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RUIMING ZOU and MORRIS J .  ROBINS. Can. J.  Chem. 65, 1436 (1987). 
Treatment of 2-N,9-diacetylguanine with diphenylcarbanloyl chloride followed by heating with aqueous ethanol gave 2-N- 

acetyl-6-0-diphenylcarbamoylguanine (2-acetamido-6-diphenylcarbmoyloxypurine). Bis-trimethylsilylation of this product 
followed by coupling with glycosyl acetates (trinlethylsilyl triflate catalysis) or a-haloethers in or~hydrous toluene gave 
9-substituted guanine compounds in high yields with no 7-isomers detected. 

RUIMING ZOU et MORRIS J.  ROBINS. Can. J.  Chem. 65, 1436 (1987). 
La rCaction de la diacktyl-2-N,-9 guanine avec le chlorure de diphCnylcarbamoyle, suivie d'un chauffage avec de I'ethanol 

aqueux, conduit B la N-acktyl-2 0-diphCnylcarbamoy1-6 guanine (acetamido-2 diph6nylcarbamoyloxy-6 purine). La bis-tri- 
n~kthylsilylation de ce produit, suivie d'un couplage avec soit les acetates de glycosyle (catalyse par le triflate de trimCthylsilyle) 
ou les a-haloethers dans le tolu2ne anhydre, conduit aux con~poses de la guanine substituks en position 9 ;  les rendements sont 
ClevCs et on ne ditecte pas la prCsence d'isomkres 7 .  

[Traduit par la revue] 

Of the five heterocyclic bases commonly found in DNA and 
RNA, guanine (1) causes markedly enhanced experimental 
problems. Guanosine and its analogues are arnphoteric (pK, 1 - 
1.7, pK,2 - 9.2) polyfunctional compounds that are sparingly 
soluble in water and polar aprotic solvents, and effectively in- 
soluble in all other common solvents. They often self-associate 
in solution to form viscous gels and hydrate tenaciously in the 
crystalline state. Direct coupling with guanine-type bases pro- 
duces N7/N9 isomeric mixtures ( I )  that are frequently difficult 
to separate for the above reasons. Changes in experimental 
variables affect the isomer ratios, but do not eliminate contami- 
nation of the desired thermodynamic N9 product by significant 
quantities of the kinetic N7 isomer (2). 

Discovery (3) of the potent activity against herpes simplex 
type 1 and 2 viruses and low mammalian toxicity of 9-[(2-hydroxy- 
ethoxy)methyl]guanine (acyclovir) triggered a massive world- 
wide effort to synthesize and test guanine nucleosides and 
"acyclic nucleoside" analogues. Very recent syntheses of acyc- 
lovir analogues have employed 2-amino-6-alkoxypurines ( 4 , s )  
to enhance selectivity for N9 coupling. 

Reese and Ubasawa (6) and Hata and co-workers (7) had ob- 
served 0 6  functionalization of guanine during phosphate acti- 
vation for oligonucleotide synthesis, and Hata and co-workers 
have exploited 0 6  diphenylcarbamoylation of guanosine deriv- 
atives as a protection strategy (8). We now report regioselective 
coupling of bis-trimethylsilylated 2-N-acetyl-6-0-diphenylcar- 
bamoylguanine (2) with acetylated pentofuranoses and a-halo- 
ethers as a convenient new route to guanine N9 products. 

A suspension of 30.22 g (0.2 mol) of guanine (1) in 250 mL 
of dry DMAc and 50 mL of Ac20 was stirred at 160°C for 7 h. 
The brown solution was cooled and crystalline 2-N,9-diacetyl- 
g ~ a n i n e ~ . ~  (9) was filtered and washed with EtOH. A second 
crop raised the yield to 42.53 g (90%). A stirred suspension 

'(a) This paper constitutes "Nucleic acid related compounds. 52." 
For the previous paper in this series, see ref. 12. (b) A preliminary 
account was presented at the Annual Chemical Congress of the Royal 
Society of Chemistry, University of Warwick, U.K. April 11, 1986. 

 ass spectrum, m/z 235.0706 (M'  235.0706); 'H nmr (MezSO-d6) 
8: 2.20 (2NAc). 2.80 (N9Ac), 8.42 (H8). 

3 ~ h e s e  compounds had elemental analyses (C, H,  N) within -+0.3% 
of theory. 

of 5.88g (25 mmol) of 2-N,9-diacetylguanine in 8.7 mL of 
EtN(i-Pr):! and 120 mL of dry C5H5N was treated with 6.37 g 
(27.5 mmol) of Ph2NCOCl for 1 h at ambient temperature. H 2 0  
(10 mL) was added and stirring continued for 10 min. Evapora- 
tion in vacuo and coevaporation (3 x 20mL of PhCH3) was 
followed by heating (steam bath) the residue with 300 mL of 
50% EtOH/H20 for 1.5 h. Cooling, filtration, washing (EtOH), 
and drying gave 8.93 g (92%) of 2.3,4 
N,O-Bis(trimethylsily1)acetamide (0.5 mL) was added to a 

suspension of 388 mg ( I  mmol) of 2 in I0 mLof dry 1,2-dichloro- 
ethane. Stirring at 80°C for 15 min gave a clear solution that was 
evaporated in vacuo. The residue was dissolved in 5 mL of dry 
PhCH3 and 0.25 mL of CF3S03SiMe3, and 382 mg (1.2 mmol) 
of 1 ,2,3,5-tetra-0-acetyl-P-D-nbofuranose in 5 mL of dry PhCH3 
was added. The solution was stirred at 80°C for I h and cooled, 
50 mL of EtOAc was added, and the solution was worked up in 
the usual manner. The crude product was chromatographed 
(25 g silica, 2 x 15 cm; Et20/Me2C0 8:2) to give 589 mg 
(91 %)of 3: ms (FAB) m/z  647 (M + 1); 'H and "C nmr spectra 
were compatible with structure 3. 

Trace quantities (<3%) of a more rapidly migrating bis- 
ribosylated product (2-N,9 by nmr) were separated from 3 by 
the column chromatography. Deprotection of 3 with NH3/H20/ 
MeOH gave 75% (68% from 2) of guanosine (4) hemihydrate3 
after recrystallization from water. 

Analogous coupling reactions with 2(SiMe& and tetra-0- 
acetyl-D-furanosyl derivatives of arabinose and xylose gave 
good yields of the corresponding 9-a- and 9-P-guanine nucleo- 
sides, respectively. Coupling of 2(SiMe3), and (2-acetoxy- 
ethoxy)methyl bromide (10) in toluene proceeded readily at 
ambient temperature without catalyst. The resulting acyclovir 
derivative was obtained in 63% yield after column chromatogra- 
phy and crystallization. X-ray crystallographic analysis of this 
intermediate confirmed the 6-diphenylcarbamoyloxy structure.' 
Deprotection gave acyclovir hemihydrate3 (10) in 91% yield 
after recrystallization (H20).  

4Mass spectrum, m/z 388.1283 (M' 388.1284); 'H  nmr (MezSO-ds) 
8: 2.18 (2NAc), 7.26-7.56 (NPh?), 8.46 (H8). 

5We thank Dr. R. Ball of the Structure Determination Laboratory of 
this Department for the X-ray analysis. Details will be published 
separately. 
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COMMUNICATIONS 

I- AcHN 13) N , 

AcO OAc HO OH 
3 4 

(a) Ac20/DMAc/A. (b) ( i )  Ph2NCOCI/EtN(i-Pr)2/Pyridine. (ii) EtOH/H20/A. 
(c) ( i) BSA/CICH2CH2CI/A/Evaporate. ( i i) Tetraacetylr~bose/CF~SO~SiMe,/PhCH~/A. 

(d) NH3/H20/MeOH/600C. 

Vorbriiggen et al. (1 1) had reported coupling of tris-trimethyl- 
silylated 2-N-acetylguanine and 1 -0-acetyl-2,3,5-tri-0-benzoyl- 
P-D-ribofuranose in 1,2-dichloroethane at reflux with trimethyl- 
silyl triflate as catalyst. The  crude product was deprotected to 
give "pure guanosine" in 66% yield after recrystallization from 
water. Careful repetition of this sequence gave 66% of crystal- 
line product that comigrated (tlc) with guanosine as  described 
(1 1). However, the 400-MHz ' H  nrnr spectrum of this material 
in Me2SO-d6 revealed a mixture of 4 and its N7 isomer. The  nrnr 
analysis of the crude coupling product showed a N9/N7 ratio of 
- 3 : l .  

Analysis (400-MHz ' H  and 100-MHz 13c nmr) of our crude 
coupling product and the recrystallized deprotected nucleoside 
showed only 3 (plus trace amounts of the bis-ribosyl by-product) 
and 4, respectively, with no detected N7 contaminant. There- 
fore, coupling of glycosyl acetate (and chloride) derivatives and 
a-haloethers with the readily accessible 2(SiMe3)? under an- 
hydrous conditions in toluene as described herein represents a 
new and experimentally convenient route to 9-glycosyl guanine 
derivatives and analogues. These can be purified and manipu- 
lated readily and deprotected under mild conditions. It represents 
the method of choice among presently published alternatives for 
the preparation of guanine N9 n u c l e o ~ i d e s . ~  Further investiga- 
tions on selective syntheses of N7 products and kineticlther- 
modynamic isomer studies will be reported in detail. 
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