Recl. Trav. Chim. Pays-Bas 114, 145–152 (1995) SSDI 0165-0513(95)00018-6 145

Full Papers

Catalytic enantioselective alkylation of aldehydes using chiral hydrogen phosphoramidates and hydrogen phosphinamides and their thio analogs

Kenso Soai *, Yoshiaki Ohno, Yukikazu Inoue, Toshihiro Tsuruoka and Yuji Hirose

Department of Applied Chemistry, Faculty of Science, Science University of Tokyo, Shinjuku, Tokyo, 162 Japan

(Received October 20, 1994)

Abstract. Chiral (enantiomerically pure) hydrogen thiophosphoramidates and hydrogen phosphoramidates and their phosphinamide analogs derived from norephedrine and other chiral (enantiomerically pure) amino alcohols catalyze the enantioselective addition of dialkylzincs to aldehydes. The presence of titanium tetraisopropoxide increases the enantioselectivity, providing enantiomerically enriched secondary alcohols with up to 98% *ee*. The enantioselectivities of thiophosphoramidates and thiophosphinamides are higher than those of the oxygen analogs. The phosphoramidates and thiophosphoramidates, without the hydroxyl group, also catalyze the addition of dialkylzinc to aldehydes in the absence of Ti($O^{i}Pr_{i}$.

Introduction

Enantioselective additions of organozinc reagents to aldehydes have attracted much attention¹. The rate of this reaction in case of dialkylzinc without catalyst is very low. It is known that dialkylzinc requires an additive such as magnesium halide to add to aldehydes in reasonable yields². Mukaiyama et al. reported the addition of diethylzinc to benzaldehyde in the presence of an amino alcohol derived from (S)-proline³. Catalytic enantioselective additions of dialkylzincs to aldehydes using chiral (enantiomerically pure) amino alcohols have also been reported⁴. We have reported the highly enantioselective addition of organozinc reagents to aldehydes using chiral (enantiomerically pure) amino alcohols⁵, piperazines⁶, ammonium salts⁷, and polymer-supported amino alcohols⁸. Other chiral (enantiomerically pure) catalysts utilized in the reaction involve, for example, 1,2-diols⁹, pyridinamines¹⁰, thiol derivatives¹¹ and pyridinol¹². We also reported the chiral automultiplication reaction using chiral (enantiomerically enriched) pyridinol¹³ and chiral (enantiomerically enriched) diol¹⁴ as asymmetric autocatalysts¹⁵. Recently, the enantioselective addition of dialkylzincs to aldehydes using chiral (enantiomerically pure) sulfonamides¹⁶ and diols¹⁷ in the presence of titanium tetraisopropoxide $[Ti(O^{i}Pr)_{4}]$ was reported.

We recently reported the enantioselective addition of dialkylzincs to phosphinylimines $[R_2P(O)N = CHR']$ in the presence of chiral (enantiomerically pure) amino alcohols. Enantiomerically enriched phosphinamides $[R_2P(O)NCHR'R'']$ with high ees ^a are subsequently obtained which, after acidic hydrolysis, afford enantiomerically enriched amines also in high ees¹⁸.

Although dialkyl thiophosphoramidate [(RO)₂P(S)NR'₂]¹⁹

and dialkylthiophosphinamide 20 are known as protecting groups of amines, enantiomerically pure phosphoramidates and phosphinamides and their thio analogs have rarely been utilized as chiral catalysts and chiral ligands for enantioselective synthesis²¹.

Here, we report the enantioselective addition of dialkylzincs to aldehydes using enantiomerically pure thiophosphoramidates, phosphoramidates, thiophosphinamides and phosphinamides as chiral catalysts in the presence of titanium tetraisopropoxide (Eqn. 1)²².

Results and discussions

The syntheses of the chiral catalysts are summarized in Scheme 1. (1S,2R)-N-(O,O-dialkylthiophosphoryl)nor-ephedrines ^b **1a,b** were prepared in 62 and 79% yields, respectively, from (1S,2R)-norephedrine and the corresponding dialkyl chlorothiophosphates in the presence of triethylamine (the by-product which was thiophosphorylated at the OH was not formed at -30° C). (1S,2R)-N-(Dimethylthiophosphinyl)- and -N-(diphenylthiophosphinyl)norephedrines 2a,b were synthesized from norephedrine and dimethyl- and diphenylthiophosphinyl chloride, respectively. (1S,2R)-N-(O,O-Dialkylphosphoryl)norephedrines 3a-c were prepared in a similar manner to 1a,b using the corresponding dialkyl chlorophosphates instead of the dialkyl chlorothiophosphates. (1S,2R)-N-(dimethylphosphinyl)- and N-(diphenylphosphinyl)norephedrines 4a,b were synthesized from dimethyl- and diphenylphosphinyl chloride, respectively. (1S,2R)-2-[(O,O-dimethylthiophosphoryl)amino]-1,2-diphenylethanol 5 was prepared from (1S,2R)-2-amino-1,2-diphenylethanol²³ using

^a *ee* = enantiomeric excess

^b Norephedrine = 2-amino-1-phenylpropan-1-ol = (*Chem. Abstr.* name) α -(1-aminoethyl)benzenemethanol.

$$R^{1}CHO + R^{2}_{2}Zn \xrightarrow{\text{Chiral catalyst 1-12}}_{Ti(O^{1}Pr)_{4}} \qquad R^{1} \xrightarrow{P} R^{2} \qquad (1)$$

Scheme 1. Synthesis of chiral catalysts

dimethyl chlorothiophosphate. Catalysts 6-11 were prepared from the corresponding amino alcohols. Catalyst 12, in which the nitrogen atom has a methyl group instead of a hydrogen atom, was derived from (1R, 2S)ephedrine ^c.

We first examined the effect of the phosphoryl $[(RO)_2P(O)_1]$ and phosphinyl $[R_2P(O)_1]$ substituents on the nitrogen atom of the norephedrine-derived chiral catalysts (5 mol%) during the enantioselective addition of diethylzinc (1.5 eq.) to benzaldehyde (1 eq.) in the presence of titanium tetraisopropoxide (1.5 eq.). The results are shown in Table I. The following conclusions can be drawn from the data in Table I. In all cases, diethylzinc attacks from the si face of benzaldehyde to afford (S)-1phenylpropan-1-ol^d. A dramatic difference was observed between the behaviors of P=S and P=O groups. Both the synthetic yield and the ee of the obtained 1-phenylpropan-1-ol are higher, using sulfur-containing chiral catalysts than using the corresponding oxygen-containing chiral catalysts (entries 2 and 3; 4 and 5; 6 and 7). The dimethylthiophosphinyl group [Me₂P(S)-] affords a higher ee (74% ee) than the diphenylthiophosphinyl group [Ph₂P(S)-] (64% ee) (entries 4 and 6). When dimethyl-(1a) and diethylthiophosphoryl (1b) groups are compared,

Table I The effect of the structure of chiral catalysts derived from norephedrine and ephedrine on the enantioselective addition of diethylzinc to benzaldehyde in the presence of titanium tetraisopropoxide.

PhCHO + Et₂Zn
$$\xrightarrow{\text{Chiral catalyst}}_{\text{Ti(O'Pr)}_4}$$
 Ph
toluene-hexane

Entry ^a	Chiral	Temp.	Time	(S)-1-Phenylpropan-1-ol		
	catalyst	(°C)	(h)	Yield (%)	ee (%) ^b	
1	1a	-35 to -20	1.3	98	93	
2	1b	-35 to -20	1.3	97	88	
3	3b	-40 to -10	2.5	89	49	
4	2a	-35 to -20	3.0	98	74	
5	4a	-35 to -10	4.0	88	25	
6	2b	-35 to -15	3.0	94	64	
7	4b	-50 to -10	5.0	88	40	
8 °	12	-40 to 0	5.0	28	1	

^a Unless otherwise noted, the molar ratio was PhCHO/Et₂Zn/ chiral-catalyst/Ti(OⁱPr)₄ = 1/1.5/0.05/1.5. A mixed solvent of toluene and hexane was used. ^b Determined by HPLC analysis using a chiral column. Daicel Chiralcel OB; 4×250 mm, 254 nm UV detector, room temperature, eluent: 3% propan-2-ol in hexane, flow rate: 0.5 ml/min, retention time (min), 19 for major (S)-isomer, 26 for minor (R)-isomer. ^c Molar ratio was PhCHO/Et₂Zn/12/ $Ti(O^{i}Pr)_{4} = 1/1.5/0.15/0.8.$

similar enantioselectivities (88 and 93% ee) were observed (entries 1 and 2). The O,O-dimethylthiophosphoryl group (1a) is more enantioselective (93% ee) than the O,O-dimethylthiophosphinyl group (2a), (74% ee, entries 1 and 4). On the other hand, when (1R, 2S)-12 (with a methyl substituent on the nitrogen atom instead of a hydrogen atom) was employed, both the yield and the ee of the obtained alcohol dropped dramatically (entry 8). Thus (1S, 2R)-1a, in which the dimethylthiophosphoryl group and the hydrogen atom on the nitrogen atom are present, was found to be a highly enantioselective chiral catalyst. We then examined the effect of the structure of the enantiomerically pure O,O-dimethylthiophosphoryl catalysts derived from various optically pure amino alcohols. The results are summarized in Table II. Chiral catalyst (1S,2R)-5 (possessing a phenyl substituent instead of the methyl substituent of catalyst 1a) is a promising candidate to afford (S)-1-phenylpropan-1-ol with a 84% ee (entry 1). Chiral catalysts (1S, 2R)-1-4 derived from norephedrine (Table I) and (1S,2R)-5 (Table II, entry 1) have two stereogenic centers and are (S)-selective. In order to clarify whether two stereogenic centers are necessary, we examined the reaction using chiral catalysts possessing one stereogenic center. Chiral catalysts (S)-6 and (R)-7 (possessing a stereogenic center at the alcohol moiety) afforded 1-phenylpropan-1-ol with 21% ee (S) and 38% ee (R), respectively (entries 2 and 3). Catalyst 7 (with the phenyl substituent) is more enantioselective than the catalyst 6 (with the methyl substituent). On the other hand,

Table II The effect of the structure of chiral catalysts derived from the corresponding enantiomerically pure aminoalcohols.

Entry ^a	Chiral	Et ₂ Zn	Temp.	Time	(S)-1-Phenylpropan-1-o	
	catalyst	(eq.)	(°C)	(h)	Yield (%)	ee (%) ^b
1	5	1.5	- 30-0	5	41	84 (S)
2	6	1.5	-30-0	5	9	21 (S)
3	7	1.5	- 30-0	5	36	38 (R)
4	8a	3	- 30	7	23	37 (R)
5	8b	3	- 30	7	27	24 (R)
6	8c	3	- 30	7	31	50 (R)
7	8d	1.5	- 30-0	5	24	53 (R)
8	9	3	- 30	7	52	32 (S)
9	11	1.5	- 30-0	5	17	18 (S)
10	10	3	- 30	7	29	33 (S)

^a PhCHO/Et₂Zn/chiral-catalyst/Ti(OⁱPr)₄ = 1/(1.5-3)/0.15/0.8. A mixed solvent of toluene and hexane was used ^b See footnote b in Table I

^c Ephedrine = 2-(methylamino)-1-phenylpropan-1-ol = (Chem. Abstr. name) α -[1-(methylamino)ethyl]benzenemethanol.

Chem. Abstr. name: α -ethylbenzenemethanol.

Table III The effect of the molar ratio of the reagents on the enantioselective addition of diethylzinc to benzaldehyde using chiral catalysts in the presence of titanium tetraisopropoxide.

Entry ^a	Et ₂ Zn	Catalyst	Ti(O ⁱ Pr) ₄	(S)-1-Phenylpropan-1-ol			
	(eg.)	(eq.)	(eq.)	Yield (%)	ee (%) ^b		
1	3.0	1a (0.15)	0.4	33	93		
2	3.0	1a (0.15)	0.8	80	96		
3	3.0	1a (0.15)	1.2	90	96		
4	3.0	1a (0.15)	1.6	83	96		
5	3.0	1a (0.05)	1.2	88	94		
6	3.0	1a (0.15)	1.2	90	95		
7	3.0	1a (0.25)	1.2	93	96		
8	3.0	1a (0.50)	1.2	88	96		
9	1.0	1a (0.15)	1.2	47	95		
10	2.0	1a (0.15)	1.2	92	95		
11	3.0	1a (0.15)	1.2	90	96		
12	4.0	1a (0.15)	1.2	93	96		
13 °	2.0	1a (0.05)	none	88	54		
14	1.5	3b (0.05)	1.5	89	49		
15	3.0	3b (0.15)	1.2	85	85		
16	3.0	3a (0.15)	1.2	43	65		
17	3.0	3c (0.15)	1.2	81	84		

^a The reactions were run in a mixed solvent of toluene and hexane at -30° C for 5 h. ^b See footnote b in Table I. ^c The reaction was run at room temperature.

among the chiral catalysts (S)-8a-d, (R)-9 and (S)-11 (with a stereogenic center bonded to the nitrogen atom; entries 4–9), 8c and 8d (with relatively bulky isobutyl and phenyl substituents) afforded (R)-1-phenylpropan-1-ol with moderate ees (entries 6 and 7). (1S,2S)-10 gave (S)-1-phenylpropan-1-ol with a low *ee* (entry 10). Chiral catalyst 1a has the same (phenyl and methyl) substituents as both 7 (phenyl) and 8a (methyl), although the configurations are opposite. Based on the results that both chiral catalysts (R)-7 and (S)-8a have the same direction of enantioselectivity affording (R)-1-phenylpropan-1-ol (Table II, entries 3 and 4), both of the stereogenic centers of (1S,2R)-1a should be (S)-selective. Thus, chiral (1S,2R)catalysts (with two stereogenic centers 1a, b and 5) are more enantioselective than those with one stereogenic center.

On the other hand, the enantioselectivity of (S)-11 (with two phenyl substituents on the alcohol moiety) is opposite that of (S)-8a.

The effect of the molar ratio of the reagents was examined for the enantioselective addition of diethylzinc to benzaldehyde using 1a and 3a-c as chiral catalysts in the presence of Ti(OⁱPr)₄. The results are summarized in Table III. As to the effect of $Ti(O'Pr)_4$, the ees of 1-phenylpropan-1-ol are high (93-96% ee) regardless of the amount of $Ti(O^{i}Pr)_{4}$ (0.4–1.6 eq.) (entries 1–4). With regard to the synthetic yield, the use of 1.2 eq. of $Ti(O^{i}Pr)_{4}$ is enough to achieve a high yield (entry 3). Thus $Ti(O^{i}Pr)_{A}$ plays an activating role. The effect of the amount of the chiral catalyst 1a (0.05 to 0.5 eq.) was examined (entries 5-8). Both yields (88-93%) and ees (94-96% ee) were almost constant regardless of the amount of 1a. The amount of Et₂Zn did affect the yield of 1-phenylpropan-1-ol (entries 9-12), although the ees were almost constant. The use of excess Et₂Zn affords 1-phenylpropan-1ol with high 95–96% ees in high yields (90–93%) (entries 10 - 12).

On the other hand, **1a** (0.05 eq.) catalyzes the addition reaction even without $Ti(O^{i}Pr)_{4}$ at room temperature to afford 1-phenylpropan-1-ol in 88% yield but with moderate *ee* (entry 13).

In addition, the use of 15 mol% O,O-dialkylphosphoryl chiral catalysts **3b**, **c** and 3 eq. of Et₂Zn dramatically increased the enantioselectivity [from 49% *ee* (entry 14; also Table I, entry 3) to up to 84–85% *ee* (Table III, entries 15 and 17)]. Among the O,O-dialkylphosphoryl

Table IV. The effect of the solvent on the enantioselective addition of diethylzinc to benzaldehyde using **la** in the presence of titanium tetraisopropoxide.

Entry ^a	Solvent	(v / v)	(S)-1-Phenylpropan-1-ol	
			Yield (%)	ee (%) ^b
1	Hexane		79	95
2	Toluene		87	96
3	Hexane-Toluene	3/2	90	96
4	THF-Hexane	2/3	70	93
5	Et ₂ O-Hexane	2/3	88	94
6	CH ₂ Cl ₂ -Hexane	2/3	86	98
7	CH ₃ CN-Hexane	2/3	91	95
8	THF-Toluene	2/3	70	94
9	Et ₂ O-Toluene	2/3	91	96
10	CH_2Cl_2 -Toluene	2/3	90	97
11	CH ₃ CN-Toluene	2/3	90	98
12 °	Benzene-Hexane	2/3	93	96
13	Benzene-Toluene	2/3	88	96

^a PhCHO/Et₂Zn/la/Ti(Oⁱ Pr)₄ = 1/3/0.15/1.2. Unless otherwise noted, the reaction temperature was -30° C. ^b See footnote b in Table 1. ^c The reaction temperature was -20° C.

chiral catalysts (3a-c), catalysts 3b, c with large ethoxy and isopropoxy substituents are more enantioselective than the small methoxy substituent in 3a (entry 16).

The effect of the solvent during the enantioselective addition of diethylzinc to benzaldehyde [using 1a as a chiral catalyst in the presence of $Ti(O'Pr)_4$ at $-30^{\circ}C$] is shown in Table IV. It should be noted that a variety of solvents, *i.e.*, hexane, toluene, benzene, THF, diethyl ether, dichloromethane and acetonitrile, afforded 1-phenylpropan-1-ol with high (94–98%) ees in good to high yields. The relatively mild reactivity of dialkylzinc made it possible to use diethyl ether, dichloromethane and acetonitrile. These solvents cannot be usually used with highly nucleophilic alkyllithium and Grignard reagents.

The effect of temperature is shown in Table V. The *ees* of 1-phenylpropan-1-ol are high when the reaction temperatures were between -60 to 0°C (entries 1–3). The *ee* slightly decreased when the reaction was run at room temperature (25°C) (entry 4).

With regard to the effect of metal alkoxides, $Ti(O^{i}Pr)_{4}$ was found to be the most efficient. During the ethylation of benzaldehyde using (1S,2R)-1a (15 mol%), in which $Ti(O^{i}Pr)_{4}$ affords (S)-1-phenylpropan-1-ol with 95% ee, aluminum(III) and zirconium(IV) isopropoxides (0.8 eq.) afforded (S)-alcohol with only 18 and 7% ee, respectively. $Ti(OEt)_{4}$ was S-enantioselective (S: 72% ee) and $Ti(O^{t}Bu)_{4}$ provided the (S)-alcohol with 54% ee. Interestingly, the enantioselectivity of boron(III) isopropoxide was the opposite (R: 26% ee).

The enantioselective addition of dialkylzincs to various aldehydes using chiral catalyst (1S,2R)-1a in the presence of Ti(OⁱPr)₄ is summarized in Table VI. Dimethylzinc afforded (S)-1-phenylethan-1-ol with 97% *ee* in 78% yield (Table VI, entry 1). The reaction rate of the present method (-30°C, 2 h) is faster than that using the enantiomerically pure amino alcohol catalyst ^{5b,e}. The enantio-

Table V The effect of temperature on the enantioselective addition of diethylzinc to benzaldehyde using chiral catalyst la in the presence of titanium tetraisopropoxide.

Entry ^a	Temperature	Time	(S)-1-Phenylpropan-1-ol		
	(°C)	(h)	Yield (%)	ee (%) ^b	
1	- 60	6	83	96	
2	- 30	5	90	96	
3	0	1.3	92	93	
4	25	1.3	86	83	

^a PhCHO/Et₂Zn/1a/Ti(OⁱPr)₄ = 1/3/0.15/1.2. A mixed solvent (hexane and toluene) was used. ^b See footnote b in Table I.

Table VI Enantioselective addition of dialkylzincs to various aldehydes using chiral catalyst **1a** in the presence of $Ti(O^iPr)_4$.

$R^{1}CHO + R_{2}^{2}Zn \xrightarrow[Hicological catalyst 1a]{Ti(O^{1}Pr)_{4}}}_{Hexane/toluene} \xrightarrow{R^{1}}_{OH}$								
	Entry ^a	R ¹ CHO	R_2^2Zn	Time (h)	Yield (%)	ее (%) ^ь	Config.	
	1	PhCHO	Me ₂ Zn	2	78	97 °	S-(-)	
	2	PhCHO	Et_2Zn	5	90	96 ^d	S-(-)	
	3	2-MeOC ₆ H₄CHO	Et_2Zn	1	85	98 °	S-(-)	
	4	(E)-PhCH=CHCHO	Et_2Zn	1	87	91 ^f	S-(-)	
	5	CH ₃ (CH ₂) ₇ CHO	Et ₂ Zn	5	45	79 ^s	S-(+)	

b ^a PhCHO/Et₂Zn/1a/Ti(OⁱPr)₄ = 1/3/0.15/1.2. Determined by HPLC analysis using chiral column (4×250 mm, 254 nm UV Daicel Chiralcel OD, room temperature, eluent: 3% detector). propan-2-ol in hexane, flow rate: 1.0 ml/min, retention time (min), ^d See footnote b 12 for minor (R)-isomer, 14 for major (S)-isomer. ² Daicel Chiralcel OB, room temperature, eluent: 3% in Table I. propan-2-ol in hexane, flow rate: 0.5 ml/min, retention time (min), 21 for major (S)-isomer, 32 for minor (R)-isomer. Daicel Chiralcel OD, room temperature, eluent: 10% propan-2-ol in hexane, flow rate: 0.5 ml/min, retention time (min), 16 for minor (R)-isomer, 24 for major (S)-isomer.^g Determined as benzoate. Daicel Chiralpak OT(+); 0°C, eluent: MeOH, flow rate: 0.2 ml/min, retention time (min), 25 for major (S)-isomer, 34 for minor (R)-isomer.

selective ethylation of 2-methoxybenzaldehyde afforded the corresponding alcohol with a very high (98%) ee in 85% yield (entry 3). The α,β -unsaturated aldehyde, (E)-3-phenylprop-2-enal, afforded the enantiomerically enriched allyl alcohol with 91% ee (entry 4). The ethylation of an aliphatic aldehyde, nonanal, produced (S)-undecan-3-ol in moderate ee (entry 5).

It should be noted that norephedrine is readily available in either enantiomeric form. Thus, by using (1R, 2S)-1a instead of (1S,2R)-1a, (R)-alcohols with equally high ees should be obtained with the same yields. It should also be noted that the chiral catalyst can be recovered. For example, 7 was recovered in 68% yield by silica-gel TLC purification.

Compound 1a, in the absence of Ti(OⁱPr)₄, catalyzes the addition of dialkylzinc to benzaldehyde (Table III, entry 13). Because 1a contains both a hydroxyl and thiophosphoramidate group, we examined the catalytic activity of the phosphoramidate group (and its thio analog) using the simple achiral and chiral (enantiomerically pure) diethyl N-mono- and di-alkyl (thio)phosphoramidates.

It was found that thiophosphoramidates and phosphoramidates [(RO)₂P(X)NHR'] catalyze the addition of dialkylzinc to benzaldehyde. In fact, achiral diethyl N-benzylthiophosphoramidate (13a) (0.15 eq.) catalyzed the addition of diethylzinc to benzaldehyde at 0°C for 48 h in the absence of Ti(OⁱPr)₄ to produce racemic 1-phenylpropan-1-ol in 84% (Scheme 2).

Diethyl N-benzylphosphoramidate (13b), the oxygen analog of 13a, gave the alcohol in 35%. On the other hand, the catalytic activity of diethyl N-benzyl-N-methylthiophosphoramidate (13c) without a N-H moiety was very low (7% yield). Thus, the N-H moiety is necessary for

$$\begin{array}{c} \begin{array}{c} OEt \\ N-P_{-}OEt \\ H \\ S \end{array} + \begin{array}{c} Et_2 Zn \\ r.t. \\ EtZn \\ \end{array} \begin{array}{c} OEt \\ N-P_{-}OEt \\ N-P_{-}OEt + Et-H \end{array} \right\}$$
(2)

the catalytic activity. These results are in accordance with the results using chiral catalysts 1a (with N-H) and 12 (with N-Me) (Table I, entries 1 and 8). In addition, chiral (enantiomerically pure) (S)-diethyl N-(1-phenylethyl)thiophosphoramidate (13d) (0.15 eq.), prepared from (S)-(1phenylethyl)amine, in the absence of Ti(OⁱPr)₄ afforded optically active (R)-1-phenylpropan-1-ol with 21% ee in 76% vield.

The treatment of diethyl N-benzylthiophosphoramidate (13a) with Et_2Zn at room temperature produced one molar equivalent of ethane, most probably as a result of the deprotonation from the N-H moiety (Eqn. 2).

On the other hand, the NMR analysis of the mixture of the equimolar amount of the catalyst 1a and $Ti(O'Pr)_4$ in CCl₄ at room temperature for 1 h revealed that about 60% of the methine proton signal (δ 4.78 ppm) of the alcohol moiety shifted downfield to δ 5.55 ppm as a result of the formation of titanium alkoxide 14 (Scheme 3) (in practical asymmetric reactions, other solvents than CCl₄ shown in Table IV were used). Because the molar ratio of catalyst 1a and Ti($O^{i}Pr$)₄ varies between 1/8 and 1/24 in practical asymmetric synthesis, the yield of the complex 14 is considered to be much higher than 60%. In addition, when equimolar amounts of catalyst 1a and Ti(O¹Pr)₄ were heated in CCl_4 for 30 min, distilling CCl_4 and the formed ⁱPrOH, all of 1a became titanium alkoxide 14. In asymmetric synthesis using 3 eq. of dialkylzinc, the temperature of the formation of titanium complex 14 did not affect the enantioselectivity.

Scheme 3

From these observations, we postulate one of the possible structures of the reactive intermediates shown in Scheme 3. The addition of dialkylzinc to 14 may form the complex 15 as a result of the deprotonation of 14 and the coordination between the sulfur atom (soft Lewis base)²⁴ of 14 with the zinc atoms (Lewis acid of the hard and soft border line). The affinity between sulfur and zinc atoms is strong^{11,25}. Subsequently, the nucleophilicity of the alkyl group of the dialkylzinc increases. The titanium atom (hard Lewis acid)²⁴ may control the steric course of the approach of the aldehyde shown as 16 by coordination with the oxygen atom (hard Lewis base) of the aldehyde. The aldehyde approaches from the lower side of the chiral (enantiomerically pure) complex in a direction such that the large substituent (R^1) is farthest from the chiral complex. The alkyl (R²) group of the activated (coordinated) dialkylzinc then attacks the aldehyde from the Si face shown as 17 and the chiral (enantiomerically enriched) zinc alkoxide 18 dissociates. The hydrolysis of 18 or of the titanium alkoxide 19 [formed by the reaction of 18 with $Ti(O^{i}Pr)_{4}$, as pointed out by Seebach²⁶] affords the enantiomerically enriched (S)-sec-alcohol (when the priority order is $R^1 > R^2$). The chiral (enantiomerically pure) complex 15 regenerates by coordination of a new dialkylzinc molecule.

Conclusions

As described, enantiomerically pure hydrogen phosphoramidates and phosphinamides (and their thio analogs) derived from norephedrine and other enantiomerically pure amino alcohols catalyze the enantioselective addition of dialkylzincs to aldehydes in the presence of titanium tetraisopropoxide. This result may open the way to the use of thiophosphoramidates, phosphoramidates, thiophosphinamides and phosphinamides as chiral catalysts in asymmetric synthesis.

Experimental

¹H-NMR spectra were recorded on a Hitachi R-1200 (60 MHz) or a JEOL JNM-EX270L (270 MHz) spectrometers with tetramethylsilane (δ 0 ppm) as internal standard. IR spectra were recorded on a Hitachi 260-30 or Horiba FT300 spectrophotometer. Optical rotations were measured using JASCO DIP-181 or DIP-360 polarimeters. Melting points are uncorrected. All reactions were carried out under an argon atmosphere.

(1S,2R)-N-(O,O-Dimethylthiophosphoryl)norephedrine (1a)

Dimethyl chlorothiophosphate (4.82 g, 30 mmol) was added to a solution of (1S,2R)-(+)-norephedrine (6.50 g, 40 mmol) and triethylamine (Et₃N) (4.05 g, 40 mmol) in CH₂Cl₂ (5 ml) at --30°C. After stirring for 15 min at -30° C, 10% aq. citric acid was added. The mixture was extracted with CH₂Cl₂, and the extract was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/AcOEt 3/1). **1a** (6.53 g, 79% yield) was obtained as an oil; $[\alpha]_D + 13$ (c 1.0, MeOH). ¹H-NMR (60 MHz, CDCl₃): δ 0.95–1.10 d, J 6.3 Hz, 3H, -CH₃; 2.68–2.77, d, 1H, -OH; 2.99–3.36, br, 1H, -C-CH-N; 3.69, dd, J 13.7, 1.1 Hz, 6H, P-O-CH₃; 3.88–4.42, m, 1H, -NH; 4.71–4.88, m, 1H, -C-CH-Ph; 7.32, s, 5H, -Ph. IR (neat, NaCl): 3350, 2970, 2940, m⁻¹. HRMS (C₁₁H₁₈NO₃PS): calcd. 275.0746; found 275.0754.

(1S,2R)-N-(O,O-Diethylthiophosphoryl)norephedrine (1b)

Diethyl chlorothiophosphate (1.92 g, 10.2 mmol) was added to a solution of (1S,2R)-(+)-norephedrine (2.26 g, 15.0 mmol) and Et₃N (3.05 g, 30.1 mmol) in toluene (7.5 ml) at -30° C. After stirring for 2 h at -30° C, 10% aq. citric acid and Et₂O were added. The organic layer was washed with 10% aq. citric acid (3 times) and saturated aq. NaCl, dried over Na₂SO₄, and concentrated under reduced pres-

sure. The residue was purified by column chromatography (silica gel, hexane/AcOEt 3:1). **1b** (1.93 g, 62% yield) was obtained as an oil. $[\alpha]_D = 17 (c \ 1.33, MeOH)$. ¹H-NMR (60 MHz, CDCl₃): $\delta \ 0.91-1.10$, d, J 6 Hz, 3H, -N-C-CH₃; 1.15-1.50, t, J 7 Hz, 6H, -O-C-CH₃; 2.61-2.81, br, 1H, -OH; 3.11-3.42, br, 1H, -C-CH-N; 3.45-3.90, m, 1H, -NH; 3.78-4.35, m, 4H, -O-CH₂-C; 4.68-4.89, br, 1H, -O-CH-Ph; 7.25, s, 5H, -Ph. IR (neat, NaCl): 3400, 2980, 2900, 1450, 1400, 1300, 1200, 1140, 1040, 960, 900, 830, 800, 710 cm⁻¹. HRMS (C₁₃H₂₂NO₃PS): calcd. 303.10596; found 303.1042.

(1S,2R)-N-(Dimethylthiophosphinyl)norephedrine (2a)

This material was synthesized by the procedure described for 1a, except that the following materials were employed: (1S,2R)-(+)-norephedrine (0.454 g, 3 mmol); dimethylthiophosphinyl chloride (0.257 g, 2 mmol); Et₃N (0.405 g, 4 mmol). Compound **2a** (0.413 g, 85% yield) was obtained as an oil. $[\alpha]_D$ -16 (c 0.93, MeOH). ¹H-NMR (60 MHz, CDCl₃): δ 0.91–1.15, d, J 6.6 Hz, 3H, -N-C-CH₃; 1.81, d, J 12.2 Hz, 6H, -P-CH₃; 2.00–2.45, m, 1H, -OH; 2.95–3.22, br, 1H, -N-CH-C; 3.35–3.82, m, 1H, -NH; 4.66–4.85, br, 1H, -O-CH-Ph; 7.25, s, 5H, -Ph. IR (neat, NaCl): 3300, 2970, 1490, 1400, 1300, 1140, 970, 930, 730, 700 cm⁻¹. HRMS (C₁₁H₁₈NOPS): calcd. 243.0848; found 243.0843.

(1S,2R)-N-(Diphenylthiophosphinyl)norephedrine (2b)

(15,2*R*)-(+)-Norephedrine hydrochloride (1.88 g, 10 mmol) was added to a solution of 2M aq. NaOH (15 ml, 30 mmol) and Et₂O (30 ml). Diphenylthiophosphinyl chloride was added to the mixture at 0°C. After stirring for 4 h at room temperature, the mixture was extracted with CH₂Cl₂. The extract was dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, hexane/AcOEt 3/1). **2b** (2.98 g, 81% yield) was obtained as a crystalline solid; m.p. 109–110°C; $\{\alpha\}_D - 24 (c \ 1.0, MeOH)$. ¹H-NMR (60 MHz, CDCl₃): $\delta \ 0.92-1.15$, d, J 7 Hz, 3H, -N-C-CH₃; 1.42–1.94, m, 1H, -OH; 3.09–3.29, d, 1H, -N-CH-C; 3.30–4.02, m, 1H, -NH; 4.89–5.15, m, 1H, -O-CH-Ph; 7.07–8.03, m, 15H, -Ph. IR (KBr): 3600, 3400, 3050, 2980, 1450, 1410, 1320, 1300, 1140, 1120, 1090, 1020, 980, 910, 840, 760, 730, 700 cm⁻¹. HRMS (C₂₁H₂₂NOPS): calcd. 367.1162; found 367.1191.

(1S,2R)-N-(O,O-Dimethylphosphoryl)norephedrine (3a)

This material was synthesized by the procedure described for 1a, except that the following materials and conditions were employed: (15,2R)-(+)-norephedrine (1.51 g, 10.0 mmol); Et₃N (5.08 g, 50.2 mmol); CH₂Cl₂ 15 ml; dimethyl chlorophosphate (1.61 g, 11.1 mmol)²⁷; reaction time: 1.25 h; purification: column chromatography (silica gel, hexane/AcOEt 1/1). Compound **3a** (1.64 g, 63% yield) was obtained as an oil; $[\alpha]_D$ + 0.6 (c 3.0, MeOH). ¹H-NMR (60 MHz, CDCl₃): δ 0.98, t, 3H, -N-C-CH₃; 3.62, m, 3H, -N-C-CH, -NH; 3.7, dd, J 11.6, 1.2 Hz, 6H, -P-O-CH₃; 4.80, m, 1H, -O-CH-Ph; 7.30, s, 5H, -Ph. IR (neat, NaCl): 3380, 2975, 1500, 1450, 1245, 1040, 845, 760, 710 cm⁻¹. HRMS (C₁₁H₁₈NO₄P): calcd. 259.0974; found 259.0966.

(1S,2R)-N-(O,O-Diethylphosphoryl)norephedrine (3b)

This material was synthesized by the same procedure as 1b except that the following materials and conditions were employed; (1S, 2R)-(+)-norephedrine (2.27 g, 15.0 mmol); toluene 7 ml; Et₃N (3.05 g, 30.1 mmol); diethyl chlorophosphate (1.73 g, 10.0 mmol); reaction time: 40 min; purification: column chromatography (silica gel, AcOE1). **3b** (2.06 g, 71% yield) was obtained as an oil; $[\alpha]_D - 5$ (c 1.07, MeOH). ¹H-NMR (60 MHz, CDCl₃): δ 0.88–1.09, d, J 6.4 Hz, 3H, -N-C-CH₃; 1.12–1.55, t, J 7 Hz, 6H, -P-O-C-CH₃; 3.02–3.55, br, 1H, -OH; 3.55–3.62, br, 1H, -N-CH-C; 3.70–4.48, m, 5H, -P-O-CH₂-C-, -NH; 4.73–4.85, d, 1H, -O-CH-Ph; 7.25, s, 5H, -Ph. IR (neat, NaCl): 3300, 29900, 1740, 1450, 1400, 1380, 1300, 1210, 1140, 1050, 970, 810, 750, 710 cm⁻¹. HRMS (C₁₃H₂₂NO₄P): calcd. 287.1288; found 287.1273.

(1S,2R)-N-(O,O-Diisopropylphosphoryl)norephedrine (3c)

This material was synthesized by the same procedure as 1a except that the following materials and conditions were employed: (1S,2R)-(+)-norephedrine (2.15 g, 14.2 mmol); Et₃N (4.31 g, 42.6 mmol); CH₂Cl₂ 15 ml; diisopropyl chlorophosphate (3.40 g, 16.9 mmol)²⁷; reaction time: 50 min; purification: column chromatography (silica gel, AcOEt/MeOH 25/1). Compound 3c (4.48 g, 100% yield) was

obtained as a crystalline solid; m.p. 60.5–62°C; $[\alpha]_D$ – 4.1 (*c* 3.02, MeOH). ¹H-NMR (60 MHz, CDCl₃): δ 1.00, d, *J* 6 Hz, 3H, -N-C-CH₃; 1.38, d, *J* 6 Hz, 12H, -P-O-C-CH₃; 3.70, br, 3H, -NH, -OH, -C-CH-N-; 4.69, m, 3H, -O-CH-Ph, -O-CH-Me₂; 7.27, s, 5H, -Ph. IR (KBr): 3380, 2965, 1490, 1380, 1220, 985, 700 cm⁻¹. HRMS (C₁₅H₂₆NO₄P): calcd. 315.1601; found 315.1605.

(IS,2R)-N-(Dimethylphosphinyl)norephedrine (4a)

This material was synthesized by the same procedure as **1a** except that the following materials were employed; (1S,2R)-(+)-norephedrine (0.756 g, 5 mmol); Et₃N (1.01 g, 10 mmol); dimethylphosphinyl chloride (0.562 g, 5 mmol); Compound **4a** (0.784 g, 69% yield) was obtained as a crystalline solid; m.p. 146–149°C; $[\alpha]_D$ +18 (c 1.0, MeOH). ¹H-NMR (60 MHz, CDCl₃): δ 0.90–1.11, d, J 6.8 Hz, 3H, -N-C-CH₃; 1.25–1.65, d, J 14 Hz, 6H, -P-CH₃; 1.90–3.00, m, 2H, -OH, -NH; 3.22–3.74, m, 1H, -N-CH-C; 4.55–4.70, br, 1H, -O-CH-Ph; 7.25, s, 5H, -Ph. IR (KBr): 3200, 2980, 2900, 1450, 1410, 1300, 1230, 1170, 1130, 1100, 1040, 930, 900, 870, 830, 760, 740, 700 cm⁻¹. HRMS (C₁₁H₁₈NO₂P): calcd. 227.1076; found 227.1093.

(1S,2R)-N-(Diphenylphosphinyl)norephedrine (4b)

This material was synthesized by the same procedure as **1a** except that the following materials were employed: (1S, 2R)-(+)-norephedrine (1.13 g, 7.5 mmol); Et₃N (1.01 g, 10 mmol); diphenylphosphinyl chloride (1.18 g, 5 mmol). Compound **4b** (1.38 g, 78% yield) was obtained as a crystalline solid; m.p. 152–153°C; $[\alpha]_D - 29$ (c 1.0, MeOH). ¹H-NMR (60 MHz, CDCl₃): δ 0.98–1.20, d, J 5.6 Hz, 3H, -N-C-CH₃; 3.06–3.69, m, 2H, -OH, -NH; 4.74–4.95, br, 1H, -N-CH-C; 5.41–6.01, m, 1H, -O-CH-Ph; 6.98–8.32, m, 15H, -Ph. IR (KBr): 3200, 1440, 1310, 1180, 1150, 1130, 1100, 1020, 1000, 970, 900, 840, 750, 730, 700 cm⁻¹. HRMS (C₂₁H₂₂NO₂P): calcd. 351.1390; found 351.1383.

(1S,2R)-2-[(O,O-Dimethylthiophosphoryl)amino]-1,2-diphenylethanol (5)

This material was synthesized by the same procedure as **1a** except that the following materials and conditions were employed: (1S, 2R)-(+)-2-amino-1,2-diphenylethanol (0.213 g, 0.998 mmol); Et₃N (0.407 g, 4.02 mmol); CH₂Cl₂ 18 ml; dimethyl chlorothiophosphate (0.159 g, 0.998 mmol); purification: TLC (silica gel, hexane/ACOEt 3/1). Compound 5 (0.249 g, 74% yield) was obtained as a crystalline material; m.p. 91.0–91.5°C; $[\alpha]_{D^{23}}$ +15.4 (c 2.0, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 2.64, br, 1H, -OH; 3.44, dd, J 13.9, 11.6 Hz, 6H, -P-O-CH₃; 4.48, m, 3H, -O-CH-Ph, -N-CH-Ph, -NH; 7.24, m, 10H, -Ph. IR (KBr): 3380, 3000, 2915, 2870, 2825, 1595, 1485, 1440, 1405, 1337, 1290, 1250, 1180, 1085, 1050, 1020, 963, 855, 815, 785, 698, 638, 603, 565, 470 cm⁻¹. HRMS (C₁₆H₂₀NO₃PS): calcd. 337.0903; (C₁₆H₂₀NO₃PS – H₂O): calcd. 319.0797; found 319.0791.

(S)-1-[(O,O-Dimethylthiophosphoryl)amino]propan-2-ol (6)

This material was synthesized by the same procedure as **1a** except that the following materials and conditions were employed; (*S*)-(+)-1-amino-propan-2-ol (0.0795 g, 1.06 mmol); Et₃N (0.603 g, 5.95 mmol); CH₂Cl₂ 1 ml; dimethyl chlorothiophosphate (0.160 g, 0.996 mmol); reaction time: $1\frac{1}{2}$ h; purification: TLC (silica gel, hexane/AcOEt 3/1). Compound **6** (0.146 g, 74% yield) was obtained as an oil; $[\alpha]_{D^{23}}$ +10.3 (*c* 5.6, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 1.25, d, *J* 5.8 Hz, 3H, -O-C-CH₃; 3.10, m, 3H, -OH, -N-CH₂-C; 3.73, d, *J* 13.6 Hz, 6H, -P-O-CH₃; 3.90, m, 2H, -O-CH, -NH. IR (neat, NaCl): 3370, 2949, 1630, 1458, 1182, 1042, 949, 817, 526 cm⁻¹. HRMS (C₅H₁₄NO₃PS): calcd. 199.0433; found 199.0437.

(R)-2-[(O,O-Dimethylthiophosphoryl)amino]-1-phenylethanol (7)

This material was synthesized by the same procedure as **1a** except that the following materials and conditions were employed: (*R*)-2-amino-1-phenylethanol (0.134 g, 0.977 mmol)²⁸; Et₃N (0.595 g, 5.88 mmol); CH₂Cl₂ 2 ml; dimethyl chlorothiophosphate (0.204 g, 1.27 mmol); reaction time: 3 h 10 min; purification: TLC (silica gel, hexane/AcOEt 3/1). Compound 7 (0.161 g, 63% yield) was obtained as an oil; $[\alpha]_{D^{26}}$ - 5.6 (c 5.62, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 3.23, m, 3H, -C-CH₂-N, -OH; 3.66, dd, J 1.38, 2.8 Hz, 6H, -P-O-CH₃; 3.88, br, 1H, -NH; 4.76, q, 1H, -O-CH-Ph; 7.38, s, 5H, -Ph. IR (neat, NaCl): 3410, 2950, 2840, 1590, 1500, 1450, 1400, 1180, 1024, 940, 820, 700 cm⁻¹. HRMS (C₁₀H₁₆NO₃PS): calcd. 261.0590; found 261.0588.

(S)-2-[(O,O-Dimethylthiophosphoryl)amino]propan-1-ol (8a)

This material was synthesized by the same procedure as **1a** except that the following materials and conditions were employed: (*S*)-(+)-2-amino-propan-1-ol (0.225 g, 2.99 mmol); Et₃N (1.82 g, 17.9 mmol); CH₂Cl₂ 2 ml; dimethyl chlorothiophosphate (0.621 g, 3.87 mmol), reaction time: 2 h; purification: TLC (silica gel, hexane/AcOEt 1/1). Compound **8a** (0.356 g, 59% yield) was obtained as an oil; $[\alpha]_{D^{23}}$ + 4.4 (c 3.96, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 1.15, d, J 6 Hz, 3H, -N-C-CH₃; 3.00, br, 1H, -OH; 3.50, m, 4H, -N-CH-C, -C-CH₂-O, -NH; 3.69, d, J 13.8 Hz, 6H, -P-O-CH₃. IR (neat, NaCl): 3330, 2925, 2855, 2830, 1410, 1175, 1140, 1015, 965, 885, 825, 800, 635, 470 cm⁻¹. HRMS (C₅H₁₄NO₃PS): calcd. 199.0433; found 199.0413.

(S)-2-[(O,O-Dimethylthiophosphoryl)amino]-3-methylbutan-1-ol (8b)

This material was synthesized by the same procedure as **1a** except that the following materials and conditions were employed: (S)-(+)-2-amino-3-methylbutan-1-ol (0.309 g, 3.00 mmol); Et₃N (1.82 g, 17.9 mmol); CH₂Cl₂ 2 ml; dimethyl chlorothiophosphate (0.621 g, 3.87 mmol); reaction time: 2 h 10 min; purification: TLC (silica gel, hexane/AcOEt 1/1). Compound **8b** (0.269 g, 40% yield) was obtained as an oil; $[\alpha]_{D^{27}}$ - 16.1 (c 3.0, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 0.90, d, J 6 Hz, 6H, -C-(CH₃)₂; 1.76, quint, 1H, -C-CH-Me₂ 3.50, m, 5H, HO-CH₂-CH-NH; 3.69, d, J 14.4 Hz, 6H, -P-O-CH₃, IR (neat, NaCl): 3320, 3000, 1570, 1340, 1185, 950 cm⁻¹. HRMS (C₇H₁₈NO₃PS): calcd. 227.0746; found 227.0745.

(S)-2-[(O,O-Dimethylthiophosphoryl)amino]-4-methylpentan-1-ol (8c)

This material was synthesized by the same procedure as **1a** except that the following materials and conditions were employed: (S)-(+)-2-amino-4-methylpentan-1-ol, (0.357 g, 3.04 mmol); Et₃N (1.82 g, 17.9 mmol); CH₂Cl₂ 2 ml; dimethyl chlorothiophosphate (0.529 g, 3.29 mmol); reaction time: 2 h 15 min; purification: TLC (slica gel, hexane/AcOEt 3/1). Compound **8c** (0.491 g, 67% yield) was obtained as an oil; $[\alpha]_{D^{28}} - 24.4$ (c 3.0, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 0.92, d, J 6.2 Hz, 6H, -C-C-(CH₃)₂; 1.58, m, 3H, -C-CH₂-CH-Me₂; 3.35, m, 5H, HO-CH₂-CH-NH; 3.72, d, J 13.8 Hz, 6H, -P-O-CH₃. IR (neat, NaCl): 3300, 2925, 1410, 1020, 780 cm⁻¹. HRMS (C₈H₂₀NO₃PS): calcd. 241.0903; found, 241.0911.

(S)-2-[(O,O-Dimethylthiophosphoryl)amino]-2-phenylethanol (8d)

This material was synthesized by the same procedure as **la** except that the following materials and conditions were employed: (S)-(+)-2-amino-2-phenylethanol (0.133 g, 0.97 mmol); Et₃N (0.610 g, 6.03 mmol); CH₂Cl₂ 3 ml; dimethyl chlorothiophosphate (0.209 g, 1.30 mmol); reaction time: $22\frac{1}{2}$ h; purification: TLC (silica gel, hexane/AcOEt 3/1). Compound **8d** (0.0406 g, 16% yield) was obtained as an oil; $[\alpha]_{D^{24}}$ + 46.8 (c 2.1, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 2.12, br, 1H, -OH; 3.58, dd, J 13.8, 13.8 Hz, 6H, -P-O-CH₃; 3.84, m, 2H, -C-CH₂-O; 4.40, m, 2H, -NH, -N-CH-Ph; 7.34, s, 5H, -Ph. IR (neat, NaCl): 3380, 2955, 1600, 1500, 1460, 1420, 1180, 1030, 810, 700 cm⁻¹. HRMS (C₁₀H₁₆NO₃PS - H₂O): calcd. 243.0484; found 243.0480.

(R)-2-[(O,O-Dimethylthiophosphoryl)amino]butan-1-ol (9)

This material was synthesized by the same procedure as **1a** except that the following materials and conditions were employed: (R)-(-)-2-aminobutan-1-ol (0.274 g, 3.07 mmol); Et₃N (1.82 g, 17.9 mmol); CH₂Cl₂ 2 ml; dimethyl chlorothiophosphate (0.621 g, 3.87 mmol); reaction time: 2 h; purification: TLC (silica gel, hexane/AcOEt 2/1). Compound **9** (0.419 g, 64% yield) was obtained as an oil; $[\alpha]_{D^{25}} + 13.1$ (*c* 2.2, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 0.95, t, *J* 7 Hz, 3H, -CH₃; 1.46, q, *J* 6 Hz, 2H, -C-CH₂-Me; 2.84, br, 1H, -OH; 3.30–3.54, m, 4H, -O-CH₂-CH-NH; 3.76, d, *J* 13.8 Hz, 6H, -P-O-CH₃. IR (neat, NaCl): 3350, 2950, 1450, 1410, 1190, 1040, 820 cm⁻¹. HRMS (C₆H₁₆NO₃PS): calcd. 213.0590; found 213.0593.

(1S,2S)-2-[(O,O-Dimethylthiophosphoryl)amino]-3-methoxy-1-phenylpropan-1-ol (10)

This material was synthesized by the same procedure as la except that the following materials and conditions were employed: (1S,2S)-

(+)-2-amino-3-methoxy-1-phenylpropan-1-ol (0.393 g, 2.17 mmol)²⁹; Et₃N (1.31 g, 12.9 mmol); CH₂Cl₂ 2 ml; dimethyl chlorothiophosphate (0.449 g, 2.80 mmol); reaction time: 2 h 5 min; purification: TLC (silica gel, hexane/AcOEt 2/1). Compound 10 (0.505 g, 76% yield) was obtained as an oil; $[a]_{D^{25}}$ +44.9 (c 2.0, MeOH), ¹H NMR (60 MHz, CDCl₃): δ 3.37, m, 14H, -C-CH-N-, -C-O-CH₃, -P-O-CH₃, -C-CH₂-O, -OH, -NH; 4.96, s, 1H, -O-CH-Ph; 7.35, s, 5H, -Ph. IR (neat, NaCl): 3420, 2950, 1500, 1460, 1410, 1200, 1030, 815 cm⁻¹. HRMS (C₁₂H₂₀NO₄PS): calcd. 305.0852 (C₁₂H₂₀NO₄PS+H⁺): calcd. 306.0930; found 306.0938.

(S)-2-{(O,O-Dimethylthiophosphoryl)amino]-1,1-diphenylpropan-1-ol (11)

Dimethyl chlorothiophosphate (0.159 g, 0.988 mmol) was added to a solution of (S)-2-amino-1,1-diphenylpropan-1-ol (0.172 g, 0.756 mmol) and Et₃N (0.457 g, 4.52 mmol) in THF (2 ml) at 0°C. After stirring for $2\frac{1}{2}$ h at 0°C, 10% aq. citric acid was added. The mixture was extracted with CH₂Cl₂, and the extract dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by TLC (silica gel, hexane/AcOEt 3/1). 11 (0.154 g, 58% yield) was obtained as a crystalline material; m.p. 91.5–93.5°C; $|\alpha|_{D^{25}} - 13.2$ (*c* 3.84, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 1.15, d, J 6.4 Hz, 3H, -N-C-CH₃; 2.75, s, 1H, -OH; 3.39, dd, J 14, 0.9 Hz, br, 7H, -P-O-CH₃, -NH; 4.45, m, 1H, -N-CH-C; 7.33, m, 10H, -Ph. IR (neat, NaCl): 3380, 2945, 1620, 1500, 1445, 1390, 1280, 1195, 1040, 980, 820, 700 cm⁻¹. HRMS (C₁₇H₂₂NO₃PS): calcd. 351.1060; found 351.1059.

(IR,2S)-N-(O,O-Dimethylthiophosphoryl)ephedrine (12)

This material was synthesized by the same procedure as 1a except that the following materials and conditions were employed: (1R,2S)-(-)-ephedrine (2.46 g, 14.9 mmol); Et₃N (3.01 g, 29.8 mmol); CH₂Cl₂ 5 ml; dimethyl chlorothiophosphate (0.793 g, 4.94 mmol); reaction time: 15 min; purification: column chromatography (silica gel, hexane/AcOEt 3/1). Compound 12 (0.693 g, 48% yield) was obtained as a crystalline material; m.p. 51–52.5°C; $[\alpha]_{D^{28}}$ –8.2 (c 3.0, MeOH). ¹H NMR (60 MHz, CDCl₃): δ 1.20, d, J 6.6 Hz, 3H, -N-C-CH₃; 2.58, d, J 10.7, s, 4H, -N-CH₃, -OH; 3.41, dd, J 13.7, 13.7 Hz, 6H, -P-O-CH₃; 4.32, quint, 1H, -N-CH-C; 4.70, d, J 5.8 Hz, 1H, s, -O-CH-Ph; 7.40, s, 5H, -Ph. IR (neat, NaCl): 3569, 2942, 1500, 1456, 1350, 1259, 1160, 1025, 891, 817, 769, 700, 600 cm⁻¹. HRMS (C₁₂H₂₀NO₃PS): calcd. 289.0903 (C₁₂H₂₀NO₃PS-H₂O): calcd. 271.0797, found 271.0799.

Diethyl N-benzylthiophosphoramidate (13a)

Benzylamine (0.481 g, 4.49 mmol) was added to a solution of Et₃N (0.908 g, 8.97 mmol) and diethyl chlorothiophosphate (0.564 g, 2.99 mmol) in CH₂Cl₂ (4 ml) at 0°C. After stirring for 1 h 45 min at 0°C, 10% aq. citric acid and Et₂O were added. The organic layer was washed with 10% aq. citric acid (3 times) and saturated aq. NaCl, dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by TLC (silica gel, hexane/AcOEt 5/1). Compound **13a** (0.631 g, 81% yield) was obtained as an oil. ¹H NMR (60 MHz, CDCl₃): δ 1.33, t, J 6.8 Hz, 6H, -P-O-C-CH₃; 3.48, br, 1H, -NH; 4.11, m, 6H, -CH₂-Ph, -P-O-CH₂-; 7.32, s, 5H, -Ph. IR (neat, NaCl): 3370, 2945, 1440, 1380, 1010, 945, 780, 680 cm⁻¹. HRMS (C₁₁H₁₈NO₂PS): calcd. 259.0797; found 259.0785.

Diethyl N-benzylphosphoramidate (13b)

This material was synthesized by the same procedure as 13a except that the following materials and conditions were employed: benzylamine (0.481 g, 4.49 mmol); Et₃N (0.908 g, 8.97 mmol); CH₂Cl₂ 4 ml; diethyl chlorophosphate (0.513 g, 2.98 mmol); reaction time: 2 h; purification: TLC (silica gel, AcOEt). Compound 13b (0.477 g, 65% yield) was obtained as an oil. ¹H NMR (60 MHz, CDCl₃): δ 1.31, t, J 7.2 Hz, 6H, -P-O-C-CH₃; 3.39, br, 1H, -NH; 4.08, m, 6H, -CH₂-Ph, -P-O-CH₂-; 7.33, s, 5H, -Ph. IR (neat, NaCl): 3200, 2950, 2880, 1440, 1220, 1030, 950, 855, 790, 725, 690 cm⁻¹. HRMS (C₁₁H₁₈NO₃P): calcd. 243, 1025; found 243.1031.

Diethyl N-benzyl-N-methylthiophosphoramidate (13c)

This material was synthesized by the same procedure as 13a except that the following materials and conditions were employed: N-benzylmethylamine (0.545 g, 4.49 mmol); Et₃N (0.908 g, 8.97 mmol); CH₂Cl₂ 4 ml; diethyl chlorothiophosphate (0.564 g, 2.99 mmol); reaction time: 2 h; purification: TLC (silica gel, hexane/AcOEt 7/1). Compound 13c (0.729 g, 89% yield) was obtained as an oil. ¹H NMR (60 MHz, CDCl₃): δ 1.35, t, J 7 Hz, 6H, -P-O-C-CH₃; 2.63, d, J 10.6 Hz, 3H, -N-CH₃; 4.10, quint, 4H, -P-O-CH₂-C-; 4.37, d, 2H, -CH₂-Ph; 7.33, s, 5H, -Ph. IR (neat, NaCl): 2975, 2900, 1600, 1500, 1470, 1450, 1390, 1215, 1135, 1020, 960, 800, 730, 700, 635 cm⁻¹. HRMS (C₁₂H₂₀NO₂PS): calcd. 273.0954; found 273.0946.

(S)-Diethyl N-(1-phenylethyl)thiophosphoramidate (13d)

This material was synthesized by the same procedure as **13a** except that the following materials and conditions were employed: (*S*)-(-)-(1-phenylethyl)amine (0.54 g, 4.47 mmol); Et₃N (0.908 g, 8.97 mmol); toluene 4 ml; diethyl chlorothiophosphate (0.564 g, 2.99 mmol); reaction time: 2 h 10 min; purification: TLC (silica gel, dichloromethane/carbon-tetrachloride 1/2). Compound **13d** (0.512 g, 63% yield) was obtained as an oil; $[\alpha]_{D^22} - 38.1$ (*c* 5.98 MeOH). ¹H NMR (60 MHz, CDCl₃): δ 1.22, m, 9H, -P-O-CH₃, -N-C-CH₃; 3.92, m, 6H, -NH-CH-Ph, -P-O-CH₂-; 7.25, s, 5H, -Ph. IR (neat, NaCl): 3280, 2970, 1490, 1445, 1410, 1390, 1290, 1200, 1025, 955, 800, 700, 650 cm⁻¹. HRMS (C₁₂H₂₀NO₂PS): calcd. 273.0954; found 273.0950.

Typical procedure for the enantioselective addition of dialkylzincs to aldehydes (Table VI, entry 2)

Ti(O¹Pr)₄ (0.340 g, 1.19 mmol) was added to a solution of **1a** (0.041 g, 0.15 mmol) in toluene (2 ml) at room temperature. After 20 min, the mixture was cooled to -30° C and Et₂Zn (1 M, 3 ml, 3 mmol) was added and stirred for 20 min at -30° C. Benzaldehyde (0.106 g, 1 mmol) was added, and the reaction mixture was stirred for 5 h at -30° C. Then the reaction was quenched with saturated aq. NH₄Cl. The mixture was extracted with CH₂Cl₂ and the extract dried over Na₂SO₄, and concentrated under reduced pressure. The residue was purified by TLC (silica gel, hexane/AcOEt 5/1) (S)-(-)-1-phenyl-propan-1-ol (0.883 g, 90% yield, 96% ee) was obtained.

Acknowledgment

This work was financially supported by The SUT Special Grant for Research Promotion 1994–1995.

References and notes

- ^{1a} K. Soai and S. Niwa, Chem. Rev. 92, 833 (1992);
- ^b *R. Noyori* and *M. Kitamura*, Angew. Chem., Int. Ed. Engl. **30**, 49 (1991).
- ² B. Marx, E. Henry-Basch and P. Freon, C. R. Acad. Sci., Ser. C 264, 1967 (1967).
- ³ T. Sato, K. Soai, K. Suzuki and T. Mukaiyama, Chem. Lett. 601 (1978); T. Mukaiyama, K. Soai, T. Sato, H. Shimizu and K. Suzuki, J. Am. Chem. Soc. 101, 1455 (1979).
- ⁴ References cited in Ref. 1a; N. Oguni and T. Omi, Tetrahedron Lett. 25, 2823 (1984); M. Kitamura, S. Suga, K. Kawai and R. Noyori, J. Am. Chem. Soc. 108, 6071 (1986); A.A. Smaardijk and H. Wynberg, J. Org. Chem. 52, 135 (1987), A. Van Oeveren, W. Menge and B.L. Feringa Tetrahedron Lett 30, 6427 (1989)
- Menge and B.L. Feringa, Tetrahedron Lett. 30, 6427 (1989).
 Sa K. Soai, A. Ookawa, K. Ogawa and T. Kaba, J. Chem. Soc., Chem. Commun. 467 (1987);
- ^b K. Soai, A. Ookawa, T. Kaba and K. Ogawa, J. Am. Chem. Soc. **109**, 7111 (1987);
- ^c K. Soai, S. Yokoyama, K. Ebihara and T. Hayasaka, J. Chem. Soc., Chem. Commun. 1690 (1987);
- ^d K. Soai, M. Nishi and Y. Ito, Chem. Lett. 2405 (1987);
- ^e K. Soai, S. Yokoyama and T. Hayasaka, J. Org. Chem. 56, 4264 (1991);
- ^f K. Soai, C. Shimada, M. Takeuchi and M. Itabashi, J. Chem. Soc., Chem. Commun. 567 (1994);
- ⁸ M. Watanabe and K. Soai, J. Chem. Soc., Perkin Trans. I, in press.
- ⁶ K. Soai, S. Niwa, Y. Yamada and H. Inoue, Tetrahedron Lett. 28, 4841 (1987); S. Niwa and K. Soai, J. Chem. Soc., Perkin Trans. I, 2717 (1991).
- ⁷ K. Soai and M. Watanabe, J. Chem. Soc., Chem. Commun. 43 (1990).
- ⁸ K. Soai, S. Niwa and M. Watanabe, J. Org. Chem. 53, 927 (1988); K. Soai, S. Niwa and M. Watanabe, J. Chem. Soc., Perkin Trans. I, 109 (1989); K. Soai and M. Watanabe, Tetrahedron: Asymme-

try 2, 97 (1991); *M. Watanabe* and *K. Soai*, J. Chem. Soc., Perkin Trans. I, 837 (1994). For the related reaction, *S. Itsuno* and *J.M.J. Frèchet*, J. Org. Chem. 52, 4140 (1987).

- ⁹ C. Rosini, L. Franzini, D. Pini and P. Salvadori, Tetrahedron: Asymmetry 1, 587 (1990).
- ¹⁰ S. Conti, M. Falorni, G. Giacomelli and F. Soccolini, Tetrahedron 48, 8993 (1992).
- ¹¹ R.P. Hof, M.A. Poelert, N.C.M.W. Peper and R.M. Kellogg, Tetrahedron: Asymmetry 5, 31 (1994); E. Rijnberg, J.T.B.H. Jastrzebski, M.D. Janssen, J. Boersma and G. van Koten, Tetrahedron Lett. 35, 6521 (1994).
- ¹² C. Bolm, M. Ewald, M. Felder and G. Schlingloft, Chem. Ber. 125, 1169 (1992); M. Falorni and G. Giacomelli, Gazz. Chim. Ital. 122, 339 (1992); M. Ishizaki, K. Fujita, M. Shimamoto and O. Hoshino, Tetrahedron: Asymmetry 5, 411 (1994).
- ¹³ K. Soai, S. Niwa and H. Hori, J. Chem. Soc., Chem. Commun. 982 (1990).
- ¹⁴ K. Soai, T. Hayase, C. Shimada and K. Isobe, Tetrahedron: Asymmetry 5, 789 (1994).
- ¹⁵ Reviews: H. Wynberg, Chimia 43, 150 (1989); see also Ref. 1a; K. Soai and T. Hayase, Yuki Gosei Kagaku Kyokaishi, submitted.
- ¹⁶ M. Yoshioka, T. Kawakiia and M. Ohno, Tetrahedron Lett. **30**, 1657 (1989); H. Takahashi, T. Kawakita, M. Yoshioka, S. Kobayashi and M. Ohno, Tetrahedron Lett. **30**, 7095 (1989); H. Takahashi, T. Kawakita, M. Ohno, M. Yoshioka and S. Kobayashi, Tetrahedron **48**, 5691 (1992); K. Ito, Y. Kimura, H. Okamura and T. Katsuki, Synlett. 573 (1992); M.J. Rozema, S. AchyuthaRao and P. Knochel, J. Org. Chem. **57**, 1956 (1992); C. Eisenberg and P. Knochel, J. Org. Chem. **59**, 3760 (1994).
- ¹⁷ B. Schmidt and D. Seebach, Angew. Chem. Int. Ed. Engl. **30**, 99 (1991); **30**, 1321 (1991); D. Seebach, A.K. Beck, B. Schmidt and Y.M. Wang, Tetrahedron **50**, 4363 (1994).

- ¹⁸ K. Soai, T. Hatanaka and T. Miyazawa, J. Chem. Soc., Chem. Commun. 1097 (1992); K. Soai, T. Suzuki and T. Shono, ibid. 317 (1994).
- ¹⁹ K.E. DeBruin and E.E. Boros, J. Org. Chem. **55**, 6091 (1990); S.-Y. Wu, A. Hirashima, R. Takeya and E. Eto, Agric. Biol. Chem. **53**, 165 (1989).
- ²⁰ *M. Ueki, T. Inazu* and *S. Ikeda*, Bull. Chem. Soc. Jpn. **52**, 2424 (1979).
- For the use of enantiomerically pure phosphonamide in stoichiometric asymmetric olefination, see S. Hanessian, D. Delorme, S. Beaudoin and Y. Leblanc, J. Am. Chem. Soc. 106, 5754 (1984).
- ²² Preliminary communication: K. Soai, Y. Hirose and Y. Ohno, Tetrahedron: Asymmetry 4, 1473 (1993).
- ²³ For the preparation of enantiomerically pure 1,2-diphenylethanol, K. Saigo, S. Ogawa, S. Kikuchi, A. Kasahara and H. Nohira, Bull. Chem. Soc. Jpn. 55, 1568 (1982); J. Weijland, K. Pfister III, E.F. Swanezy, C.A. Robinson and M. Tishler, J. Am. Chem. Soc. 73, 1216 (1951); G.G. Lyle and W. Lacroix, J. Org. Chem. 28, 900 (1963).
- ²⁴ T.-L. Ho, "Hard and Soft Acids and Basis in Principle in Organic Chemistry", Chapter 2, Academic Press, N.Y., 1977.
 ²⁵ Distribution of the state of the st
- ²⁵ For the chiral catalyst which contains sulfide, see *T. Mehler* and *J. Martens*, Tetrahedron: Asymmetry **4**, 1983 (1993).
- ²⁶ D. Seebach, D.A. Platiner, A.K. Beck, Y.M. Wang, D. Hunziker and W. Petter, Helv. Chim. Acta 75, 2171 (1992).
- ²⁷ G. Sosnousky and E.H. Zaret, J. Org. Chem. **34**, 968 (1969).
- P. Pratesi and M. Grassi, Farmaco. Ed, Sci. 8, 86 (1953); Chem.
 Abstr. 48, 1995 (1954).
- ²⁹ A.I. Meyers, G. Knaus, K. Kamata and M.E. Ford, J. Am. Chem. Soc. 98, 567 (1976).