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An easy acylation and formylation of amines has been achieved via transamidation using 1,4-dioxane.
The investigation works efficiently without an added catalyst and completes within short time under
microwave irradiation.
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Scheme 1. Catalyst-free transamidation using 1,4-dioxane.

Table 1
Effect of solvents on transamidationa

NH2
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H

MW, Solvent

Entry Solvent Time (min) Temp (�C) Yield (%)

1 Toluene 30 120 20
2 Xylene 30 120 15
3 Chlorobenzene 30 120 0
4 DMSO 30 120 0
5 DMF 30 120 0
6 H2O 30 100 10
7 Acetonitrile 30 80 0
8 1,4-Dioxane 30 100 0
9 1,4-Dioxane 30 120 73

10 1,4-Dioxane 40 120 73
11 1,4-Dioxane 30 130 73
12 PEG-600 30 120 0
13 Isopropanol 30 80 0
14 THF 30 70 0
15 DCE 30 80 0
Development of novel and efficient methodologies for the syn-
thesis of carboxamides is a vital task as they are prevalent in living
systems and numerous biologically active compounds including
pharmaceuticals, agrochemicals, and polymers.1 The usual practice
for the synthesis of amides involves the coupling of acid deriva-
tives with amines,2 although the lability of activated carboxylic
acid derivatives remains a major drawback of this approach. To cir-
cumvent this problem, alternative methods for the synthesis of
amides have been developed using amidation of aldehydes with
amines,3 aminocarbonylation of aryl halides4 and alkynes,5 direct
amide synthesis from alcohols and amines,6 direct amidation of
alcohols with nitroarenes,7 umpolung reaction of amines with a-
halo nitro alkanes,8 Beckmann rearrangement,9 and cross coupling
of formamides with alkyl/aryl halides.10

A significant current addition to amide synthesis is ‘transamida-
tion’ which makes the use of cheap and abundant starting materi-
als such as amines and amides. However, due to high inertness of
amide bond, these reactions are generally catalyzed by activating
agents or catalysts which are expensive and/or waste generating.
Recent catalysts explored for transamidation include hydroxyl-
amine hydrochloride, copper, cerium dioxide, boric acid, and bo-
rate esters.11 Although, these methods have their own
advantages, they all invariably suffer from long reaction times
and elevated temperature profile of the reaction. Recently our
group has reported a hypervalent iodine catalyzed mild and effi-
cient transamidation reaction under microwave irradiation.12
ll rights reserved.
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a Reaction conditions: aniline (1 mmol), acetamide (1 mmol), solvent (2 ml),
Anton Paar Monowave. Yield refers to separated yield after column
chromatography.
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Table 2
1,4-Dioxane mediated transamidationa
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a Reaction conditions: amine (1 mmol), amide (1 mmol), 1,4-dioxane (2 ml),
Anton Paar Monowave. Yield refers to separated yield after column
chromatography.
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Figure 1. Proposed H-bond formation.
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As a part of our ongoing program to develop efficient and green
protocols,13 we wish to describe herein an in-depth analysis of the
effect of various solvents on the transamidation reaction. The find-
ings led us to achieve a mild and effective 1,4-dioxane mediated
transamidation approach without the use of any catalyst within
short time under microwave (MW) irradiation (Scheme 1).

To begin with, we examined the effect of different solvents
without the aid of a catalyst on the transamidation model reaction
between aniline and acetamide and the results are described in Ta-
ble 1. Out of different solvents tested during the course of optimi-
zation, the solvents such as DMSO, DMF, PEG-600, THF,
isopropanol, dichloroethane, acetonitrile, and chlorobenzene were
found to be completely ineffective (entries 3–5, 7, 12–15). Solvents
such as toluene, xylene, and water could bring about only a little
conversion (entries 1, 2, and 6). However, when the reaction was
carried out in 1,4-dioxane, we were amazed and delighted to ob-
serve a single-handedly magical effect of 1,4-dioxane resulting in
73% isolated product yield at the temperature of 120 �C (entry 9).
It is interesting to note that 1,4-dioxane could not afford any con-
version at 100 �C (entry 8), hence implicating a crucial temperature
effect on the reaction. A 20 �C rise in temperature caused a specta-
cular effect on the reaction.

In order to ensure the generality of this finding, the transamida-
tion of amides with various amines was undertaken and the results
are summarized in Table 2. Various amines having both electron
donating and electron withdrawing groups underwent the reaction
smoothly and gave rise to good to excellent product yields. Func-
tional groups like hydroxyl, chloro, methyl, and methoxy were well
tolerated in the reaction (entries 2, 3, 6–11). Low yield in the case
of ortho substituted reactants is attributed to steric factors (entries
2 and 10). Interestingly the transamidation reaction with phenyl
hydrazine gave excellent yield (entry 12). Transamidation reac-
tions of benzamide, secondary and tertiary amides, however, could
not succeed even at elevated temperatures.

From these results, it could be presumed that 1,4-dioxane
strongly activates the amide linkage perhaps through the hydrogen
bonding of amide group hydrogen atom with oxygen atom of the
solvent,14 thereby facilitating the reaction particularly in the case
of aliphatic amides. Failure of transamidation in the case of benz-
amide, secondary and tertiary amides may be attributed to their
high stability and also due to the failure of 1,4-dioxane to activate
these amides to the desired extent. Thus, coordination or interac-
tion of 1,4-dioxane with amide involving the formation of hydro-
gen bond (Fig. 1) is an underlying cause for the reaction to occur.

Further the applicability of the reaction15,16 was extended to
formamide. As regards the reaction with formamide, various
amines reacted well and resulted in excellent product yields as
listed in Table 3. Aliphatic amines as well as aromatic primary
and secondary amines including N-methyl aniline reacted
smoothly. The reaction was well tolerated by functional groups like
hydroxyl, chloro, methyl, and methoxy, but a little lowering in the
product yield was observed in the case of o-anisidine due to the
steric factor. Heteroaromatic amines such as 2-amino pyridine
and furfuryl amine also reacted smoothly.

In summary, we have explored an effective 1,4-dioxane medi-
ated transamidation of amides with different amine partners to af-
ford diverse carboxamides in reasonably good to excellent yields.
The reaction proceeds smoothly in the absence of a catalyst or acti-
vating agent and can tolerate a number of functionalities.



Table 3
1,4-Dioxane mediated formylation of aminesa
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a Reaction conditions: amine (1 mmol), formamide (1 mmol), 1,4-dioxane (2 ml),
Anton Paar Monowave. Yield refers to separated yield after column
chromatography.
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