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The inhibition of FLT-3 activity is an interesting target for the treatment of acute myeloid leukemia
(AML). The serendipitous identification of FLT-3 inhibitors from a CK1/y-secretase programme provided
compounds with dual inhibitory activity. We analyzed the structure-activity relationship of these inhib-
itors and derivatized them to arrive at compounds with reduced impact on y-secretase activity and
enhanced FLT-3 inhibition.

© 2012 Elsevier Ltd. All rights reserved.

Acute myeloid leukemia (AML) is an aggressive haematological
malignancy with long-term survival rates of 25-70% in patients
younger than 60 years and only 5-15% in older patients.!? Activat-
ing mutations of FLT-3 (FMS-like tyrosine kinase-3) are abundant
molecular abnormalities found in AML.? FLT-3 is essential for the
normal function of stem cells and the immune system and is pri-
marily expressed in immature hematopoietic cells.* It contains
an extracellular ligand binding domain, a transmembrane domain,
and an intracellular juxtamembrane domain followed by the tyro-
sine kinase domain, which is interrupted by a kinase insert re-
gion.>® Internal-tandem duplications (ITDs) and tyrosine kinase
domain (TKD) point mutations are the two major classes of activat-
ing FLT-3 mutations identified in AML patients.” FLT-3/ITD muta-
tions were estimated to occur in ~23% of de novo AML.? Several
ATP-competitive FLT-3 inhibitors have been developed for a tar-
geted therapy of this disease.® The FLT-3 inhibitors are derived
from different structural classes and some of them displayed high
potential in preclinical and clinical trials, Scheme 1.°71°

The published data suggest that FLT-3 is an attractive therapeu-
tic target for the development of kinase inhibitors for AML and
other associated diseases.!!

Working on the structure-activity relationship of the indoli-
none scaffold of dual CK1/y-secretase inhibitors in the context of
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Alzheimer’s disease we additionally profiled the compounds for ki-
nase selectivity. Serendipitously FLT-3 was part of the kinase panel
and two substances displayed significant inhibition (98% and 89%
at 10 mM) of this tyrosine kinase, Scheme 2.

Regarding this and the fact that FLT-3 is not known to exert ef-
fects on the amyloid precursor protein metabolism we focused on
optimizing the FLT-3 inhibitory activity of 1 and reducing its mod-
ulation of y-secretase activity. Primary objective of our research
was to decrease the effect on y-secretase and to improve mean-
while the inhibitory activity against FLT-3. The structure of 1 guided
the variation of the structure-activity relationship (SAR) study.

The Knoevenagel condensation of indolinones and aldehydes
provides a rapid and efficient method to generate a chemical diver-
sity. The Koevenagel products were obtained from microwave irra-
diated reaction mixtures within 30 min, which was followed by
rapid purification. In the first step alkyl or aryl benzyl halides were
coupled with 4-hydroxybenzaldhydes 3 under basic conditions to
obtain a series of elongated benzaldehydes 4a-n for the subsequent
Knoevenagel condensation.!!!? A further nucleophilic substitution
of the chlorides 4kl resulted in the tertiary amines 5a,b potential
intermediate iminium salts were hydrolysed in the aqueous work
up.!! The ether 7 was formed in a microwave heated reactor by sub-
stitution of an aromatic fluoride 6 with a 4-(4-methyl-1H-imidaz-
ole-1-yl)phenol.!> The 4-fluoro-benzaldehyde 8 was substituted
to its corresponding sulfonyl 9 and imidazol benzaldehyde 10,
Scheme 3.'>'* The phenylimidazoles 7 and 10 were prepared to
evaluate this motif, which is frequently employed on y-secretase
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Scheme 1. FLT-3 inhibitors evaluated in preclinical or clinical trials.
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Scheme 2. Screening hits of potential FLT-3 inhibibitors in a kinase panel of 43
kinases.!

modulators.'® The opportunity to obtain fluorescent derivatives
was addressed by two derivatives: (A) a two step synthesis resulted
in the azobenzene derivative 12, the 4-aminobenzaldehyde 11 was
converted to its diazonium derivative via diazotation and the final
azobenzene 12 was formed by an azo coupling reaction.'® (B) The
9-methyl-9H-carbazole 13 was converted to the bulky aldehyde
14 in a two step procedure under Vilsmeier-Haack conditions,
Scheme 3.17

Commercial aldehydes and the previously synthesized benzal-
dehydes (Scheme 3) were coupled with the indolinones 15a,b un-
der microwave supported Knoevenagel conditions, Scheme 4.!!
The resulting products 16a-x were obtained in yields up to 97%,
Table 1. This class of compounds was shown to isomerize within
2 days in methanol, thus no attempts were made to separate the
isomers.!! A further reduction of compound 16e resulted in 77%
yield of product 16y, Scheme 5a. Finally, the product 16i was deriv-
atized to obtain the tetrazole 16z in a moderate yield of 62%,
Scheme 5b.!®

Human recombinant FLT-3 was used in the FLT-3 in vitro kinase
assay to ascertain the inhibitory activity. The concentration of the
phosphorylated substrate peptide phospho-Ulight-CAGAGAIETDK
EYYTVKD (Starting unphosphorylated peptide concentration:
100 nM) was determined after 90 min incubation time at room
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temperature by the LANCE detection method.>* All experiments
were carried out as technical replicates, the average of two such
replicates is listed in Table 1.

The results are expressed as a percent of control (Staurosporine)
specific activity ((measured specific activity/control specific activ-
ity) x 100) obtained in the presence of the test compounds
(10 uM), Table 1. The previously described liquid phase electro-
chemiluminescence (LPECL) assay was used to measure the AR42
isoform to evaluate the compounds for their potency in inhibiting
y-secretase activity, Table 1.23

To confirm the FLT-3 inhibition-ratio observed at 10 uM con-
centration we determined the ICso values of compounds 16e,j,1,n.
The four compounds showed potent inhibition of FLT-3 activity:
ICso=4.1nM for 16e, IC5o=14.0 nM for 16j, ICso=29.0 nM for
161 and IC50=17.0 nM for 16n, which exceeded the ICsy in the
Ap42 generation assay by 3 powers of 10. These activities indicated
that we have differentiated FLT-3 inhibition from vy-secretase
inhibition.

The most potent y-secretase inhibitors 16s,v feature a phenyl-
imidazole, which is frequently encountered in y-secretase modula-
tors. However, both compounds display reduced FLT-3 inhibition.
As indolinones are well known as kinase inhibitors?>® we deter-
mined the broader selectivity of our most active FLT-3 inhibitor
16e. The selectivity of compound 16e was evaluated at a concen-
tration of 1 uM against 50 human protein kinases, Figure 1. Most
of the 50 kinases in this panel showed a residual activity higher
than 80%, whereas FLT-3 displayed a residual activity of only
14.7%. The only kinases, which were also significantly inhibited
by this compound, were the Ser/Thr kinase HGK (MAP4K4) and
the Tyr kinase JAK3.

In addition to the H4 APP#9 cell-based toxicity assay, we eval-
uated the compounds in a zebrafish embryo phenotype assay,
which enabled toxicity determination in whole organisms.?’ The
embryos were collected and maintained in E2 medium at 28 °C.
Compound 16e was added 4-5 hpf (hours post fertilization) and
the phenotypes were compared after 48 hpf. Compound 16e causes
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a development delay at 20 pM, Figure 2. Compared to the control,
zebrafish embryos treated with 16e were still covered by the cho-
rion. Nevertheless, they did not reveal other abnormalities. The
zebrafish embryo assay did not reveal lethality and peculiarities
at a concentration below 20 uM of 16e.

The docking studies (Molegro Virtual Docker 5) of the FLT-3
crystal structure (PDB: 1RJB) and compounds 16e and 16n

R2
R aldehyde, piperidine, R! /
‘@\/3:0 100°C, 30 min, mw &
N N
H H
15aR'=H 16a-x
16bR'=Cl (9-97%)

Scheme 4. Synthesis of indolinone derivatives under microwave conditions
(R? = phenyl moieties).!!"19-22

revealed potential inhibitor-enzyme interactions, Figure 3.2 In
both cases the docking result indicates four potential interac-
tions. The indolinone motif interacts edge-to-face with the
Phe830 of the DFG motif. In addition, the indolinone fits to the
FLT-3 hinge region by face-to-face interplay with Phe691 and
the hydrogen bonding with Lys644.8 The phenyl group of the
inhibitors interacts with Met665.2 In addition to these interac-
tions, the rigidity of the bridge between the indolinone and
the phenyl moiety may contribute to potent FLT-3 inhibition.
Therefore, we synthesized compounds 16e and 16y, which differ
in orientation and rotational flexibility of the aryl substituent.
The FLT-3 in vitro assay results of compounds 16e (FLT-3 inhibi-
tion-ratio = 100%) and 16y (FLT-3 inhibition-ratio = 47%) revealed
a twofold increased FLT-3 inhibition-ratio for 16e and exemplify-
ing the influence of rigidity. A FLT-3 inhibition comparison of all
compounds revealed that an electron donor motif is needed at
the end of the elongated, variable alkyl chain. For example com-
pound 16¢, which lacks this motif, showed a decreased inhibi-
tion activity compared to 16d,i. This may be explained by a
polar area formed by Glu573 and GIn577, which is in close vicin-
ity. A comparison of the FLT-3 inhibition results and the docking
studies offers the possible suggestion that the benzylidene ind-
olinone moiety may occupy the entrance of the ATP-binding site
(compound 16a,b,k) and the elongated alkyl chain ranging from
C, (16e) to C4 (16h) could act as a flexible ‘anchor’ in the inner
side of the ATP-binding pocket, for example, 16d-j. Furthermore,
a comparison of the FLT-3 inhibition results of Table 1 revealed
that bulky residues at the phenyl moiety lead to a decreased
inhibitory activity.

The inhibitory activity of the synthesized compounds in the
v-secretase assay cannot be correlated to the FLT-3 inhibition-ra-
tio, Figure 4. In the case of compounds 16i (FLT-3 inhibition-ra-
tio=96%; ICso (AB42)>40uM) and 16n (FLT-3 inhibition-
ratio = 87%; 1Cso (Ap42)> 160 M) we expected the same result,
but surprisingly, they were not active against the vy-secretase,
Table 1 and Fig. 4. In comparison with other compounds, for
example, 16d,l and 16p,r, the nitrile and alkyl chain combination
is important for this selectivity.

Conclusion: we have identified several potent FLT-3 inhibitors
based on the scaffold of the screening hit 1, which display neg-
lible activity on 7y-secretase inhibition. The most active com-
pound 16e did not display significant toxicity in H4 APP#9
cells and the zebrafish embryo phenotype assay. This lack of
apparent toxicity may be due to lack of permeation, yet perme-
ation is indicated by the activity in the AB42 generation assay.
The combination of FLT-3 in vitro results and docking studies re-
vealed likely enzyme-inhibitor interactions with the amino acids
Lys644, Met665, Phe691 and Phe830. Further improvement of
these FLT-3 inhibitors will focus on the reduction of the logP
to enhance to pharmacokinetic properties. Our most active FLT-
3 inhibitor 16e exhibits a ClogP value of 5.28, Table 1, which
implies impaired solubility.
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Table 1
Synthesized indolinones, their chemical properties and in vitro assay results?>2#
R2 R2
1 1
RL A / RL -2 o
| o | o
s ~N P ~N
H H
1-2, 16a-x, 16z 16y
Compound R' R? FLT-3 inhibition -ratio® (%)  ICso of A4, LPECL assay® (uM)  Toxicity (uM)S  Yield (%)  ClogP?
Staurosporine® < — = — 100 ntf nt.f — 4.19
Sunitinib® - - 100 nt’ ntf - 3.00
D\/\\/Cl
1 a ©/ 98 47 Y (40) - 5.04
0.
2 Cl L O/ 89 — — — 3.50
oo
OH
16a Cl ©/ 94 47.6 N (40) 28 3.53
o
16b Cl 85 >40 N (40) 88 4.12
O\/\/
16¢ a ©/ 79 >40 N (40) 83 5.71
O\/\N/
16d Cl ©/ | 99 7.6 N (40) 65 4.22
O\/\N/\\
16e Cl |\ 100 17.7 Y (40) 55 5.28
0\/\N/\
16f H |\ 97 — — 95 431
16g c ©/°\/\/N\/ 99 - - 80 563
16h Cl I\ 99 — — 64 5.56
’ 0 &N
16i a @’ ~~ 96 >40 Y (40) 90 3.94
(o]
16j Cl \/\N/\ 96 113 N (40) 84 4.24
) k/o . .
Br
OH
16k Cl 97 15.0 N (40) 97 5.10
- Br
O\/\N/
161 a . : | 8 115 Y (40) 31 3.96
|
e
16m Cl 2 99 115 Y (40) 42 5.02
. N
|
~N
O\/\/C -
16n a @[ 87 >160 N (160) 67 3.68
a o]

(continued on next page)
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Table 1 (continued)
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Compound R' R? FLT-3 inhibition -ratio® (%)  ICso of A4, LPECL assay® (uM)  Toxicity (uM)°  Yield (%)  ClogP?
(o}
\/\N/
160 Cl e | 100 10.0 N (40) 71 431
/O
~N
C e
16p a : o\/©/ 75 27.3 N (40) 93 532
’ (o]
o
16q Cl o 58 38.8 N (40) 70 5.86
16r a ©/O\/©\c\\ 77 >40 N (40) 48 532
~N
16s Cl N/%ﬂ 83 5.4 Y (10) 41 5.88
sy
|
N
16t H N~ 77 >80 N (80) 9 5.55
o
=y
N
K\
16u a @: o 48 73 Y (20) 85 2.49
.’ fo)
[
N///<N
16v a @i P 74 6.7 Y (80) 55 425
o}
|
/
N
16w Cl O Q 69 19.8 N (80) 17 6.04
/
N
16x H 78 27.6 Y (80) 15 5.07
O\/\N/\
16y H I\ 47 — — 77 3.87
HN-N
16z Cl 83 17.7 Y (40) 62 3.76

q
.

Percent of control (Staurosporine) specific activity ((measured specific activity/control specific activity) x 100); activity at a concentration of 10 uM.

Determined in H4-cells, Y = Yes, N = No.

a
> A liquid phase electrochemiluminescence (LPECL) assay, H4 APP#9 cells.
C
d

Calculated by ChemDraw Ultra (9.0.1).

Control.
f n.t. = Not tested.
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Scheme 5. Post-Knoevenagel modifications: (a) Reduction with H, and Pd/C; (b) Tetrazole synthesis under microwave conditions.'®
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Figure 1. Screening of compound 16e against a panel of human protein kinases. Each bar represents the activity of one individual protein kinase (determination method:

percent of control (Staurosporine) specific activity [(measured specific activity/control specific activity) x 100]). Compound 16e was tested at a concentration of 1 M against
50 protein kinases. See the Supplementary data for more details.?*

Figure 2. Exposure of zebrafish embryos to (A) 20 pM of 16e, (B) 5 uM of 16e, (C) control. The embryos were collected and maintained in E2 medium at 28 °C. Compound 16e
was added 4-5 hpf (hours post fertilization) and the phenotypes were compared after 48 hpf.
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Figure 3. Docking of compound 16e (left) and 16n (right) into the PDB crystal structure 1RJB of FLT-3; important interactions are highlighted; Software: Molegro Virtual
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Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.bmcl.2012.10.
016.
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