

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 559-562

Tetrahedron Letters

Desmethylubiquinone Q₂ from the Far-Eastern ascidian *Aplidium glabrum*: structure and synthesis

Larisa K. Shubina,^a Sergey N. Fedorov,^{a,b} Oleg S. Radchenko,^a Nadezhda N. Balaneva,^a Sophia A. Kolesnikova,^a Pavel S. Dmitrenok,^a Ann Bode,^b Zigang Dong^b and Valentin A. Stonik^{a,*}

> ^aPacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Sciences, Vladivostok-22, Prospekt 100 let Vladivostoku 159, Russia ^bThe Hormehl Institute of the University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA

> > Received 1 October 2004; revised 23 November 2004; accepted 30 November 2004

Abstract—Two new diprenylquinones, glabruquinone A (desmethylubiquinone Q_2) having cancer preventive properties and its minor isomer Glabruquinone B were isolated from the ascidian *Aplidium glabrum*. Their structures have been elucidated by NMR and mass spectra and confirmed by synthesis.

© 2004 Elsevier Ltd. All rights reserved.

Polyprenylated 1,4-benzoquinones and hydroquinones such as ubiquinones, plastoquinones, and tocopherols are widespread in plants and animals, in which they play important roles in electron transport, photosynthesis, and as antioxidants.^{1,2} Naturally occurring marine prenvl benzoquinones and hydroquinones having a terpenoid portion ranging from one to nine isoprene units and differing structurally from the above-mentioned groups have been described from marine organisms, and especially from brown algae of the order Fucales, sponges, and ascidians. Many algae contain tetraprenyl, triprenyl-, and diprenylhydroquinones.^{3,4} Sponges⁵⁻⁸ contain linear unsubstituted polyprenylated hydroquinones and benzoquinones with longer side chains and moderate antimicrobial activity⁹ as well as ATPase inhibiting sulfated prenylhydroquinones.^{10–12} Ascidians of the genus *Aplidium* have previously yielded about a dozen prenylated quinones^{13–16} including the most simple of them, monoprenylbenzoquinone.¹⁴

New diprenylquinones, glabruquinone A **1** [yellow oil, HREIMS m/z 304.1655 [M]⁺, calcd for C₁₈H₂₄O₄ 304.1675] and a minor isomer, glabruquinone B **2** [yellow oil, HREIMS m/z 304.1649 [M]⁺, calcd for

0040-4039/\$ - see front matter @ 2004 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2004.11.157

C₁₈H₂₄O₄ 304.1675] from the ethanolic extracts of Aplidium glabrum were isolated and purified by repeated HPLC on a silica gel column using a hexane-ethyl acetate system (6:1; a total yield of 0.09% on wet weight). The ratio of 1 to 2 was 95:5. The EIMS showed the typical peak for quinones (M^++2) at m/z 306 along with the molecular ion peak at m/z 304. The UV and IR spectra of 1 and 2 showed a maximum absorption at 264 nm $(\varepsilon = 15,000)$ and IR absorption bands at 1675, 1657, 1603 cm⁻¹ corresponding to the *p*-benzoquinone moiety. The ¹H NMR spectrum of **1** was similar to that of verapliquinone A from the Aplidium sp.¹³ and differed in having an additional singlet signal at 4.02 ppm, which is typical for a MeO group. Quartets at 61.2 and 61.3 ppm in the ¹³C NMR spectrum indicated the presence of two methoxyls in 1. The attachment of a terpenoid fragment to C-5 of the benzoquinone moiety and methoxyls at the 2,3-positions were established by a detailed inspection of the NMR spectra, including ¹H-¹H-COSY, NOESY, and HMBC (see Scheme 1). Especially important were the multiplicity of H-6 (a narrow triplet at 6.34 ppm) and the cross peaks corresponding to H-6/ H-1' allylic coupling in ${}^{1}\text{H}{-}^{1}\text{H}{-}\text{COSY}$ and H-6/H-1' interaction in NOESY. The signals of two trisubstituted double bonds, three methyl groups attached to these bonds and three methylene groups in the ¹³C NMR spectrum clearly showed the presence of a diprenyl side chain. A comparison of the NMR spectra of 1 and 2 showed that glabruquinones A and B contain geranyl

Keywords: Marine natural products; Polyprenylated quinones; Synthesis; Cancer preventive activity.

^{*} Corresponding author. Tel.: +7 4232 311168; fax: +7 4232 314050; e-mail: stonik@piboc.dvo.ru

Scheme 1. Structures and synthesis of 1 and 2. Reagents and conditions: (a) H_2O_2 , H_2SO_4 , MeOH, 2 h; (b) geranyl bromide, Na, ether (or benzene), 25 h, reflux; (c) geraniol, BF_3 : Et_2O , ether, 18 h; (d) CAN, CH_3CN , H_2O , 1 h.

and neryl types of side chains, respectively (Table 1). In fact, these compounds differ from each other by the configurations of the C2', C3'-double bond as was established on the basis of the chemical shifts of C-10'. In the sterically more congested *E*-isomers, this signal was observed at a higher field when compared with the Z-isomers.¹⁷ The C-10' chemical shifts of 1 and 2 differ significantly, 16.2 and 22.8 ppm in spectra of 1 and 2, respectively. Note that neryl derivatives like 2 are very rare in nature whilst the majority of natural linear benzoquinones from marine organisms are of the geranyl type.

Table 1. ¹³C- and ¹H NMR data for 1 and 2 in CDCl₃ at 75.5 and 300 MHz, respectively

Atom	1		2	
	$\delta_{ m C}$	$\delta_{\rm H}$ (J, Hz)	$\delta_{ m C}$	$\delta_{\rm H}$ (J, Hz)
1	184.38 [*] s		184.38 [*] s	
2	144.91 ^{**} s		144.91 ^{**} s	
3	145.16 ^{**} s		145.16 ^{**} s	
4	184.54 [*] s		184.54 [*] s	
5	146.92 s		146.92 s	
6	130.45 d	6.34 t, <i>J</i> = 1.7, 1H	130.45 d	6.34 t, <i>J</i> = 1.7, 1H
1'	27.17 t	3.10 dd, <i>J</i> = 7.3, 1.7, 2H	27.27 t	3.11 br d, <i>J</i> = 7.1, 1.2, 2H
2'	117.78 d	5.13 t sext, $J = 7.3$, 1.2, 1H	117.78 d	5.13 m, 1H
3'	140.17 s		140.17 s	
4′	39.72 t	2.08 m, 2H	32.01 t	2.04 m, 2H
5'	26.52 t	2.09 m, 2H	26.52 t	2.04 m, 2H
6'	123.98 d	5.08 t sept, $J = 6.8$, 1.2, 1H	123.98 d	5.07 m, 1H
7′	1131.95 s		131.95 s	
8'	25.77 q	1.70 d, <i>J</i> = 1.2, 3H	25.77 q	1.66 br d, $J = 1.2$, 3H
9′	17.79 q	1.60 br s, 3H	17.79 q	1.59 d, <i>J</i> = 1.2, 3H
10'	16.2 q	1.62 d, <i>J</i> = 1.2, 3H	22.76 q	1.75 q, <i>J</i> = 1.2, 3H
OCH ₃	61.3 q; 61.2 q	4.00 s; 4.02 s	61.3 q; 61.2 q	4.00 s; 4.02 s

*,**-Values can be interchanged.

The structures 1 and 2 were confirmed by synthesis from commercially available 2,3,4–trimethoxybenzaldehyde 3 using the route shown in Scheme 1. The corresponding trimethoxyphenol 4 was obtained by the previously described method.¹⁸ The base-catalyzed alkylation of phenol 4 with geranyl bromide led to geranylphenol 5¹⁹ (18% total yield) purified by HPLC. The yield was less than in other reported similar transformations.^{9,20,21} Modification of the reaction conditions did not increase the yield, but led to the formation of *O*-alkylated side products (7, 8).²²

A higher yield (55%) was achieved using the conditions c, when a partial isomerization of **5** into **6** takes place (85:15). Oxidative demethylation of geranyl phenol **5** by CAN yielded glabruquinone **1** (33%), which was identical to the natural product (comparison of NMR spectra and biological activities). A similar oxidative demethylation of the mixture of **5** and **6** resulted in a mixture of quinones **1** and **2**. Synthetic **2** was separated by HPLC from this mixture and identified with natural glabruquinone B by comparison of their NMR spectra.

Recently, 1 was synthesized from 2,3-dimethoxybenzaldehyde in five steps. However, the total yield of 1 was not given.^{23,24}

In our opinion, of special interest is the observation that glabruquinone A is structurally more closely related to the ubiquinones than other linear polyprenyl quinones from sponges and ascidians. Because glabruquinone A does not contain a methyl group in the quinoid moiety in contrast with ubiquinones, 1 can be named desmethylubiquinone Q₂. Glabruquinone A showed cancer preventive activity in the anchorage-independent transformation assay against mouse JB6 P⁺ Cl 41 cells transformed with epidermal growth factor, inhibiting the number of colonies with an IC_{50} (INCC₅₀) of 7.3 μM. Its INCC₅₀ were of 12.7, 17.5, and 50.5 μM against HCT-116, MEL-28, and HT-460 human tumor cells, respectively. At 10 µM concentration, 1 increased the UVB-induced p53-dependent transcriptional activity of JB6 P⁺ Cl 41 cells 2.5 times as much. Results of the studies on the biological activities of 1 will be published in detail elsewhere.

Acknowledgements

We are grateful to B. B. Grebnev for identification of the ascidian. The research described in this publication was made possible in part by Grant NS-725.2003.4 of RFBR and a Grant from the Program 'Molecular and cell biology of RAS'.

References and notes

- Thomson, R. H. Naturally Occurring Quinones; Academic: London, 1971; pp 93–197.
- Pennock, J. F. In *Terpenoids in Plants*; Pridham, J. B., Ed.; Academic: London, 1967; pp 129–146.

- Ochi, M.; Kotsuki, H.; Inooue, M.; Taniguchi, M.; Tokoroyama, T. Chem. Lett. 1979, 831–832.
- Capon, R. J.; Ghisalberti, E. L.; Jeffereis, P. R. Phytochemistry 1981, 20, 2598–2600.
- 5. Cimino, G.; De Stefano, S.; Minale, L. *Tetrahedron* **1972**, 28, 1315–1324.
- Cimino, G.; De Stefano, S.; Minale, L. *Experientia* 1972, 28, 1401–1402.
- Pouchus, Y. F.; Verbist, J. F.; Biard, J. F.; Boukef, K. J. Nat. Prod. 1988, 51, 188–189.
- Lumsdon, D.; Capon, R. J.; Thomas, S. G.; Beveridge, A. A. Aust. J. Chem. 1992, 45, 1321–1325.
- 9. De Rosa, S.; De Giulio, A.; Iodice, C. J. Nat. Prod. 1994, 57, 1711–1716.
- Fusetani, N.; Sugano, M.; Matsunaga, S.; Hashimoto, K.; Shikama, H.; Ohta, A.; Nagano, H. *Experientia* 1987, 43, 1233–1234.
- 11. Stonik, V. A.; Makarieva, T. N.; Dmitrenok, A. S. J. Nat. Prod. **1992**, 55, 1256–1260.
- Bifulco, G.; Bruno, I.; Minale, L.; Riccio, R.; Debitus, S.; Bourdy, G.; Vassa, A.; Lavayre, J. J. Nat. Prod. 1995, 58, 1444–1449.
- Guella, G.; Mancini, I.; Pietra, F. Helv. Chim. Acta 1987, 70, 621–626.
- Howard, B. M.; Clarkson, K.; Bernstein, R. L. Tetrahedron Lett. 1979, 20, 4449–4452.
- Targett, N. M.; Keeran, W. S. J. Nat. Prod. 1984, 47, 556– 557.
- 16. Faulkner, D. J. Nat. Prod. Rep. 1993, 93, 1771-1791.
- 17. Guella, G.; Mancini, I.; Guerriero, A.; Pietra, F. Helv. Chim. Acta 1985, 68, 1276–1282.
- Matsumoto, M.; Kobayashi, H.; Hotta, Y. J. Org. Chem. 1984, 49, 4740–4741.
- 19. Compound **5**: pale yellow oil, IR (CCl₄): 3541, 2935, 1498, 1464 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ : 6.44 (s, 1H), 5.45 (s, 1H), 5.31 (m, 1H), 5.11 (m, 1H), 3.95 (s, 3H), 3.86 (s, 6H), 3.79 (s, 3H), 3.31 (br d, *J* = 7.1, 2H), 2.07 (m, 4H), 1.72 (d, *J* = 1.2, 3H), 1.67 (d, *J* = 1.2, 3H), 1.60 (d, *J* = 0.7, 3H); ¹³C NMR (CDCl₃, 62.9 MHz) δ : 16.12 (q, C-10'), 17.66 (q, C-9'), 25.66 (q, C-8'), 26.73 (t, C-5'), 27.90 (t, C-1'), 39.75 (t, C-4'), 56.62 (q, OMe), 60.89 (q, OMe), 61.16 (q, OMe), 108.30 (d, C-6), 121.61 (s, C-5), 121.98 (d, C-2' or C-6'), 124.20 (d, C-6' or C-2'), 128.89 (s, C-4), 131.41 (s, C-7'), 136.59 (s, C-1), 140.04 (s, C-3'), 140.81 (s, C-2 or C-3), 146.14 (s, C-3 or C-2).
- 20. Buozbouz, S.; Kirschleger, B. Synthesis 1994, 714-718.
- 21. Manners, G. D.; Wong, R. J. J. Chem. Soc., Perkin Trans. 1 1981, 1849–1854.
- 22. Compound 7: yellow oil, IR (CDCl₃) 2937, 1491, 1435 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ : 6.61 (d, J = 9.0), 6.55 (d, J = 9.0, 1H), 5.50 (m, 1H), 5.09 (m, 1H), 4.53 (d, J = 6.6, 2H), 3.91 (s, 3H), 3.90 (s, 3H), 3.82 (s, 3H), 2.08 (m, 4H), 1.60 (d, J = 1.0, 3H), 1.68 (d, J = 1.2, 3H), 1.71 (d, J = 1.2, 3H); ¹³C NMR (62.9 MHz, CDCl₃) δ: 16.62 (q, C-10'), 17.71 (q, C-9'), 25.69 (q, C-8'), 26.33 (t, C-5'), 39.54 (t, C-4'), 56.41 (q, OMe), 61.14 (q, OMe), 61.22 (q, OMe), 66.66 (t, C-1'), 106.45 (d, C-5 or C-6), 109.05 (d, C-6 or C-5), 120.11 (d, C-2' or C-6'), 123.88 (d, C-6' or C-2'), 131.74 (s, C-7'), 140.59 (s, C-3'), 143.20 (s, C-1 or C-2, or C-3, or C-4), 144.21 (s, C-2, or C-1, or C-3, or C-4), 146.94 (s, C-3, or C-1, or C-2 or C-4), 147.94 (s, C-4, or C-1, or C-2, or C-3). Compound 8: yellow oil, IR (CDCl₃) 2935, 1489, 1459, 1434, 1415 cm⁻¹; ¹H NMR (250 MHz, CDCl₃) δ: 6.45 (s, 1H), 5.55 (m, 1H), 5.28 (m, 1H), 5.10 (m, 2H), 4.46 (d, J = 7.1, 2H), 3.93 (s, 3H), 3.87 (s, 3H), 3.81 (s, 3H), 3.33 (d, J = 7.3, 2H), 2.08 (m, 8H), 1.72 (d, *J* = 1.2, 3H), 1.70 (d, *J* = 1.2, 3H), 1.69 (d, *J* = 1.0, 3H), 1.67 (d, J = 1.0, 3H), 1.61 (d, J = 0.7, 3H), 1.60 (d, J = 0.7, 3H).

- Sakamoto, K.; Miyoshi, H.; Matsushita, K.; Nakagawa, M.; Ikeda, J.; Ohshima, M.; Adachi, O.; Akagi, T.; Iwamura, H. *Eur. J. Biochem.* 1996, 237, 128–135.
- 24. Sakamoto, K.; Miyoshi, H.; Takegami, K.; Mogi, T.; Anraku, Y.; Iwamura, H. J. Biol. Chem. **1996**, 271, 29897– 29902.