-4724; e) L. H. Zhang, Y. Z. Bi, F. X. Yu, G. Menzia, J. M. Cook, Heterocycles 1992, 34, 517-547; f) F. Ungemach, M. DiPierro, R. Weber, J. M. Cook, J. Org. Chem. 1981, 46, 164-168; g) M. Jawdosiuk, J. M. Cook, J. Org. Chem. 1984, 49, 2699-2701; h) D. Bonnet, A. Ganesan, J. Comb. Chem. 2002, 4, 546-548; i) H. Wang, A. Ganesan, Org. Lett. 1999, 1, 1647-1649; j) A. Zawadzka, A. Leniewski, J. K. Maurin, K. Wojtasiewicz, Z. Czarnocki, Org. Lett. 2001, 3, 997-999; k) C. Gremmen, M. J. Wanner, G. J. Koommen, Tetrahedron Lett. 2001, 42, 8885-8888; 1) C. Gremmen, B. Willemse, M. J. Wanner, G. J. Koomen, Org. Lett. 2000, 2, 1955-1958.

Received: April 29, 2010 Published Online: July 20, 2010