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ABSTRACT: A H3PO3 catalyzed alkylation of phenols with alkenes is achieved in a facile, efficient, and selective manner. The 
reaction shows a unique selectivity, i.e., excellent regioselectivity, thorough suppression of over-alkylation, without alkylation of 
simple phenyl ring, and can selectively prepare ortho-, meta-, or para-alkylated phenol derivatives with good to excellent yields. 
This merit along with mild reaction conditions, sensitive functional group tolerance, and scale-up synthesis, as well as late-
modification of phenolic bioactive compounds make it an ideal and practical alternative for the modification of phenols.  

Introduction 

Phosphorous acid (H3PO3) is an affordable, readily availa-
ble, relatively lowly acidic and corrosive Brønsted acid. Com-
pared with organophosphorus acids that are extensively used 
in organic synthesis,1 H3PO3 catalysis is underdeveloped.2,3 
Over the past years, we have focused our research interest on 
H3PO3 catalysis, and have acknowledged that H3PO3 could act 
as both Lewis acid and base, which often shows interesting 
effects in some acid catalyzed reactions.3 Herein, as a result of 
our continued interest in H3PO3 catalysis, we report a facile, 
efficient and selective alkylation reaction of phenols with al-
kenes toward various alkylated phenols (Scheme 1).  

Scheme 1. Selective Alkylation of Phenols with Alkenes via 
H3PO3 Catalysis 

 
Phenol derivatives are among the most basic chemicals and 

are widely applied in pharmaceuticals, agrochemicals, dyes, 
and adhesives, as well as polymeric materials.4 For example, 

phenolic resin that is derived from a simple phenol is con-
sumed at a rate of millions tons per year (Figure 1). In this 
regard, the facile and selective functionalization of simple 
phenols, which would enhance the diversity and applications 
of these compounds, is of great importance.  

 
Figure 1. Representative phenol derivatives. 

Among the numerous efforts on the selective functionaliza-
tion of phenols,5 the catalytic alkylation of phenols with al-
kenes6–12 is one of the most promising approaches because it 
could form industrially useful alkylated phenols directly from 
easily available starting materials.9 Typically, the reaction 
proceeds via Friedel-Crafts type alkylation, which is generally 
catalyzed by strong Lewis acids (TiCl4, AlCl3, FeCl3, and 
ZnBr2) and Brønsted acids (HF and H2SO4).

6,7 Acidic materi-
als such as graphene,8 zeolite,10 mesoporous and nanoporous 
materials11 as well as amberlyst resin12 have also been success-
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fully developed as catalysts in this reaction. Recently, the tran-
sition metal (Rh-,13 Ir-,14 and Re-15) catalyzed addition of phe-
nols to alkenes via C‒H bond activation has emerged as a 
good alternative to this type of reaction. Despite notable ad-
vances, these reported methods generally suffer from some 
drawbacks, such as harsh reaction conditions, the requirement 
of an excess of one substrate (2–10 equiv), poor functional 
group compatibility, and/or tedious preparation of the catalyst 
materials. Therefore, due to the extensive applications of al-
kylated phenols, the development of new methods of alkyla-
tion to address these issues is highly desirable. 

Results and Discussion  

Fortunately, by the direct treatment of 2-naphthol (1a) with 
styrene (2a, 1.2 equiv) in the presence of H3PO3 (20 mol %, 
50% aq.) in DCE at 100 ºC under N2, the desired ortho-
alkylated product 1-(1-phenylethyl)naphthalen-2-ol (3a) was 
produced in 92% GC yield with >96% position-selectivity 
(Table 1, entry 2). The investigations of the catalytic perfor-
mance of other acid catalysts showed that the phosphorus-
containing inorganic acids had unique performance for the 
electrophilic addition reaction (Table 1, entries 1–3). In com-
parison, typical Brønsted acids and Lewis acids, such as 
H2C2O4, TsOH, H2SO4, TFA, HOAc, FeCl3, CuCl2, and AlCl3 
that are efficient catalysts in other catalytic systems6,7 were not 
compatible under the mild reaction conditions (Table 1, entries 
4–11). This result demonstrated an attractive merit of H3PO3 
catalysis, which allowed for the reaction taking place under 
mild conditions. The reaction proceeded smoothly in weakly 
polar solvents such as PhCl, hexane, and toluene (Table 1, 

Table 1. Optimization of the Reaction Conditionsa 

 
aReaction conditions: 1a (0.4 mmol), 2a (0.48 mmol, 1.2 
equiv), catalyst (20 mol %) in solvent (2.0 mL) for 18 h under 
N2. 

bGC yield using tridecane as an internal standard. ccatalyst 
(10 mol %). dUnder air.  

entries 12–14), whereas it did not occur in strongly polar sol-
vents (CH3CN and DMF; Table 1, entries 15 and 16). A 69% 
yield of 3a was obtained by a half loading of H3PO3 (10 
mol %, Table 1, entry 17). Reaction temperature was also ex-
amined, but no better results were observed (Table 1, entries 
18 and 19). In view of the oxidation potential of phenols, we 
finally investigated the effect of air on the reaction. Surpris-
ingly, a comparable yield of 3a (92%) was obtained (Table 1, 
entry 20 vs entry 2) by conduction of this reaction under air. 
This well compatibility of both water- and air-conditions 
demonstrated the easy operation of this alkylation reaction. 

With the optimized conditions in hand, the scope and gen-
erality of this reaction were investigated. As shown in Scheme 
2, this H3PO3-catalyzed reaction produced the alkylated prod-
ucts in good to excellent yields with a broad substrate scope 
and remarkable functional group tolerance. The reaction of 2-
naphthol (1a) with styrene (2a) gave the product 3a in an 89% 
isolated yield. For 2-naphthols, valuable functional groups 
such as CN (3b), CO2Me (3c), CHO (3d), COOH (3e), and Br 
(3f) were tolerated, furnishing the corresponding products in 
85–93% yields with excellent selectivity (>99%). Notably, 
although CN (3b) and CO2Me (3c) are easily hydrolyzed, and 
CHO (3d) can react with phenols under strong acidic condi-
tions, they were well tolerated. The compatibility of our condi-
tions with CHO and COOH is useful and is the first report of 
this type of reaction. In addition to naphthols, phenols with 
electron-donating groups were also good substrates for the 
reaction, and the corresponding single-alkylated products were 
obtained in 73–93% yields (3g–l) with tolerance of methyl, 
methoxy, thiomethyl, tert-butyl, and phenyl groups. Phenols 
with electron-withdrawing groups gave lower yields of the 
products (3m, 44%; 3n, 41%).  

The reaction showed an interesting selectivity. Reaction of 
the simplest phenol with 2a under the optimized conditions 
gave the para-alkylated product (3o) in 52% yield with the 
ortho-alkylated product (3o') in 32% yield, which was con-
sistent with other reaction systems.6,7 In a sharp contrast, when 
3,5-dimethylphenol that possesses both ortho- and para- elec-
trophilic sites was adopted in this reaction, an 86% yield of the 
ortho-alkylated product (3p) was obtained with 95% regiose-
lectivity, and only a trace amount of the para-alkylated prod-
uct was observed. Interestingly, the reaction of o-cresol that 
has an ortho-methyl group showed para-selectivity, and the 
para-alkylated product (3q) was obtained in an 84% yield 
with 90% regioselectivity. Notably, sesame phenol, which has 
similar reactivity at the 2- and 6-positions, showed >99% se-
lectivity for the 6-position in the reaction (3r). Excellent 6- 
position selectivity (>99%) has also been observed for the 
substrate 3-tert-butyl phenol (3s). For 2,6-dimethoxyphenol, 
the meta-alkylated product (3t) was predominately obtained 
(82% yield with 91% selectivity), and this different regioselec-
tivity may be due to the OMe. It should be noted that although 
alkylation products are more electron-rich, the over-alkylation 
products were either not observed or only observed in trace 
amounts (<1%) in the above reactions. The unique selectivity 
was probably due to the dual roles of the phosphorous acid 
(vide infra) and might be applied to selective synthesis of or-
tho-, meta-, or para-alkylated products, which cannot be easily 
obtained by other methods.6–12 This catalytic system was also 
suitable for polyhydroxy phenols. For example, hydroquinone 
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Scheme 2. Substrate Scopea,b 

 
aReaction conditions: 1 (0.4 mmol), 2 (0.48 mmol, 1.2 equiv), 
H3PO3 (20 mol %) in DCE (2.0 mL) at 100 ºC for 18 h, under 
air. bIsolated yield of 3. Regioselectivity in paradigms (major 
product/minor products) was determined by GC. 

was successfully transformed to the alkylated p-benzenediol 
(3u) in 80% yield.  

With respect to alkenes, terminal alkenes bearing both elec-
tron donating groups such as Me (3v–x) and tBu (3y) and elec-
tron withdrawing groups such as F (3z) and Cl (3za) on the 
phenyl ring reacted smoothly with 2-naphthol to produce the 
corresponding ortho-alkylated products in 60–96% yields. 
Additionally, treatment of substituted terminal alkenes with 
2,6-dimethoxyphenol gave the corresponding meta-alkylated 
products in satisfactory yields (74–93%, 3zb–zd). Sterically 
bulky naphthyl alkene and heteroaryl alkenes exemplified by 
thienyl alkene also reacted with 2,6-dimethoxyphenol, and the 
desired meta-alkylated products (3ze and 3zf) were produced 
in 72% and 62% yields, respectively. In addition to terminal 
alkenes, the reaction of internal alkenes with phenol was also 
successful. For example, upon treatment of indene with 2,6-
dimethoxyphenol, the 4-alkylated-2,6-dimethoxyphenol prod-
uct (3zg) was produced in 73% yield. Additionally, aryl ethers 
could also be alkylated, although lower yields were observed 
(3zh–zj). Notably, the alkylation of the simple phenyl rings 
was not observed in all of the reactions.  

Scheme 3. Synthetic Utility 

 
To further explore the utility of this H3PO3-catalytic system, 

a scale-up reaction (80 mmol) of 1a with 2a was conducted. 
After prolonging the reaction time (48 h), a good yield of 3a 
(73%, 14.5 g) was obtained, which allows for potential indus-
trial applications of this transformation (Scheme 3, eq. 1). 
Estrone is a key intermediate for the synthesis of estrogens 
such as estradiol or ethinyloestradiol, and the alkylation of 
estrone is relevant to drug modification. Satisfactorily, when 
estrone 1zk was reacted with 2a under the optimized condi-
tions, the product (3zk) was obtained in 59% yield (Scheme 3, 
eq. 2). Additionally, raspberry ketone 1zl could also be alkyl-
ated to product 3zl in 72% yield (Scheme 3, eq. 3). 

Although the detailed reaction mechanism remains unclear, 
we propose a possible mechanism (exemplified by ortho-
alkylation of phenols) on the basis of the above observations 
and literature reports.1 As shown in Scheme 4, the reaction 
proceeds via Friedel-Crafts type alkylation. Alkene 2 reacts 
with phosphorous acid (H3PO3) to form carbenium ion inter-
mediate A, releasing phosphorous anion (H2PO3‾). The inter-
action of H2PO3‾ with phenol 1 and A forms intermediate B,1 
which undergoes intramolecular electrophilic addition, form-
ing intermediate C. Finally, deprotonation of C gives the de-
sired product 3. It is noted that the reaction position of the 
intramolecular electrophilic addition of B is sensitive to the 
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steric and electronic nature the substituents on the aryl rings 
for this reaction, which can lead to ortho-, meta-, or para- 
regioselectivity, respectively.  

Scheme 4. Possible Reaction Mechanism 
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In conclusion, we have developed a facile and efficient al-

kylation reaction for phenols with alkenes that yields alkylated 
phenols by using the affordable, stable, readily available, rela-
tively lowly acidic and weakly corrosive H3PO3 as the catalyst. 
H3PO3 probably acts as both Lewis acid and base. These ef-
fects allow for the reaction to occur with high efficiency under 
very simple conditions, in which the commonly used catalysts 
are ineffective. The reaction shows a broad substrate scope 
and outstanding functional group tolerance. In particular, this 
represents the first reported reaction of its type to show com-
patibility with CHO and COOH groups. Excellent regioselec-
tivity is observed for positions that have similar reactivity, and 
alkylation of simple aryl rings and over-alkylation is thor-
oughly suppressed for the reaction. Thus, all of the ortho-, 
meta-, and para-alkylated phenol derivatives can be selective-
ly prepared by this method. The scale-up reaction and the late-
modification of the medical intermediates estrone and raspber-
ry ketone have also been successfully conducted. Taking into 
account the merits of the reaction, such as mild reaction condi-
tions, broad scope of the substrates, nearly equivalent molar 
ratio of the substrates, broad functional group tolerance, high 
regioselectivity, and scale-up synthesis, as well as late-
modification of phenolic bioactive compounds, this conven-
ient method offers an ideal and practical alternative for the 
modification of phenols.  

Experimental Section 

General Information 

The reactions were carried out in Schlenk tubes of 25 mL. 
The heat source is IKA magnetic stirrer with RCT Basic. Rea-
gents were used as received unless otherwise noted. Column 
chromatography was performed using Silica Gel 60 (300‒400 
mesh). The reactions were monitored by GC and GC-MS, GC-
MS results were recorded on GC-MS QP 2010, and GC analy-
sis was performed on GC 2010 plus. The 1H and 13C NMR 
spectra were recorded on a Brucker ADVANCE III spectrom-
eter at 400 MHz and 100 MHz respectively, and chemical 
shifts were reported in parts per million (ppm). The electron 
ionization (EI) method was used as the ionization method for 
the HRMS measurement, and the mass analyzer type is TOF 
for EI. All solvents and reagents were purchased from Energy 
Chemical, Alfa Aesar, and Aladdin. 

General Experimental Procedure 

An Schlenk tube of 25 mL equipped with a magnetic stir 
bar was charged with phenol 1 (0.4 mmol), alkene 2 (0.48 
mmol, 1.2 equiv), H3PO3 (50% aq. 20 mol %), DCE (2.0 mL). 
The reaction mixture was heated at 100 °C for 18 h. After 
completion of the reaction, the reaction mixture was cooled to 
room temperature, and the volatiles were removed under re-
duced pressure. The crude reaction mixture was purified over 
silica-gel (300‒400 mesh) column chromatography using pe-
troleum ether, ethyl acetate, or dichloromethane as eluent. 

Characterization Data for the Products 

1–(1–Phenylethyl)–2–naphthalenol (3a).16 The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/dichloromethane (1/1) to afford a pale 
yellow oil in 89% yield (88.3 mg). 1H NMR (400 MHz, 
CDCl3): δ 8.03 (d, J = 8.6 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 
7.66 (d, J = 8.7 Hz, 1H), 7.45 (t, J = 7.2 Hz, 1H), 7.39 – 7.31 
(m, 5H), 7.26 – 7.22 (m, 1H), 6.99 (d, J = 8.8 Hz, 1H), 5.17 (q, 
J = 6.8 Hz, 1H), 1.78 (d, J =7.2 Hz, 3H); 13C NMR (101 MHz, 
CDCl3): δ 151.5, 143.7, 132.8, 129.7, 129.0, 128.8, 128.7, 
127.1, 126.7, 126.5, 123.8, 123.1, 122.7, 119.3, 34.8, 17.1. 

6–isocyano–1–(1–phenylethyl) naphthalen–2–ol (3b). The 
title compound was prepared according to the general proce-
dure and purified by column chromatography on silica gel and 
eluted with petroleum ether/dichloromethane (1/1) to afford a 
pale yellow oil in 93% yield (101.6 mg). 1H NMR (400 MHz, 
CDCl3): δ 8.15 (s, 1H), 8.03 (d, J = 9.2 Hz, 1H), 7.71 (d, J = 
8.8 Hz, 1H), 7.53 (d, J = 8.8 Hz, 1H), 7.35 – 7.34 (m, 4H), 
7.28 – 7.25 (m, 1H), 7.15 (d, J = 8.8 Hz, 1H), 5.63 (s, 1H), 
5.16 (q, J = 6.8 Hz, 1H), 1.78 (d, J = 6.8 Hz, 3H); 13C NMR 
(101 MHz, CDCl3): δ 154.3, 143.1, 134.9, 134.6, 129.3, 129.1, 
128.5, 127.0, 126.9, 126.9, 124.4, 124.2, 120.9, 119.5, 106.0, 
34.7, 17.2. HRMS (EI) m/z: [M]+ calcd. for C19H15NO: 
273.1154; found: 273.1150. 

methyl 6–hydroxy–5–(1–phenylethyl)–2–naphthoate (3c). 
The title compound was prepared according to the general 
procedure and purified by column chromatography on silica 
gel and eluted with petroleum ether/dichloromethane (1/1) to 
afford a pale yellow oil in 91% yield (111.4 mg). 1H NMR 
(400 MHz, CDCl3): δ 8.54 (s, 1H), 8.04 – 7.98 (m, 2H), 7.76 
(d, J = 8.8 Hz, 1H), 7.37 – 7.31 (m, 4H), 7.26 – 7.23 (m, 1H), 
7.09 (d, J = 8.8 Hz, 1H), 5.56 (bs, 1H), 5.19 (q, J = 6.8 Hz, 
1H), 3.96 (s, 3H), 1.79 (d, J = 7.2 Hz, 3H); 13C NMR (101 
MHz, CDCl3): δ 167.5, 153.8, 143.4, 135.4, 132.0, 130.2, 
129.0, 128.6, 127.1, 126.7, 125.8, 124.4, 124.1, 123.1, 120.0, 
52.2, 34.8, 17.2. HRMS (EI) m/z: [M]+ calcd. for C20H18O3: 
306.1256; found: 306.1250. 

6-hydroxy-5-(1-phenylethyl)-2-naphthaldehyde (3d). The 
title compound was prepared according to the general proce-
dure and purified by column chromatography on silica gel and 
eluted with petroleum ether/dichloromethane (1/1) to afford a 
pale yellow oil in 85% yield (93.8 mg). 1H NMR (400 MHz, 
CDCl3): δ 10.10 (s, 1H), 8.29 (s, 1H), 8.10 (d, J = 8.8 Hz, 1H), 
7.92 (d, J = 8.6 Hz, 1H), 7.83 (d, J = 8.8 Hz, 1H), 7.37 – 7.33 
(m, 4H), 7.28 – 7.25 (m, 1H), 7.15 – 7.13 (m, 1H), 5.65 (s, 
1H), 5.21 (q, J = 6.8 Hz, 1H), 1.80 (d, J = 7.2 Hz, 3H); 13C 
NMR (101 MHz, CDCl3): δ 192.2, 154.6, 143.1, 136.4, 135.5, 
131.5, 130.5, 129.1, 128.7, 127.1, 126.9, 124.6, 123.9, 123.6, 
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120.4, 34.9, 17.2. HRMS (EI) m/z: [M]+ calcd. for C19H16O2: 
276.1150; found: 276.1146. 

6-hydroxy-5-(1-phenylethyl)-2-naphthoic acid (3e). The ti-
tle compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/dichloromethane (1/1) to afford a 
colorless oil in 92% yield (107.5 mg). 1H NMR (400 MHz, 
CDCl3): δ 8.64 (s, 1H), 8.07 (s, 2H), 7.80 (d, J = 8.7 Hz, 1H), 
7.39 – 7.25 (m, 5H), 7.10 (d, J = 8.8 Hz, 1H), 5.20 (q, J = 7.2 
Hz, 1H), 1.80 (d, J = 6.8 Hz, 3H); 13C NMR (101 MHz, 
CDCl3): δ 172.1, 154.0, 143.3, 135.8, 132.9, 130.4, 129.1, 
128.6, 127.1, 126.8, 126.1, 124.1, 123.9, 123.1, 120.2, 34.9, 
17.1. HRMS (EI) m/z: [M]+ calcd. for C19H16O3: 292.1099; 
found: 292.1097. 

6–bromo–1–(1–phenylethyl) naphthalen–2–ol (3f).17 The 
title compound was prepared according to the general proce-
dure and purified by column chromatography on silica gel and 
eluted with petroleum ether/dichloromethane (1/1) to afford a 
brown oil in 87% yield (113.8 mg). 1H NMR (400 MHz, 
CDCl3): δ 7.92 (s, 1H), 7.86 (d, J = 9.2 Hz, 1H), 7.55 (d, J = 
8.8 Hz, 1H), 7.48 (d, J = 9.2 Hz, 1H), 7.34 – 7.30 (m, 4H), 
7.26 – 7.22 (m, 1H), 7.00 (d, J = 8.8 Hz, 1H), 5.13 – 5.09 (m, 
1H), 5.06 (s, 1H), 1.76 (d, J = 7.2 Hz, 3H); 13C NMR (101 
MHz, CDCl3): δ 151.7, 143.3, 131.4, 130.9, 130.6, 129.6, 
129.0, 127.7, 127.0, 126.8, 124.7, 124.2, 120.3, 116.7, 34.8, 
17.2. 

4–(tert–butyl)–2–(1–phenylethyl) phenol (3g).11c The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a color-
less oil in 75% yield (76.2 mg). 1H NMR (400 MHz, CDCl3): 
δ 7.30 – 7.23 (m, 5H), 7.20 – 7.16 (m, 1H), 7.12 (d, J = 8.0 Hz, 
1H), 6.65 (d, J = 8.4 Hz, 1H), 4.61 (s, 1H), 4.34 (q, J = 7.2 Hz, 
1H), 1.63 (d, J = 7.2 Hz, 3H), 1.29 (s, 9H); 13C NMR (101 
MHz, CDCl3): δ 151.0, 145.5, 143.4, 131.0, 128.6, 127.5, 
126.3, 124.9, 124.1, 115.4, 39.2, 34.2, 31.6, 21.0. 

3–(1–phenylethyl)–[1,1'–biphenyl]–4–ol (3h). The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a color-
less oil in 73% yield (80.0 mg). 1H NMR (400 MHz, CDCl3): 
δ 7.55 – 7.53 (m, 2H), 7.48 (s, 1H), 7.40 (t, J = 7.2 Hz, 2H), 
7.35 – 7.29 (m, 6H), 7.21 (s, 1H), 6.79 (d, J = 8.4 Hz, 1H), 
4.76 (s, 1H), 4.41 (q, J = 7.2 Hz, 1H), 1.67 (d, J = 7.2 Hz, 3H); 
13C NMR (101 MHz, CDCl3): δ 152.9, 145.1, 141.1, 134.0, 
132.1, 128.7, 128.7, 127.5, 126.8, 126.6, 126.5, 126.2, 116.3, 
38.9, 21.0. HRMS (EI) m/z: [M]+ calcd. for C20H18O: 
274.1358; found: 274.1353. 

4-(methylthio)-2-(1-phenylethyl)phenol (3i). The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/ethyl acetate (10/1) to afford a colorless 
oil in 81% yield (79.1 mg). 1H NMR (400 MHz, CDCl3): δ 
7.35 – 7.31 (m, 2H), 7.29 – 7.26 (m, 4H), 7.13 (dd, J = 8.3 Hz, 
J = 2.3 Hz, 1H), 6.74 (d, J = 8.3 Hz, 1H), 4.74 (s, 1H), 4.36 (q, 
J = 7.2 Hz, 1H), 2.47 (s, 3H), 1.65 (d, J = 7.4 Hz, 3H). 13C 
NMR (101 MHz, CDCl3): δ 152.0, 144.8, 132.7, 128.9, 128.8, 
128.7, 128.0, 127.5, 126.6, 116.8, 38.9, 20.9, 18.1. HRMS (EI) 
m/z: [M]+ calcd. for C15H16OS: 244.0922; found: 244.0917. 

2,4–dimethyl–6–(1–phenylethyl)phenol (3j).7d The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a color-
less oil in 90% yield (81.4 mg). 1H NMR (400 MHz, CDCl3): 
δ 7.30 – 7.24 (m, 4H), 7.21 – 7.17 (m, 1H), 6.91 (s, 1H), 6.83 
(s, 1H), 4.41 (s, 1H), 4.29 (q, J = 7.2 Hz, 1H), 2.26 (s, 3H), 
2.14 (s, 3H), 1.60 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, 
CDCl3): δ 149.4, 145.4, 131.1, 129.5, 129.3, 128.7, 127.5, 
126.4, 126.0, 123.9, 39.1, 21.2, 20.7, 15.8. 

2,6–dimethyl–4–(1–phenylethyl) phenol (3k).7d The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a color-
less oil in 86% yield (77.7 mg). 1H NMR (400 MHz, CDCl3): 
δ 7.25 – 7.16 (m, 5H), 6.82 – 6.81 (m, 2H), 4.51 (s, 1H), 4.02 
– 4.01 (m, 1H), 2.17 (s, 6H), 1.59 (d, J = 7.2 Hz, 3H); 13C 
NMR (101 MHz, CDCl3): δ 150.3, 146.9, 138.0, 128.3, 127.7, 
127.5, 125.8, 122.8, 44.0, 22.1, 16.0. 

3,4,5–trimethoxy–2–(1–phenylethyl) phenol (3l). The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a color-
less oil in 93% yield (107.1 mg). 1H NMR (400 MHz, CDCl3): 
δ 7.36 – 7.30 (m, 4H), 7.22 – 7.19 (m, 1H), 6.15 (s, 1H), 4.77 
(s, 1H), 4.71 (q, J = 7.2 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 
3.74 (s, 3H), 1.65 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, 
CDCl3): δ 152.2, 151.9, 150.2, 144.2, 136.1, 128.7, 127.1, 
126.3, 118.5, 97.2, 61.1, 60.9, 55.7, 33.3, 17.8. HRMS (EI) 
m/z: [M]+ calcd. for C17H20O4: 288.1362; found: 288.1367. 

4-chloro-2-(1-phenylethyl)phenol (3m).11a The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/dichloromethane (1/1) to afford a white 
solid in 44% yield (40.8 mg). 1H NMR (400 MHz, CDCl3): δ 
7.30 – 7.26 (m, 2H), 7.24 – 7.16 (m, 4H), 7.04 (dd, J = 8.5, 2.6 
Hz, 1H), 6.61 (d, J = 8.5 Hz, 1H), 4.79 (s, 1H), 4.30 (q, J = 7.2 
Hz, 1H), 1.58 (d, J = 7.2 Hz, 3H). 13C NMR (101 MHz, 
CDCl3): δ 151.8, 144.5, 133.8, 128.8, 127.8, 127.4, 127.2, 
126.7, 125.7, 117.2, 38.7, 20.8. 

4-bromo-2-(1-phenylethyl)phenol (3n).11a The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/ethyl acetate (10/1) to afford a colorless 
oil in 41% yield (45.3 mg). 1H NMR (400 MHz, CDCl3): δ 
7.35 – 7.27 (m, 3H), 7.26 – 7.16 (m, 4H), 6.62 (d, J = 8.5 Hz, 
1H), 4.86 (s, 1H), 4.31 (q, J = 7.2 Hz, 1H), 1.60 (d, J = 7.2 Hz, 
3H). 13C NMR (101 MHz, CDCl3): δ 152.5, 144.4, 134.3, 
130.7, 130.2, 128.8, 127.4, 126.7, 117.7, 113.1, 38.7, 20.9. 

4-(1-phenylethyl)phenol (3o).18 The title compound was 
prepared according to the general procedure and purified by 
column chromatography on silica gel and eluted with petrole-
um ether/ethyl acetate (5/1) to afford a colorless oil in 52% 
yield (41.2 mg). 1H NMR (400 MHz, CDCl3): δ 7.28 – 7.24 
(m, 2H), 7.19 – 7.14 (m, 3H), 7.05 (d, J = 7.6 Hz, 2H), 6.71 (d, 
J = 7.2 Hz, 2H), 5.18 (s, 1H), 4.07 (q, J = 6.8 Hz, 1H), 1.58 (d, 
J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 153.4, 146.7, 
138.7, 128.7, 128.3, 127.5, 125.9, 115.1, 43.8, 22.0. 
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2-(1-phenylethyl)phenol (3o’).8a The title compound was 
prepared according to the general procedure and purified by 
column chromatography on silica gel and eluted with petrole-
um ether/ethyl acetate (5/1) to afford a colorless oil in 32% 
yield (25.3 mg). 1H NMR (400 MHz, CDCl3) δ 7.18 – 7.09 (m, 
6H), 7.02 – 6.98 (m, 1H), 6.85 – 6.83 (m, 1H), 6.60 (d, J = 8.0 
Hz, 1H), 4.73 (s, 1H), 4.42 – 4.06 (m, 1H), 1.52 (d, J = 7.2 Hz, 
3H); 13C NMR (101 MHz, CDCl3): δ 153.2, 145.3, 131.9, 
128.6, 127.9, 127.5, 127.4, 126.4, 120.8, 115.9, 38.6, 21.0. 

3,5–dimethyl–2–(1–phenylethyl)phenol (3p). The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a color-
less oil in 86% yield (77.7 mg). 1H NMR (400 MHz, CDCl3): 
δ 7.30 – 7.27 (m, 4H), 7.20 – 7.19 (m, 1H), 6.60 (s, 1H), 6.39 
(s, 1H), 4.57 – 4.54 (m, 2H), 2.31 (s, 3H), 2.20 (s, 3H), 1.64 (d, 
J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 154.0, 143.9, 
137.0, 136.8, 128.7, 127.9, 126.9, 126.4, 123.9, 115.8, 36.0, 
20.8, 20.5, 16.8. HRMS (EI) m/z: [M]+ calcd. for C16H18O: 
226.1358; found: 226.1352. 

2–methyl–4–(1–phenylethyl)phenol (3q).7d The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/ethyl acetate (5/1) to afford a colorless 
oil in 84% yield (71.2 mg). 1H NMR (400 MHz, CDCl3): δ 
7.20 – 7.17 (m, 2H), 7.13 – 7.08 (m, 3H), 6.87 (s, 1H), 6.83 (d, 
J = 8.0 Hz, 1H), 6.57 (d, J = 8.4 Hz, 1H), 4.78 (s, 1H), 3.96 (q, 
J = 6.4 Hz, 1H), 2.10 (s, 3H), 1.50 (d, J = 7.2 Hz, 3H); 13C 
NMR (101 MHz, CDCl3): δ 151.9, 146.8, 138.6, 130.2, 128.3, 
127.5, 126.0, 125.9, 123.6, 114.7, 43.9, 22.0, 15.9. 

6-(1-phenylethyl)benzo[d][1,3]dioxol-5-ol (3r).20 The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ ethyl acetate (5/1) to afford a color-
less oil in 96% yield (92.9 mg). 1H NMR (400 MHz, CDCl3) δ 
7.38 – 7.11 (m, 5H), 6.73 (s, 1H), 6.36 (s, 1H), 5.88 (d, J = 2.6 
Hz, 2H), 4.45 (s, 1H), 4.27 (q, J = 7.2 Hz, 1H), 1.57 (d, J = 7.2 
Hz, 3H). 13C NMR (101 MHz, CDCl3): δ 147.7, 146.2, 145.3, 
141.6, 128.7, 127.3, 126.5, 124.2, 107.3, 101.0, 98.8, 38.5, 
21.2. 

5-(tert-butyl)-2-(1-phenylethyl)phenol (3s). The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/ethyl acetate (10/1) to afford a colorless 
oil in 95% yield (96.5 mg). 1H NMR (400 MHz, CDCl3): δ 
7.32 – 7.23 (m, 4H), 7.20 (d, J = 6.7 Hz, 1H), 7.16 (d, J = 8.1 
Hz, 1H), 6.95 (d, J = 8.1 Hz, 1H), 6.77 (d, J = 1.5 Hz, 1H), 
4.60 (dd, J = 8.9, 4.2 Hz, 1H), 4.31 (q, J = 6.9 Hz, 1H), 1.61 
(dd, J = 7.3, 0.6 Hz, 3H), 1.28 (d, J = 0.7 Hz, 9H). 13C NMR 
(101 MHz, CDCl3): δ 152.9, 151.0, 145.5, 128.7, 127.5, 127.4, 
126.4, 117.7, 113.3, 38.6, 34.3, 31.3, 21.1. HRMS (EI) m/z: 
[M]+ calcd. for C18H22O: 254.1671; found: 254.1667. 

2,6–dimethoxy–3–(1–phenylethyl)phenol (3t). The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a color-
less oil in 82% yield (84.6 mg). 1H NMR (400 MHz, CDCl3): 
δ 7.27 – 7.22 (m, 4H), 7.16 – 7.13 (m, 1H), 6.70 – 6.60 (m, 
2H), 5.51 (s, 1H), 4.46 (q, J = 7.2 Hz, 1H), 3.86 (s, 3H), 3.65 

(s, 3H), 1.57 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): 
δ 146.8, 146.1, 144.9, 138.6, 132.7, 128.1, 127.5, 125.7, 117.5, 
106.1, 60.4, 56.1, 37.7, 21.6. HRMS (EI) m/z: [M]+ calcd. for 
C16H18O3: 258.1256; found: 258.1250. 

2-(1-phenylethyl)benzene-1,4-diol (3u).19 The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/ethyl acetate (5/1) to afford a colorless 
oil in 80% yield (68.5 mg). 1H NMR (400 MHz, CDCl3): δ 
7.29 – 7.17 (m, 5H), 6.70 (s, 1H), 6.61 – 6.53 (m, 2H), 5.09 (s, 
1H), 4.64 (s, 1H), 4.32 (q, J = 7.2 Hz, 1H), 1.56 (d, J = 7.2 Hz, 
3H); 13C NMR (101 MHz, CDCl3): δ 149.5, 147.0, 145.1, 
133.6, 128.6, 127.5, 126.4, 116.9, 114.9, 113.7, 38.6, 20.9. 

1–(1–(o–tolyl)ethyl)naphthalen–2–ol (3v). The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/dichloromethane (1/1) to afford a color-
less oil in 94% yield (98.5 mg). 1H NMR (400 MHz, CDCl3): 
δ 8.17 (d, J = 8.4 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.75 (d, J 
= 7.6 Hz, 1H), 7.63 (d, J = 8.8 Hz, 1H), 7.54 (t, J = 7.2 Hz, 
1H) 7.40 – 7.34 (m, 2H), 7.26 – 7.16 (m, 2H) , 6.92 (d, J = 8.8 
Hz, 1H), 5.25 (s, 1H), 5.06 (q, J = 6.8 Hz, 1H), 1.91 (s, 3H), 
1.78 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 
151.9, 141.5, 138.6, 132.5, 131.7, 129.6, 129.1, 128.7, 127.6, 
127.0, 126.0, 125.3, 123.0, 121.8, 121.3, 119.6, 34.5, 19.9, 
18.2. HRMS (EI) m/z: [M]+ calcd. for C19H18O: 262.1358; 
found: 262.1354. 

1–(1–(m–tolyl)ethyl)naphthalen–2–ol (3w). The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/dichloromethane (1/1) to afford a color-
less oil in 86% yield (90.1 mg). 1H NMR (400 MHz, CDCl3): 
8.07 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 
8.8 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 7.37 – 7.33 (m, 1H), 
7.26 – 7.19 (m, 3H), 7.08 – 7.07 (m, 1H), 7.00 (d, J = 8.8 Hz, 
1H), 5.13 (q, J = 7.2 Hz, 1H), 4.98 (s, 1H), 2.30 (s, 3H), 1.75 
(d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 151.6, 
143.4, 138.9, 132.8, 129.6, 129.0, 128.8, 128.6, 128.0, 127.7, 
126.6, 124.0, 123.8, 123.1, 122.5, 119.5, 34.8, 21.5, 17.0. 
HRMS (EI) m/z: [M]+ calcd. for C19H18O: 262.1358; found: 
262.1352. 

1–(1–(p–tolyl)ethyl)naphthalen–2–ol (3x).16 The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether/dichloromethane (1/1) to afford a color-
less oil in 91% yield (95.4 mg). 1H NMR (400 MHz, CDCl3): 
δ 8.06 (d, J = 7.6 Hz, 1H), 7.79 (d, J = 6.0 Hz, 1H), 7.65 (d, J 
= 8.0 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.35 – 7.27 (m, 3H), 7.14 
(d, J = 6.0 Hz, 2H), 6.99 (d, J = 5.6 Hz, 1H), 5.13 – 5.11 (m, 
1H), 4.98 (s, 1H), 2.32 (s, 3H), 1.75 (d, J = 7.2 Hz, 3H); 13C 
NMR (101 MHz, CDCl3): δ 151.6, 140.3, 136.5, 132.8, 129.8, 
129.6, 128.8, 128.6, 127.0, 126.5, 123.9, 123.8, 123.0, 122.5, 
122.5, 119.4, 34.5, 21.0, 17.1. 

1–(1–(4–(tert–butyl)phenyl)ethyl)naphthalen–2–ol (3y).16 
The title compound was prepared according to the general 
procedure and purified by column chromatography on silica 
gel and eluted with petroleum ether/dichloromethane (1/1) to 
afford a pale yellow oil in 96% yield (116.7 mg). 1H NMR 
(400 MHz, CDCl3): δ 8.07 (d, J = 8.4 Hz, 1H), 7.80 (d, J = 
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8.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.48 (t, J = 7.6 Hz, 1H), 
7.38 – 7.31 (m, 5H), 7.00 (d, J = 8.8 Hz, 1H), 5.13 (q, J = 7.2 
Hz, 1H), 4.96 (s, 1H), 1.76 (d, J = 7.2 Hz, 3H), 1.30 (s, 9H); 
13C NMR (101 MHz, CDCl3): δ 151.7, 149.9, 140.1, 132.9, 
129.7, 128.8, 128.6, 126.8, 126.6, 126.1, 123.8, 123.1, 122.5, 
119.5, 34.4, 31.3, 17.1. 

1–(1–(4–fluorophenyl)ethyl)naphthalen–2–ol (3z). The ti-
tle compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/dichloromethane (1/1) to afford a pale 
yellow oil in 90% yield (95.8 mg). 1H NMR (400 MHz, 
CDCl3): δ 7.97 (d, J = 7.2 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 
7.66 (d, J = 8.8 Hz, 1H), 7.436 (t, J = 6.8 Hz, 1H), 7.35 – 7.20 
(m, 3H), 7.01 – 6.99 (m, 3H), 5.14 – 5.12 (m, 1H), 4.93 (s, 
1H), 1.78 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 
161.5 (d, JC-F = 235.6 Hz), 151.3, 139.7 (d, JC-F = 3.2 Hz), 
132.7, 129.7, 128.9, 128.8, 128.6 (d, JC-F = 7.9 Hz), 126.5, 
123.5, 123.1, 122.8, 119.1, 115.5 (d, JC-F = 21.0 Hz), HRMS 
(EI) m/z: [M]+ calcd. for C18H15FO: 266.1107; found: 
266.1102. 

1–(1–(4–chlorophenyl)ethyl)naphthalen–2–ol (3za).16 The 
title compound was prepared according to the general proce-
dure and purified by column chromatography on silica gel and 
eluted with petroleum ether/dichloromethane (1/1) to afford a 
brown oil in 60% yield (67.7 mg). 1H NMR (400 MHz, 
CDCl3): δ 7.93 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 
7.66 (d, J = 8.8 Hz, 1H), 7.42 (t, J = 7.2 Hz, 1H), 7.32 (t, J = 
7.6 Hz, 1H), 7.26 – 7.23 (m, 4H), 6.99 (d, J = 8.8 Hz, 1H), 
5.12 (q, J = 7.2 Hz, 1H), 4.86 (s, 1H), 1.78 (d, J = 7.2 Hz, 3H); 
13C NMR (101 MHz, CDCl3): δ 151.2, 142.8, 132.7, 132.1, 
129.8, 128.9, 128.8, 128.8, 128.5, 126.6, 123.40, 123.2, 122.9, 
118.9, 34.3, 17.3. 

2,6-dimethoxy-3-(1-(p-tolyl)ethyl)phenol (3zb). The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/ethyl acetate (5/1) to afford a pale 
yellow oil in 93% yield (101.2 mg). 1H NMR (400 MHz, 
CDCl3): δ 7.13 – 7.05 (m, 4H), 6.69 – 6.59 (m, 2H), 5.50 (s, 
1H), 4.43 (q, J = 7.2 Hz, 1H), 3.85 (s, 3H), 3.68 (s, 3H), 2.29 
(s, 3H), 1.55 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): 
δ 146.0, 144.9, 143.8, 138.5, 135.1, 132.9, 128.8, 127.4, 117.5, 
106.2, 60.5, 56.1, 37.2, 21.7, 20.9. HRMS (EI) m/z: [M]+ 
calcd. for C17H20O3: 272.1412; found:272.1410. 

2,6-dimethoxy-3-(1-(4-(tert-butyl)phenyl)ethyl)-phenol 
(3zc). The title compound was prepared according to the gen-
eral procedure and purified by column chromatography on 
silica gel and eluted with petroleum ether/ethyl acetate (5/1) to 
afford a pale yellow oil in 87% yield (109.3 mg). 1H NMR 
(400 MHz, CDCl3): δ 7.28 – 7.16 (m, 4H), 7.69 – 6.59 (m, 
2H), 5.53 (s, 1H), 4.44 (q, J = 6.8 Hz, 1H), 3.84 (s, 3H), 3.69 
(s, 3H), 1.56 (d, J = 7.2 Hz, 3H), 1.28 (s, 9H); 13C NMR (101 
MHz, CDCl3): δ 148.4, 146.0, 144.9, 143.5, 138.5, 133.0, 
127.1, 125.0, 117.5, 106.2, 60.4, 56.1, 37.0, 34.3, 31.4, 21.6. 
HRMS (EI) m/z: [M]+ calcd. for C20H26O3: 314.1882; found: 
314.1886. 

2,6-dimethoxy-3-(1-(4-fluorophenyl)ethyl)-phenol (3zd). 
The title compound was prepared according to the general 
procedure and purified by column chromatography on silica 
gel and eluted with petroleum ether/ethyl acetate (5/1) to af-

ford a pale yellow oil in 74% yield (81.7 mg). 1H NMR (400 
MHz, CDCl3): δ 7.36 – 7.04 (m, 2H), 6.93 (t, J = 8.4 Hz, 2H), 
6.67 – 6.60 (m, 2H), 5.55 (s, 1H), 4.43 (q, J = 7.2 Hz, 1H), 
3.84 (s, 3H), 3.65 (s, 3H), 1.54 (d, J = 7.2 Hz, 3H). 13C NMR 
(101 MHz, CDCl3): δ 161.0 (d, J = 243.4 Hz), 146.2, 144.9, 
142.5 (d, J = 3.1 Hz), 138.6, 132.4, 128.8 (d, J = 7.7 Hz), 
117.2, 114.8 (d, J = 21.0 Hz), 106.0, 60.3, 56.1, 37.1, 21.7. 
HRMS (EI) m/z: [M]+ calcd. for C16H17FO3: 276.1162; found: 
276.1168. 

2,6–dimethoxy–3–(1–(naphthalen–2–yl)ethyl)phenol (3ze). 
The title compound was prepared according to the general 
procedure and purified by column chromatography on silica 
gel and eluted with petroleum ether/ethyl acetate (5/1) to af-
ford a pale yellow oil in 72% yield (88.7 mg). 1H NMR (400 
MHz, CDCl3): δ 7.78 – 7.68 (m, 4H), 7.45 – 7.33 (m, 3H), 
6.70 – 6.60 (m, 2H), 5.52 (s, 1H), 4.63 (q, J = 6.8 Hz, 1H), 
3.85 (s, 3H), 3.67 (s, 3H), 1.66 (d, J = 7.2 Hz, 3H); 13C NMR 
(101 MHz, CDCl3): δ 146.2, 145.0, 144.2, 138.6, 133.5, 132.5, 
132.0, 127.7, 127.5, 127.0, 125.8, 125.1, 117.7, 106.2, 60.5, 
56.2, 37.7, 21.5. HRMS (EI) m/z: [M]+ calcd. for C20H20O3: 
308.1412; found: 308.1417. 

2,6-dimethoxy-3-(1-(thiophen-2-yl)ethyl)phenol (3zf). The 
title compound was prepared according to the general proce-
dure and purified by column chromatography on silica gel and 
eluted with petroleum ether/ethyl acetate (5/1) to afford a pale 
yellow oil in 62% yield (65.5 mg). 1H NMR (400 MHz, 
CDCl3): 7.11 – 7.10 (m, 1H), 6.90 (s, 1H), 6.81 (s, 1H), 6.71 – 
6.61 (m, 2H), 4.70 (q, J = 6.8 Hz, 1H), 3.86 (s, 3H), 3.81 (s, 
3H), 1.64 (d, J = 7.2 Hz, 3H); 13C NMR (101 MHz, CDCl3): δ 
151.3, 146.2, 144.6, 138.4, 132.4, 126.4, 123.4, 123.1, 117.5, 
106.4, 60.8, 56.1, 33.2, 23.0. HRMS (EI) m/z: [M]+ calcd. for 
C14H16O3S: 264.0820; found: 264.0824. 

2,6–dimethoxy-3–(2,3–dihydro–1H–inden–1–yl)–phenol 
(3zg). The title compound was prepared according to the gen-
eral procedure and purified by column chromatography on 
silica gel and eluted with petroleum ether/ethyl acetate (5/1) to 
afford a brown oil in 73% yield (78.8 mg). 1H NMR (400 
MHz, CDCl3): δ 7.26 (d, J = 7.2 Hz, 1H), 7.17 – 7.08 (m, 2H), 
6.95 (d, J = 7.2 Hz, 1H), 6.56 – 6.43 (m, 2H), 5.69 (s, 1H), 
4.67 (t, J = 8.4 Hz, 1H), 3.85 (s, 3H), 3.81 (s, 3H), 3.06 – 2.89 
(m, 2H), 2.58 – 2.53 (m, 1H), 2.04 – 1.94 (m, 1H); 13C NMR 
(101 MHz, CDCl3): 146.9, 146.0, 145.6, 144.3, 138.3, 131.6, 
126.2, 126.1, 124.6, 124.1, 118.2, 106.6, 60.9, 56.1, 44.1, 35.8, 
31.7. HRMS (EI) m/z: [M]+ calcd. for C17H18O3: 270.1256; 
found: 270.1250. 

1,3,5-trimethoxy-2-(1-phenylethyl)benzene (3zh).18 The ti-
tle compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether/dichloromethane (2/1) to afford a 
white solid in 77% yield (83.8 mg). 1H NMR (400 MHz, 
CDCl3): δ 7.28 – 7.19 (m, 4H), 7.11 – 7.07 (m, 1H), 6.12 (s, 
2H), 4.74 (q, J = 7.2 Hz, 1H), 3.78 (s, 3H), 3.68 (s, 6H), 1.63 
(d, J = 7.6 Hz, 3H); 13C NMR (101 MHz, CDCl3): 159.4, 
159.0, 146.6, 127.5, 127.2, 124.8, 115.9, 91.4, 55.7, 55.2, 32.9, 
17.7. 

1-methoxy-4-(1-phenylethyl)benzene (3zi).7d The title com-
pound was prepared according to the general procedure and 
purified by column chromatography on silica gel and eluted 
with petroleum ether to afford a colorless oil in 31% yield 
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(26.3 mg). 1H NMR (400 MHz, CDCl3): δ 7.26 (d, J = 8.4 Hz, 
2H), 7.21 – 7.12 (m, 5H), 6.82 (d, J = 8.0 Hz, 2H), 4.10 (q, J = 
7.2 Hz, 1H), 3.77 (s, 3H), 1.61 (d, J = 7.2 Hz, 3H); 13C NMR 
(101 MHz, CDCl3): δ 157.8, 146.8, 138.5, 128.5, 128.3, 127.5, 
125.9, 113.7, 55.2, 43.9, 22.0.  

2-methoxy-1-(1-phenylethyl)naphthalene (3zj). The title 
compound was prepared according to the general procedure 
and purified by column chromatography on silica gel and elut-
ed with petroleum ether to afford a colorless oil in 40% yield 
(41.9 mg). 1H NMR (400 MHz, CDCl3): δ 7.78 – 7.76 (m, 1H), 
7.70 – 7.67 (m, 2H), 7.24 – 7.13 (m, 7H), 7.07 – 7.03 (m, 1H), 
5.20 (q, J = 7.2 Hz, 1H), 3.70 (s, 3H), 1.74 (d, J = 7.2 Hz, 3H); 

13C NMR (101 MHz, CDCl3): δ 154.9, 146.0, 132.5, 130.0, 
128.7, 128.4, 128.1, 127.9, 127.0, 125.9, 125.1, 124.4, 123.1, 
114.7, 56.8, 34.5, 18.0. HRMS (EI) m/z: [M]+ calcd. for 
C19H18O: 262.1358; found: 262.1353. 

(8R,9S,13S,14S)-3-hydroxy-13-methyl-2-(1-phenylethyl)-
6,7,8,9,11,12,13,14,15,16-decahydro-17H-
cyclopenta[a]phenanthren-17-one (3zk). The title compound 
was prepared according to the general procedure and purified 
by column chromatography on silica gel and eluted with petro-
leum ether/dichloromethane (1/1) to afford a pale yellow oil in 
59% yield (88.3 mg). 1H NMR (400 MHz, CDCl3): δ 7.46 – 
6.73 (m, 6H), 6.42 (s, 1H), 5.09 (m, 1H), 4.29 (s, 1H), 2.74 (s, 
2H), 2.52 – 1.72 (m, 8H), 1.54 – 1.33 (m, 8H), 0.82 (s, 3H); 
13C NMR (101 MHz, CDCl3): δ 221.6, 151.3, 145.7, 135.5, 
131.6, 129.6, 128.5, 127.4, 126.1, 124.9, 115.9, 50.3, 48.1, 
44.1, 38.4, 35.9, 31.5, 29.0, 26.5, 26.0, 21.5, 21.0, 13.8. 
HRMS (EI) m/z: [M]+ calcd. for C26H30O2: 374.2246; found: 
374.2240. 

4-(4-hydroxy-3-(1-phenylethyl)phenyl)butan-2-one (3zl). 
The title compound was prepared according to the general 
procedure and purified by column chromatography on silica 
gel and eluted with petroleum ether/dichloromethane (1/1) to 
afford a pale yellow oil in 72% yield (77.2 mg). 1H NMR (400 
MHz, CDCl3): δ 7.32 – 7.16 (m, 5H), 7.03 (s, 1H), 6.91 (d, J = 
8.1 Hz, 1H), 6.66 (d, J = 8.1 Hz, 1H), 4.73 (s, 1H), 4.34 (q, J = 
7.1 Hz, 1H), 2.83 (t, J = 7.5 Hz, 2H), 2.72 (t, J = 7.5 Hz, 2H), 
2.12 (s, 3H), 1.61 (d, J = 7.3 Hz, 3H); 13C NMR (101 MHz, 
CDCl3): δ 208.5, 151.7, 145.3, 133.1, 132.0, 128.6, 127.8, 
127.5, 127.0, 126.4, 116.0, 45.5, 38.7, 30.1, 29.2, 20.9. HRMS 
(EI) m/z: [M]+ calcd. for C18H20O2: 268.1463; found: 268.1458. 
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