PREPARATION AND SYNTHETIC UTILITY OF CYCLOPROPYL PHENYL SULFIDES

C. L. Bumgardner*, J. R. Lever and S. T. Purrington

Chemistry Department, N. C. State University, Raleigh, N. C. 27650

Abstract. Primary alkyl halides and epoxides react with 1-lithiocyclopropyl phenyl sulfide to give derivatives suitable for transformation to carbonyl compounds or for desulfurization.

There is much current interest in developing methodology which utilizes cyclopropanes for polarity inversion operations.¹ In particular, the adducts of 1-lithiocyclopropyl phenyl sulfide and carbonyl compounds^{2a} have been employed in a variety of synthetic routes which lead to cyclobutanones,^{2b} cyclobutenyl sulfides,^{2b} γ -ketosulfides,^{2c} and β -bromoethyl vinyl sulfides^{2d} <u>via</u> Wagner-Meerwein rearrangements. We now report that 1-lithiocyclopropyl phenyl sulfide, <u>1</u>, reacts smoothly with alkylating agents and that the derivatives thus formed give carbonyl compounds after electrophilic cleavage of the cyclopropane ring and hydrolysis.

As shown in Table I, treatment of <u>1</u> with primary alkyl iodides or bromides generally gives the substitution product, <u>2</u>, in high yields.³ With benzyl bromide, however, halogen-metal exchange occurs leading to bibenzyl and 1-bromocyclopropyl phenyl sulfide. The basicity of the reagent presents a problem in systems prone to elimination such as phenethyl bromide where styrene is the predominant product.⁴ Further, we find that 1 adds to epoxides providing access

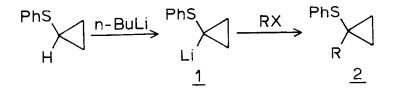
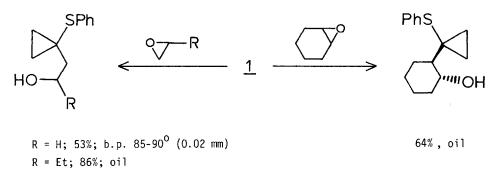



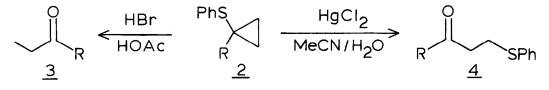
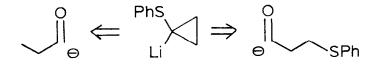
Table I. Alkylation of 1-Lithiocyclopropyl Phenyl Sulfide (1)

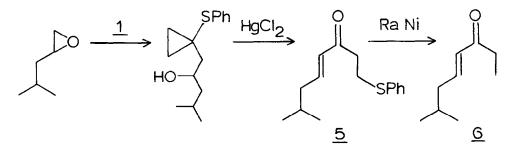
RX	YIELD of <u>2</u> %	b.p. of <u>2</u>
Ph(CH ₂)3I	83	152-6 ⁰ (0.075 mm)
СН ₃ (СН ₂) ₃ Br	79	102-4 ⁰ (1.5 mm)
CH ₃ (CH ₂) ₇ Br	62	104-7 ⁰ (0.075 mm)

to $1-(\beta-hydroxy)cyclopropyl phenyl sulfides. Excellent regioselectivity of attack at the less hindered primary carbon of 1,2-epoxybutane is observed and even with cyclohexene oxide, a$

high yield of adduct was obtained.^{3a}

Having established the general reactivity of 1-lithiocyclopropyl phenyl sulfide toward these alkylating agents we investigated methods by which these alkylated cyclopropyl phenyl sulfides could be transformed into carbonyl compounds.⁵ Several substituted cyclopropyl phenyl sulfides were heated with a mixture of 46% HBr/HOAc (1:1) for 3-8 hours. Work-up, followed by preparative TLC, afforded the ethyl ketones, <u>3</u>, identical with authentic samples, as well as diphenyl disulfide. We also explored a milder Lewis acid-promoted ring opening with mercuric chloride.⁶ Interestingly, we observed conversion of the cyclopropyl phenyl sulfides into γ -ketosulfides, <u>4</u>, compounds which can serve as precursors to enones and ethyl ketones.^{2C} The mechanistic course of this process is under investigation.


Table II. Transformations of cyclopropyl phenyl sulfides into carbonyl compounds

YIELD OF 3 %	R	YIELD of <u>4</u> %
40	Ph(CH ₂)3	52
51	сн ₃ (сн ₂)3	77
59	CH ₃ (CH ₂) ₇	60

These transformations demonstrate the equivalency of l-lithiocyclopropyl phenyl sulfide to either the β -phenylthiopropionyl carbanion or to the propionyl carbanion depending upon the conditions employed for unmasking.

Products obtained from the opening of epoxides by organometallic <u>1</u> also appeared to be candidates for conversion to carbonyl compounds. To test this applicaton the fragrant (<u>E</u>)-7-methyl-4-octen-3-one (<u>6</u>), recently isolated as the major metabolite of the marine sponge, <u>Plakortis zygompha</u>, was chosen as a target.⁷ Addition of <u>1</u> to 4-methyl-1,2-epoxypentane⁸ occurred regioselectively in 87% yield. Cleavage, hydrolysis and dehydration with mercuric chloride in refluxing CH₃CN/H₂O (3:1) afforded β-phenylthio enone <u>5</u> in 42% isolated yield. Reduction with Raney nickel in DMSO⁹ gave rise to <u>6</u> (13% yield) which exhibits spectral characteristics (250 MHz NMR, IR) identical to those reported for the natural material.⁷ No effort was made to optimize the yield since selective desulfurizations of this type are not a trivial matter.⁹ Presently, we are attempting to expand this methodology and utilize the fact that

compounds like 5 are equivalent to a cross-conjugated dienone where one double bond is 'protected" and may be unmasked <u>via</u> oxidation-sulfoxide elimination. In addition cyclopropyl phenyl sulfides may be desulfurized in high yield (>80%) by Ra Ni in hot ethanol or acetone. Synthetically useful yields of alkyl cyclopropanes thus may be obtained by alkylation of l-lithiocyclopropyl phenyl sulfide followed by desulfurization, a procedure which provides a route to substituted cyclopropanes which are not available by direct alkylation of cyclopropyl lithium.¹⁰

As a variety of cyclopropyl phenyl sulfides have been made available by 1,3-elimination reactions¹¹ and by the addition of sulfur stabilized carbenes to olefins¹² the carbonyl forming reactions and desulfurizations reported herein should enhance the synthetic utility of this class of compounds.

<u>Typical Procedure</u>: To a cold (-78°) solution of 1-lithiocyclopropyl phenyl sulfide (20.0 mMol), prepared by the method of Trost and coworkers^{2a}, in THF (75 ml) was added dropwise under argon a solution of n-butyl bromide (3.00 g, 22.0 mMol) in THF (5 ml). After 3 h the orange solution was allowed to warm to 20[°] and stirred overnight. The reaction was quenched with aqueous NH₄Cl (20%) and worked up in the usual manner. Careful fractional distillation afforded 1-butylcyclopropyl phenyl sulfide, (3.26 g, 79%) as a colorless oil (b.p. 102-104[°], 1.5 mm). Refluxing the sulfide (0.31 g, 1.5 mMol) with a mixture of 48% HBr/HOAc (1:1) (6 ml) for 3 h gave, after work-up and chromatography on silica, 3-heptanone (0.087 g, 51%). Alternatively, treatment of the sulfide (0.206 g, 1.00 mMol) with HgCl₂ (0.314 g, 3.00 mMol) in refluxing CH₃CN/H₂O (3.1; 8 ml) for 48 h afforded, after work-up and chromatography on silica, the γ -ketosulfide as an oil (0.170 g, 77%). NMR $(\text{CDCl}_3) \delta 0.85$ (t, 3H), 1.35 (m, 4H), 2.35 (t, J=8 Hz; 2H), 2.70 (t, J=7 Hz; 2H) 3.15 (t, J=8 Hz; 2H) 7.25 (m, 5H). IR, C=0, 1710 cm⁻¹. It is convenient to visualize the ketones by spraying analytical TLC plates with 2,4-DNPH reagent.

Acknowledgement: Helpful discussions with Dr. O. W. Lever, Jr. are greatly appreciated.

References:

- (a) Seebach, D. <u>Angew. Chem. Int. Ed. Engl.</u>, 1979, <u>18</u>, 239; (b) For an excellent general review of polarity inversion see: Lever, O.W., Jr. <u>Tetrahedron</u>, 1976, 32, 1943.
- (a) Trost, B.M.; Keeley, D.E.; Arndt, H.C.; Rigby, J.H.; Bogdanowicz, M.J. J. Am. Chem. Soc. 1977, <u>99</u>, 3080; (b) Trost, B.M.; Keeley, D.E.; Arndt, H.C.; Bogdanowicz, M.J. <u>ibid</u>., 1977. <u>99</u>, 3088; (c) Miller, R.D.; McKean, D.R. <u>Tetrahedron Lett</u>., 1979, 583; (d) Miller, R.D.; McKean, D.R.; Kaufmann, D. <u>ibid</u>., 1979, 587.
- (a) Yields refer to isolated, purified products which had appropriate spectral properties. Elemental analyses were obtained for new compounds. (b) During the course of our work, a single instance of alkylation has been reported: Halazy, S.; Krief, A. <u>Tetrahedron Lett.</u>, 1979, 4233. The useful reductive lithiation of substituted cyclopropanone dithioketals has recently been reported, but the reaction mixtures contain LiSPh and thus are not suited for alkylation attempts except, perhaps, <u>via</u> the cuprates: Cohen, T.; Matz, J. R. Synthetic Commun., 1980, 10, 311; cf. Ref llc.
- 4. Alkylation with secondary halides has thus far proved unsuccessful. These results are not surprising as it is well known that halogen-metal exchange and elimination often compete with substitution of organolithiums. See Wakefield, B.I. "The Chemistry of Organolithium Compounds" 1974, Pergamon Press, Oxford.
- (a) Oxygen substituted cyclopropanes are useful as carbonyl precursors. Wenkert, W.; Berger, D.A.; Golob, N.F. J. Am. Chem. Soc., 1978, 100, 1263; also see, deMeijere, A. Angew, Chem. Int. Ed. Engl. 1979, 18, 809. (b) For conversion of cyclopropanone dithioacetals see: Grobel, B.; Seebach, D. Synthesis, 1977, 357.
- HgCl₂ is known to assist in the hydrolysis of both dithianes and vinyl sulfides (see ref. lb and 5b); HgCl₂ promoted cyclopropane cleavage is known: Matteson, D.S. "Organometallic Reaction Mechanisms" 1974, Academic Press, New York, 176-187.
- Faulkner, D.J.; Ravi, B.N. <u>Tetrahedron Lett.</u>, 1980, 23; enone <u>6</u> was labeled <u>Z</u> instead of <u>E</u> in this paper.
- 8. Prepared in 83% yield from m-chloroperbenzoic acid oxidation of 4-methyl-l-pentene.
- 9. Demoute, J.-P; Hainaut, D.; Toromanoff, E.; Velluz, M.L. <u>C.R. Hebd. Seances Acad. Sci</u>, <u>Ser. C</u>, 1973, <u>277</u>, 49.
- 10. Yamamoto, H.; Kitatani, K.; Hiyama, T.; Nozaki, H. J. Am. Chem. Soc. 1977, 99, 5816.
- (a) Bumgardner, C.L.; Lever, J.R.; Purrington, S.T., <u>J. Org. Chem</u>. 1980, <u>45</u>, 748;
 (b) Cohen, T.; Daniewski, W.M. <u>Tetrahderon Lett</u>., 1978, 2991; (c) Tanaka, K.; Uneme, H. Matsui, S.; Tanikaga, R.; Kaji, A. <u>Chemistry Lett</u>., 1980, 287. (d) Little, R.D.; Dawson, J.R. J. Am. Chem. Soc., 1978, <u>100</u>, 4607.
- Block, E. "Reactions of Organosulfur Compounds" 1978, Academic Press, New York, N.Y.; 221-251.

(Received in USA 15 March 1982)