

Stereoselective Epimerizations of Glycosyl Thiols

Lisa M. Doyle, Shane O'Sullivan, Claudia Di Salvo, Michelle McKinney, Patrick McArdle, and Paul V. Murphy*[®]

School of Chemistry, National University of Ireland Galway, University Road, Galway, Ireland H91 TK33

(5) Supporting Information

ABSTRACT: Glycosyl thiols are widely used in stereoselective S-glycoside synthesis. Their epimerization from 1,2*trans* to 1,2-*cis* thiols (e.g., equatorial to axial epimerization in thioglucopyranose) was attained using TiCl₄, while SnCl₄ promoted their axial-to-equatorial epimerization. The method included application for stereoselective β -D-manno- and β -Lrhamnopyranosyl thiol formation. Complex formation explains the equatorial preference when using SnCl₄, whereas TiCl₄ can shift the equilibrium toward the 1,2-*cis* thiol via 1,3-oxathiolane formation.

lycoconjugates and their mimics/mimetics are being \mathbf{J} investigated in drug discovery,¹ vaccine development,² targeting,³ and as probes for molecular recognition.⁴ S-Glycosides are less susceptible to acid and enzymatic hydrolysis than O-glycosides, justifying their investigation as glycomimetics.⁵ They have different conformational preferences to O-glycosides, which can influence their biological properties.⁶ They have found application⁷ in reactivity based oligosaccharide synthesis, which is influenced by anomeric configuration.⁸ Glycolipids, glycopeptides, oligosaccharides,^{5,9} glycodendrimers,¹⁰ and glyconanoparticles¹¹ containing Sglycosidic linkages are studied, and glycosyl thiols (1thiosugars) are valuable building blocks in their synthesis. Unlike saccharide hemiacetal groups (glycosyl alcohols), glycosyl thiols often retain their anomeric configuration in subsequent reactions, which makes stereoselective S-alkylation, conjugate addition, and thiol-ene or thiol-yne coupling reactions possible.¹² Anomerization (epimerization of equatorial anomer to axial anomer) with Lewis acids has been attained with glycosyl thiols derived from uronic acid, where the rate of anomerization 13,14 is generally faster than for other pyranoses due to favorable chelation of the C-6 carbonyl group.^{15,16} Here, we provide conditions for the successful epimerization of 1,2-trans benzoylated glycosyl thiols, which are not uronic acids, to the 1,2-cis thiols using TiCl₄; the use of benzoyl rather than acetyl groups compensate somewhat for the absence of the C-6 carbonyl group. Notably, we also report the axial to equatorial epimerization of glycosyl thiols using SnCl₄.

The rate of Lewis acid promoted anomerization of *O*-glycosides is enhanced in the presence of acetic $acid^{17}$ or a Lewis $acid^{18}$ additive. Preliminary experiments with an *O*-glycoside showed that methanesulfonic acid (MSA) is superior to acetic acid. Initially, when acetylated thiol 1β (Table 1) was reacted with SnCl₄ or TiCl₄ (0.5 to 3 equiv) in the presence of MSA (0.3 equiv), still only ~30% of its α -anomer was

Table 1. TiCl₄ Promoted Epimerization of 2

AcO AcO	ΟΑc Β ΑcΟ SH Βz 1β 2	BzO = 1:2	$\begin{array}{c} \begin{array}{c} TiCl_4 \\ CH_2Cl_2 \\ room \\ temp \end{array} \begin{array}{c} BzO \\ 2\alpha \end{array} \end{array} \begin{array}{c} BzO \\ BzO \end{array}$	DBZ DBZ BZO SH	-OBz OSH BzO 2β
entry	additive	equiv ${\rm TiCl}_4$	equiv additive	time (h)	α : β
1	no additive	2.5	_	17	79:21
2	MSA	2.5	0.3	16	84:16
3	Ph ₃ P	2.5	0.3	16	93:7
4	pyridine	2.5	0.3	16	93:7
5	Et ₃ N	2.5	0.3	16	92:8
6	no additive	3	_	16	84:16
7	no additive	3	_	72	90:10
8	pyridine	0	0.5	72	33:66
9	pyridine	3	0.3	72	~90:1
10	pyridine	3	0.5	16	>90:1

generated, with mostly $\mathbf{1\beta}$ remaining. Nevertheless, reaction of a 1:2 mixture of *benzoylated* galactosyl thiols 2α and 2β with TiCl₄ (0.5 to 2 equiv) and MSA (0.3 equiv) gave 45–70% of 2α , with the main byproduct being glycosyl chloride, and 2β was not detected. A wider study (Table 1, Table 2) was conducted with 2α and 2β using TiCl₄. For reaction with TiCl₄ alone (2.5 equiv), the $\alpha:\beta$ ratio was 79:21 after 17 h (entry 1), increasing to 84:16 at higher concentration of TiCl₄ (3 equiv) after 16 h (entry 8) with a further increase to ~9:1 over 72 h (entry 9). In experiments with TiCl₄ (2.5 equiv), where additives triphenylphosphine, pyridine, and triethylamine were added (entries 3–5) the $\alpha:\beta$ ratios exceeded 91:9 after 16 h. Carrying out the reactions at lower temperature (e.g., 0 °C) led to lower selectivity after 16 h due to reduced

Received: September 4, 2017

Scheme 1. Axial to Equatorial Epimerization of 3α

BzO $\xrightarrow{\text{SH}}_{\text{BzO}}$ $\xrightarrow{\text{SH}}_{\text{BzO}}$ $\xrightarrow{\text{CH}_2\text{Cl}_2}_{\text{CH}_2\text{Cl}_2}$ $\xrightarrow{\text{CH}_2\text{Cl}_2}_{\text{CH}_2\text{Cl}_2}$ $\xrightarrow{\text{CH}_2\text{Cl}_2}_{\text{CH}_2\text{Cl}_2}$	$[3\beta; 3\alpha; 3\mathbf{C}\mathbf{I} = 68:0:3$ BZO SH BZO BZO OBZ OBZ MURICINA BZO OBZ	2] SH BzO OBz 3α	
$BzO \xrightarrow{OOE} 3\alpha$	[3]: 3α : $3CI = 84:8:8$ BZO 3α : $3CI = 84:8:8$ BZO OBZ 3β (78%)	$B_{zO} = B_{zO} = B$	

Table 2. $TiCl_4$ (3 equiv) Promoted Epimerization in CH_2Cl_2 (room temp, 16 h)

reactant	additive	products, ratio (isolated yield)
2 α, 2 β (1:2)	pyridine (0.5 equiv)	$\begin{array}{c} BzO \\ BzO \\ BzO \\ 2\alpha \ (56\%) \ BzO \ SH \end{array} \begin{array}{c} BzO \\ BzO \\ BzO \\ SH \end{array} \begin{array}{c} BzO \\ BzO \\ BzO \\ SH \end{array} \begin{array}{c} BzO \\ BzO \\ BzO \\ BzO \\ SH \end{array} \begin{array}{c} SH \\ BzO \\ BzO \\ SH \end{array} \begin{array}{c} CBz \\ COBz \\ $
4 α, 4 β (2:9)	pyridine (0.5 equiv)	$\begin{array}{c} \begin{array}{c} & & & \\ BzO \\ BzO \\ 4\alpha \ (63\%) \ BzO \\ \end{array} \begin{array}{c} BzO \\ SH \\ BzO \\ SH \\ \end{array} \begin{array}{c} OBz \\ BzO \\ BzO \\ SH \\ BzO \\ SH \\ \end{array} \begin{array}{c} OBz \\ OBz \\ SH \\ BzO \\ 4\beta \end{array}$
5 α, 5 β (1:2)	-	$\begin{array}{c} \begin{array}{c} B_{ZO} & O \\ B_{ZO} & B_{ZO} \end{array} \\ \begin{array}{c} S\alpha \ (52\%) B_{ZO} \\ SH \ 10:1 \end{array} \begin{array}{c} B_{ZO} & O \\ B_{ZO} \\ SH \end{array} \\ \begin{array}{c} SH \\ BZO \\ SH \end{array} \end{array}$
6 α, 6 β (2:1)	-	$\begin{array}{c} BzO \qquad BzO \\ BzO \qquad BzO \\ 6\beta \ (48\%) \ BzO \\ SH \\ \end{array} \begin{array}{c} BzO \\ SH \\ BzO \\ SH \\ BzO \\ SH \\ BzO \\ SH \\ SH$
7α, 7β (1:6)	-	$\begin{array}{c c} & & & & \\ & & & & \\ BzO & & & \\ BzO & & & \\ \hline \end{array} \begin{array}{c} & & & \\ OBz & \\ BzO & & \\ BzO & & \\ BzO & & \\ \end{array} \begin{array}{c} & & & \\ OBz & \\ BzO & & \\ BzO & & \\ BzO & & \\ \end{array} \begin{array}{c} & & \\ OBz & \\ BzO & & \\ BzO & & \\ \end{array} \begin{array}{c} & & \\ OBz & \\ OBz & \\ BzO & & \\ \end{array} \begin{array}{c} & & \\ OBz & \\ OBz & \\ BzO & & \\ \end{array} \begin{array}{c} & & \\ OBz & \\ OBz & \\ \end{array} \begin{array}{c} & & \\ OBz & \\ OBz & \\ \end{array} $
8β	-	$\begin{array}{c} SH \\ >20:1 \\ OBz \\ OBz \\ BzO \ 8\alpha \ (38\%) \\ BzO \ 8\beta \end{array} \xrightarrow{SH} 8\beta$
9α, 9β (1:2)	pyridine (0.5 equiv)	$\begin{array}{c} BzO & OBz \\ BzO & BzO \\ \textbf{9}\alpha (42\%) \\ BzO & BzO \\ \textbf{9}\alpha (42\%) \\ \textbf{9}\alpha (42\%) \\ \textbf{1} \\ \textbf{0} \\ \textbf$
10α, 10β (1:4)	pyridine (0.5 equiv)	$\begin{array}{c} BzO & OBz \\ BzO & OBz \\ BzO & BzO \\ 10\alpha \ (53\%)^{BzO} \\ SH \end{array} + 10\beta$

reaction progress. Pyridine was unable to promote the anomerization reaction of 2 on its own (entry 10). Use of TiCl₄ (3 equiv) and pyridine (0.5 equiv) together led to only 2α being detected in the mixture after 16 h (entry 12) and isolated in 56% yield. In the cases of the hexopyranoses 4 (>18:1 vs 11:1) and 10 (>20:1 vs 10:1) the addition of pyridine led to improved stereoselectivity (Table 2). For 5–9 the use of pyridine showed no difference or a reduction in selectivity (see Table S1). It was necessary to minimize the quantity of silica gel used for chromatographic purification to maximize the isolated yields of the thiols (reported in Table 2) as hydrolysis was occurring.

The TiCl₄ promoted anomerization of the mixture of 2,3,4tri-O-benzoyl-thio-L-rhamnopyranosyl thiols 3α and 3β , which contained mostly the axial or α -anomer (α : $\beta = 2.5:1$), unexpectedly gave only the β -anomer 3β (40% isolated) and glycosyl chloride 3-Cl. The structures of $3\alpha/3\beta$ were supported by NOESY and ¹³C NMR, and 3α was confirmed by X-ray crystal structure determination. The pure α -anomer 3α was treated with SnCl₄ and again the β -thiol 3β was preferred, with an 8:1 mixture generated after 36 h at 4 °C. The reaction was found to be improved in 24 h if MSA was added, and 3β was subsequently isolated in 78% yield (Scheme 1).

Next $SnCl_4$ was investigated for epimerization of mannopyranosyl thiol 11α . For a range of reactions (Table 3) in the presence of $SnCl_4$ in dichloromethane, epimerization

Table 3. Optimizati	on of the	Epimerization	of	11α
---------------------	-----------	---------------	----	------------

	$ \begin{array}{c} BzO \\ BzO \\ BzO \\ 11\alpha SH^{CH_2} \end{array} $	BzO BzO Cl ₂	OBz -0_5 11β	BzO BzO H BzO	$\frac{0}{11\alpha} \frac{0}{11\alpha} \frac{0}{11\alpha} \frac{1}{10}$	н
entry	additive (equiv)	equiv of SnCl ₄	T (°C)	time (h)	$\beta:\alpha$ ratio	yield 11β
1	no additive	2.5	20	20	70:30	-
2	no additive	2.5	4	20	76:24	_
3	no additive	2.5	0	20	72:28	_
4	no additive	2.5	-30	24	63:37	_
5	no additive	1.5	4	20	69:31	_
6	PPh ₃ (0.5 equiv)	2.5	4	24	76:24	-
7	sulfamic acid (0.5 equiv)	2.5	4	24	74:26	-
8	MSA (2 equiv)	2.5	4	24	92:8	82%
9	MSA (0.5 equiv)	2.5	4	24	89:11	79%

of 11α to 11β was observed, with the β : α anomer selectivities ranging from 63:37 to 76:24. The addition of MSA increased the stereoselectivity to >9:1 in favor of the β -mannopyranosyl thiol, and 11β was isolated in 82% yield from a 200 mg scale reaction. A wider study of reactions of glycosyl thiols were then conducted with SnCl₄. Various glycosyl thiols (Table 4), with the exception of 4α (not shown in Table 4), gave mixtures that favored the equatorial product, irrespective of whether the substituent at C-2 was axial, as is the case for mannopyranose or rhamnopyranose, or equatorial at C-2.

Optimized conditions for various glycosyl thiols (each 100 mg scale) are shown in Table 4, and the isolated yields of equatorial thiols varied from 34% (15α) to 90% (6β) with glycosyl chloride formed to a minor extent in most cases. The axial to equatorial epimerization with SnCl₄ was also successful for acetylated 12–16. In the case of the acetylated rhamnopyranosyl thiol 13, the addition of MSA (0.5) led to a reduction in amount of glycosyl chloride produced. The use of lower reaction temperatures (-30 °C) led to a reduction in chloride and unidentified product formation, particularly for the L-thioarabinopyranose 15α ,¹⁹ and L-thiofucopyranose 7β .

Next, we endeavored to gain an understanding of the origin of stereoselectivity in these reactions. Hence, we first tested the hypothesis that the glycosyl thiols coordinate to the Lewis acids and that the relative stability of a complex formed in dichloromethane ultimately contributes to defining the anomer ratio of the glycosyl thiols generated after workup. SnCl₄ coordinates with heteroatoms such as O, N, and S, and several crystal structures have been reported, as either SnCl₄·L or SnCl₄·L₂ complexes.¹⁹ We considered the possibility that coordination would be reduced in an oxygen atom containing solvent which would compete with the acylated pyranose for coordinate to Lewis acid. Carbonyl groups are known to coordinate to Lewis acids including SnCl₄ in both the solid state and in solution, and EtOAc was therefore investigated. Hence 1β was converted by SnCl₄ (2.5 equiv) to a 42:58

reactant	Т (°С)	products and ratio (equatorial : axial anomer) after 24 h	% yield
AcO OAc AcO Ia AcO SH	20	$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ AcO \\ I\beta \\ 80:20 \end{array}$	46 1β
BzO BzO 2 α BzO SH	20	$BzO \xrightarrow{OBz} SH + 2\alpha$ $BzO \xrightarrow{2\beta} 82:18$	59 2 β
BzO BzO 4α BzO SH	20	$\begin{array}{c} & & & \\ BzO \\ BzO \\ BzO \\ 4\beta \\ OBz \\ 75:25 \end{array} $	52 4β
BzO BzO 6β BzO _{SH}	-30	BzO BzO 6α OBz 78:22	54 6α
OBz SH BzO OBz 7α	20	$\begin{array}{c} OBz \\ -O \mathcal{I} OBz \\ BzO \\ OBz \\ OBz \\ 7\beta \\ 91:9 \end{array}$	90 7 β
SH OF OBz BzO OBz 8 α	-30	$\begin{array}{c} \overbrace{\textbf{OBz}}^{\text{OT}} \stackrel{\text{SH}}{\underset{\text{BzO}}{}} + 8\alpha \\ \underset{\text{BzO}}{} \stackrel{\text{OBz}}{\underset{\text{BzO}}{}} 8\beta 89:11 \end{array}$	68 8β
$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ 12\alpha \\ SH \end{array}$	20	$\begin{array}{c} AcO \\ AcO \\ AcO \\ AcO \\ 12\beta \end{array} \begin{array}{c} OAc \\ SH + 12\alpha \\ 91:9 \end{array}$	67 12β
AcO 13α AcO OAc	4	$\begin{array}{c} AcO & SH \\ AcO & + 13\alpha \\ 13\beta & OAc \\ 86:14 \end{array}$	78ª 13β
SH 	20	$\begin{array}{c} & \text{OT SH} \\ & \text{OAc} + 14\alpha \\ & \text{AcO OAc} + 14\beta & 90:10 \end{array}$	64 14β
$\begin{array}{c} AcO \\ AcO \\ 15\beta \end{array} \begin{array}{c} O \\ AcO \\ SH \end{array}$	20	$\begin{array}{c} \text{AcO} \\ \text{AcO} \\ \text{AcO} \\ \textbf{15}\alpha \text{ AcO} \\ \textbf{54:46} \end{array} $	34 15 α
AcO AcO AcO 16α AcO SH	20	$A_{ACO} = 16\beta OAC SH + 16\alpha$	51 16β

Table 4. SnCl₄ (2.5 equiv) Promoted Epimerization in CH_2Cl_2

^aThis yield is from a reaction carried out with MSA (0.5 equiv) added.

mixture of $\mathbf{1}\alpha$ and $\mathbf{1}\beta$ in EtOAc-CH₂Cl₂ (3:2), which had lower selectivity than in dichloromethane alone ($\alpha:\beta = 20:80$, Table 4). Thus, EtOAc competes with the pyranosyl thiols for coordination to SnCl₄ but does not inhibit the epimerization. The reaction in the presence of EtOAc reflects the equilibrium ratio of anomers of the glycosyl thiols in the absence of significant chelation to the Lewis acid, whereas stereoselectivity in dichloromethane is influenced by a more stable complex being formed between SnCl₄ and the glycosyl thiol.

The use of ¹¹⁹Sn NMR spectroscopy proved diagnostic for probing the interaction of SnCl₄ with 3β in dichloromethane. There was a peak at δ –149 ppm in the proton decoupled ¹¹⁹Sn NMR spectrum for free SnCl₄ (0.9 M solution in CDCl₃), whereas on addition of 3β the colorless solution became a brick red color and the ¹¹⁹Sn peak shifted to –188.9 ppm, consistent with formation of a hexavalent tin complex in solution.²⁰ This proposal was supported by ¹H and ¹³C NMR analysis of the mixture generated after 3α (0.068 mmol) was

dissolved in CDCl₃ (0.75 mL) and 2 equiv of SnCl₄ was added (from a solution in CDCl₃), which provided information on the complex formed between 3β and SnCl₄ $(3\beta$ -SnCl₄). The doublet (J = 10.0 Hz) at δ 2.61 ppm corresponding to the thiol proton in uncomplexed 3β was no longer visible as a sharp doublet in the spectrum. The signal for the thiol proton of 3α broadened and decreased in intensity as SnCl₄ was added and a new broad signal appeared downfield between δ 3.20–3.60 ppm for the SH. The integration for this signal, assigned to the SH in 3β -SnCl₄ was equal to integration of other signals assigned to the carbohydrate ring protons for 3β -SnCl₄ in the spectrum, with 3β -SnCl₄ the most abundant species present. Compared to 3β , the anomeric proton ($\Delta\delta = 0.42$ ppm) and the pyranose H-5 ($\Delta \delta = 0.41$ ppm) in 3β -SnCl₄ were most shifted downfield, with the other pyranose signals shifted to a lesser degree ($\Delta\delta$ < 0.2 ppm). The greatest shifts downfield in the ¹³C NMR spectrum of 3β -SnCl₄ were for the anomeric carbon (δ 80.3 ppm vs δ 76.8 ppm; $\Delta \delta$ = 3.7 ppm) and for the pyranose C-5 (δ 79.2 ppm vs δ 75.7 ppm; $\Delta \delta$ = 3.5 ppm). In contrast, the C-2 and C-4 signals were shifted upfield ($\Delta\delta$ values = -3.3 and -3.1 ppm), respectively. No shifts downfield or upfield of more than 0.3 ppm were observed for the carbonyl peaks. This data supports complexation involving the pyranose oxygen atom and the thiol group of 3β coordinating to SnCl₄ (Scheme 2). The

pyranose ring maintains its ${}^{1}C_{4}$ conformation on the basis of coupling constants observed in the ¹H NMR spectrum. Workup of this mixture led to hydrolysis of the complex with SnCl₄ present and gave a product which contained mostly 3β . An NMR spectroscopic study indicated that reaction of 3α with TiCl₄ established an equilibrium of 3α with 3β but that TiCl₄ also induced nucleophilic attack by the thiol of 3β at the C-2 carbonyl group, cis to the thiol, which leads to generation of the 2-phenyl-1,3-oxathiolan-2-ylium cation 17;²¹ this shifts the equilibrium (Scheme 2) toward species that give 3β after workup. This process may contribute to the preferred formation of axial glycosyl thiols (Table 2), where the major products isolated also have 1,2-cis configurations. Hence, the ¹H and ¹³C NMR spectroscopic analysis, in one experiment, of the mixture generated from treating 3α with TiCl₄ (0.5 equiv) in CDCl₃ showed signals consistent with the presence of the thiols 3α (~50%) and 3β (~25%) as well as 17 $(\sim 25\%)$. The presence of the carbenium carbon atom was supported by a diagnostic signal at δ 214.7 ppm in the ¹³C NMR spectrum; the signals for C-2 (δ 96.5 ppm; $\Delta \delta$ = +23.8 ppm) and C-1 (δ 86.4 ppm; $\Delta \delta$ = +8.7 ppm) of the cationic species are shifted significantly downfield compared to those of free 3β and support the presence of the nearby positively charged carbon. Workup of this mixture gave a 1:1 mixture of the thiols. The cation 17 was trapped in the presence of sodium cyanoborohydride to give 18.

Further support for this proposal in Scheme 2 was obtained by isolation of the stable dihydrothiazole 20 from the reaction of GlcNAc derivative 19β with TiCl₄, which was subsequently hydrolyzed to give thiol 19α (Scheme 3).

Strategies reported for the synthesis of glycosyl thiols include displacement of glycosyl halides with thiourea,²² thioacetates,²³ or thiophosphates²⁴ followed by release of the free thiol or reaction of glycosyl alcohols with Lawesson's reagent, with moderate to good stereoselectivity observed.²⁵ Reactions with carbon disulfide have been used, to give α -²⁶ or β -thiols.²⁷ Axially oriented glycosyl thiols can be selectively prepared via equatorial glycosyl chlorides,²⁸ or by treating 1,2-anhydro or 1,6-anhydro sugars or glycosyl trichloroacetimidates with bis-trimethylsilyl sulfide.²⁹ The complementary strategy developed herein provides the opportunity to epimerize acylated glycosyl thiols, contributing to stereo-selective synthesis of *S*-glycosides.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.7b02760.

X-ray crystal structure of 3α (CIF) Schemes S1–S3, Table S1, Experimental Section (PDF)

NMR spectra (PDF)

AUTHOR INFORMATION

Corresponding Author

*E-mail: paul.v.murphy@nuigalway.ie.

ORCID 💿

Paul V. Murphy: 0000-0002-1529-6540 Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank Science Foundation Ireland for an IvP award (Grant Number 12/IA/1398) cofunded by the European Regional Development Fund (Grant Number 14/SP/2710). The Irish Research Council can also be thanked for a scholarship award to M. McKinney.

REFERENCES

- (1) (a) Ernst, B.; Magnani, J. L. Nat. Rev. Drug Discovery 2009, 8,
- 661. (b) Sattin, S.; Bernardi, A. Carbohydr. Chem. 2015, 41, 1.
- (2) Boltje, T. J.; Buskas, T.; Boons, G.-J. Nat. Chem. 2009, 1, 611.
- (3) Spiro, R. G. Cell. Mol. Life Sci. 2004, 61, 1025.
- (4) Feizi, T.; Chai, W. Nat. Rev. Mol. Cell Biol. 2004, 5, 582.
- (5) Pachamuthu, K.; Schmidt, R. R. Chem. Rev. 2006, 106, 160.

(6) Montero, E.; García-Herrero, A.; Asensio, J. L.; Hirai, K.; Ogawa, S.; Santoyo-González, F.; Canada, F. J.; Jiménez-Barbero, J. *Eur. J. Org. Chem.* **2000**, 2000, 1945.

(7) (a) Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900. (b) Lian, G.; Zhang, X.; Yu, B. Carbohydr. Res. 2015, 403, 13.
(8) (a) Smith, R.; Muller-Bunz, H.; Zhu, X. Org. Lett. 2016, 18, 3578. (b) Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734.

(9) (a) Lo Conte, M.; Pacifico, S.; Chambery, A.; Marra, A.; Dondoni, A. J. Org. Chem. 2010, 75, 4644. (b) O'Reilly, C.; Murphy, P. V. Org. Lett. 2011, 13, 5168. (c) Sylla, B.; Legentil, L.; Saraswat-Ohri, S.; Vashishta, A.; Daniellou, R.; Wang, H.-W.; Vetvicka, V.; Ferrières, V. J. Med. Chem. 2014, 57, 8280.

(10) Gingras, M.; Chabre, Y. M.; Roy, M.; Roy, R. Chem. Soc. Rev. 2013, 42, 4823.

(11) van Kasteren, S. I.; Campbell, S. J.; Serres, S.; Anthony, D. C.; Sibson, N. R.; Davis, B. G. *Proc. Natl. Acad. Sci. U. S. A.* **2009**, *106*, 18.

(12) Dondoni, A.; Marra, A. Chem. Soc. Rev. 2012, 41, 573.

(13) (a) Pilgrim, W.; Murphy, P. V. J. Org. Chem. 2010, 75, 6747.
(b) O'Reilly, C.; Murphy, P. V. Org. Lett. 2011, 13, 5168.

(14) (a) O'Brien, C.; Poláková, M.; Pitt, N.; Tosin, M.; Murphy, P. V. Chem. - Eur. J. 2007, 13, 902. (b) Farrell, M.; Zhou, J.; Murphy, P. V. Chem. - Eur. J. 2013, 19, 14836.

(15) Murphy, P. V. Carbohydr. Chem. 2016, 41, 90.

(16) Caraballo, R.; Deng, L.; Amorim, L.; Brinck, T.; Ramström, O. J. Org. Chem. 2010, 75, 6115.

(17) (a) Lemieux, R. U.; Hindsgaul, O. Carbohydr. Res. 1980, 82, 195.
(b) Tosin, M.; Murphy, P. V. Org. Lett. 2002, 4, 3675.
(c) Poláková, M.; Pitt, N.; Tosin, M.; Murphy, P. V. Angew. Chem., Int. Ed. 2004, 43, 2518.

(18) Cronin, L.; Tosin, M.; Müller-Bunz, H.; Murphy, P. V. Carbohydr. Res. 2007, 342, 111.

(19) Ljevaković, B.; Horvat, J.; Klaić, B.; Tomić, S. J. Carbohydr. Chem. 1983, 2, 263.

(20) (a) Otera, J. J. Organomet. Chem. **1981**, 221, 57. (b) Otera, J.; Kusaba, A.; Hinoishi, T.; Kawasaki, Y. J. Organomet. Chem. **1982**, 228, 223. (c) Chagas, R. C. R.; Maia, J. R. d. S.; Ferraz, V. P. Main Group Met. Chem. **2011**, 34, 131.

(21) For related cations, see: (a) Pittman, C. U., Jr.; McManus, S. P.; Larsen, J. W. Chem. Rev. 1972, 72, 357. (b) Godage, H. Y.; Riley,

- A. M.; Woodman, T. J.; Potter, B. V. L Chem. Commun. 2006, 2989.
- (22) Johnston, B. D.; Pinto, B. M. J. Org. Chem. 2000, 65, 4607.
 (23) MacDougall, J. M.; Zhang, X.-D.; Polgar, W. E.; Khroyan, T.
- V.; Toll, L.; Cashman, J. R. J. Med. Chem. 2004, 47, 5809.
- (24) Xue, W.; Cheng, X.; Fan, J.; Diao, H.; Wang, C.; Dong, L.; Luo, Y.; Chen, J.; Zhang, J. *Tetrahedron Lett.* **200**7, *48*, 6092.
- (25) Bernardes, G. J. L.; Gamblin, D. P.; Davis, B. G. Angew. Chem., Int. Ed. 2006, 45, 4007.
- (26) Ané, A.; Josse, S.; Naud, S.; Lacône, V.; Vidot, S.; Fournial, A.; Kar, A.; Pipelier, M.; Dubreuil, D. *Tetrahedron* **2006**, *62*, 4784.
- (27) Jana, M.; Misra, A. K. J. Org. Chem. 2013, 78, 2680.

(28) Blanc-Muesse, M.; Driguez, H.; Joseph, B.; Viaud, M. C.; Rollin, P. Tetrahedron Lett. **1990**, 31, 3867.

(29) (a) Dere, R. T.; Wang, Y.; Zhu, X. Org. Biomol. Chem. 2008, 6, 2061. (b) Zhu, X.; Dere, R. T.; Jiang, J.; Zhang, L.; Wang, X. J. Org. Chem. 2011, 76, 10187. (c) Dere, R. T.; Kumar, A.; Kumar, V.; Zhu, X.; Schmidt, R. R. J. Org. Chem. 2011, 76, 7539.

D