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Abstract: A novel two-carbon ring enlargement procedure, in
which medium- and large-ring 1-vinylcycloalkanols are thermo-
isomerized in a flow reactor system at temperatures of 600 °C to
about 650 °C, produces the isomeric ring-expanded cycloalkanones
directly and efficiently. This two-step ring expansion protocol can
easily be applied several times successively. For e.g., the musk
odorant cyclopentadecanone (Exaltone®) is prepared from cycloun-
decanone in two repetitive cycles. Thermo-isomerization of the cor-
responding ethynylic cycloalkanols gives in moderate yields the
bishomologous �,�-unsaturated macrocyclic (E)-2-cycloalkenones.
A reaction mechanism via alkyl hydroxyallyl biradical intermedi-
ates is proposed.

Key words: ring expansions, macrocyclic ketones, thermo-isomer-
ization, ring-insertion reactions, hydroxyallyl radicals

On search on new access to �-campholenic derivatives by
pyrolysis of borneol precursors,1 a novel two-carbon ring
expansion reaction has been discovered.

In our thermo-isomerization experiments with medium
and large ring-sized 1-vinylcycloalkan-1-ols of type A,
which were performed at temperatures in the range of
600-650 °C, we obtained not the expected open-chain alk-
enone isomers C (hypothetically formed via an intramo-
lecular [1,5]H shift reaction2 and the subsequent enol
intermediate B). Instead the ring-expanded isomeric cy-
clic ketones E were formed as the main products in good
yields. According to Scheme 1, the reaction pathway for
the formation of ketones E from allylic alcohols A would
formally include the reorganization of the involved bonds,
which corresponds to a [1,3]C shift reaction via enol inter-
mediate D.

Thermo-isomerization of 1-vinylcyclododecanol3,4 6
(which is derived in one step from ketone 5 by addition of
vinylmagnesium reagent) in a flow reactor system5 under
reduced pressure (1-4 mbar) and at temperatures around
650 °C gave directly cyclotetradecanone (7) in average
yields of 75% (Scheme 2).6 Cycloalkanone 7 could easily
be separated from by-products (mostly more volatile and
less polar alkene fractions formed by dehydration of the
starting material) either by crystallization of 7 from hex-

ane solution at -20 °C or by column chromatography on
silica gel (eluant, hexane–t-BuOMe, 97:3-95:5).

The cyclic ketone 7 was directly used as the starting ma-
terial for a subsequent ring enlargement step, analogous to
the first expansion cycle. Indeed, allylic alcohol 8, ob-
tained from ketone 7,3 was transformed into the isomeric
16-membered homologous cycloalkanone7 9 in compara-
bly good yields by application of the same thermo-isomer-
ization conditions. This repeatable11 ring-enlargement
procedure4,5 was also applied to the corresponding vinyl-
cycloalkanols derived from odd-membered cyclic ketones
(Scheme 2). In this way, the 17-membered cycloalkanone
13 (“dihydrocivetone”)8 was obtained by three iterative
ring expansion cycles, starting from commercially avail-
able cycloundecanone via cyclotridecanone9 (11) and
cyclopentadecanone10 (12). 

No reaction or only the formation of olefins was observed
previously when 4 was submitted to a static thermolysis at
420 °C.12 The thermo-isomerization of the same alcohol 4
under the dynamic high temperature conditions which we
applied in our experiments, proceeded smoothly to give
the bishomologous cycloalkanone 5 in excellent average
yields of more than 80% (Scheme 2). We also tested the
transformation of vinylcyclooctanol (2) into cyclode-
canone (3). However, the corresponding isomerization
experiments under different conditions gave only moder-
ate conversion rates. Besides ca. 50% recovered starting
material plus further dehydration and disproportionation
products, the expected ketone 3 was formed in yields of
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only 25–30%. Whereas experiments with prolonged con-
tact times in the flow reactor system led only to an in-
crease of the undesired dehydration products,5 the yields
of 3 could be raised significantly when the crude isomer-
ization mixture was subjected to the thermo-isomerization
process at least a second time (recycling procedure).
However, only starting material and dehydration products
were obtained, when the corresponding six- or seven-
membered ring systems were subjected to the same reac-
tion conditions.

In sharp contrast to the smooth rearrangement reactions of
the macrocyclic vinylcycloalkanols, the thermolysis ex-
periments involving comparable acyclic (open-chained)
allylic alcohols, such as 14 (Scheme 3),4 resulted, under
the same reaction conditions, in the formation of complex
product mixtures with mainly low molecular mass com-

ponents, apparently generated by predominantly destruc-
tive fragmentation processes of the “retro-Grignard” type
(mainly formation of alkenes, polymers, tars).13

Scheme 3 Conditions: Flash vacuum pyrolysis (FVP, � 650 °C, 1–
4 mbar, N2 flow)

With regard to the reactor temperatures of more than
about 600  °C that are necessary for the thermo-isomeriza-
tion processes, a plausible pathway for the reaction in-
volves a biradical intermediate5b in analogy to the well
investigated vinylcyclopropane-to-cyclopentene rear-
rangement.14–17

Scheme 4

According to the mechanism shown in Scheme 4, a ho-
molytic cleavage of the C(1)-C(2) bond in 15 results in an
open-chained biradical intermediate 16 with an alkyl rad-
ical at the one end and a resonance-stabilized hydroxyallyl
species at the opposite of the chain. Intramolecular recom-
bination of the biradical 16 in the terminal vinylogous po-
sition leads via the ring-expanded cyclic enol intermediate
17 and subsequent tautomerization to the cycloalkanones
18 as a formal [1,3]C shift product under insertion of the
C2-unit of the former vinylic side chain. Intramolecular
hydrogen abstraction reaction within the biradical inter-
mediate 16 (disproportionation by H-transfer) leads to
open-chain vinyl alkyl ketone derivatives6a 19, which are
also identified as rearranged by-products with identical
molecular masses in the thermo-isomerization reactions.18

The dynamic thermo-isomerization procedure is also ap-
plicable to 1-ethynyl cycloalkanols (Scheme 5), e.g. 20
and 21, which are easily accessible in excellent yields
from the correspondig cyclic ketones by CeCl3 mediated
addition of ethynyl magnesium bromide.19 The product
mixtures contained the �,�-unsaturated ring-expanded cy-
clic ketones 22 and 24, respectively,20,21 in about 20-25%

Scheme 2 Reagents and Conditions: a) 1. Anhyd CeCl3, THF, r.t.,
0.5 h; 2. Vinyl magnesium bromide (THF solution.), 25 °C, 0.5 h. b)
Dynamic gas phase thermo-isomerization (DGPTI, FVP conditions, �
650 °C, 1–4 mbar, N2 flow).
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yields, besides nearly equal amounts of the open-chained
�,�-dienone isomers22 23 and 25, respectively. Highly
volatile by-products and also the starting saturated ke-
tones 5 and 11, respectively, which seem to be the prod-
ucts of a retro-Grignard fragmentation process at the high
reactor temperatures, have been observed. The NMR
spectra show that the 2-cycloalkenones 22 and 24, respec-
tively, which were separated by column chromatography
from the thermolysates, possess the thermodynamically
favorable (E)-configuration.20,21

Scheme 5 Reagents and conditions: a) Dynamic gas phase thermo-
isomerization (FVP conditions, � 640–670 °C, 1–4 mbar, N2 flow). b)
1. Anhyd CeCl3, r.t., 0.5 h; 2. vinyl magnesium bromide (THF soluti-
on), 25 °C, 0.5 h (85–95%). c) Cf. Scheme 2. d) 1. Anhyd CeCl3, r.t.,
0.5 h; 2. ethynyl magnesium bromide (THF solution), 25 °C, 0.5 h
(90–95%). e) H2, Pd/C (�quant.).

The musk odorant cyclopentadecanone 12 (Exaltone®, cf.
Scheme 2)10 can easily be obtained from 2-cyclopentade-
cenone  24 by catalytic hydrogenation. On the other hand,
24 is the well established direct precursor for the synthesis
of the valuable musk odorant muscone (3-methylcyclo-
pentadecanone) which is easily accessible from 24 by re-
ported short procedures.23,24 The straightforward
synthesis of muscone-precursor 24 starting from commer-
cial available cycloundecanone via cyclotridecanone (11)
as intermediate is outlined in Scheme 5. A muscone syn-
thesis via a one-carbon homologation with cyclotetrade-
canone 7 as the precursor ketone was also reported
earlier.25 

Useful extensions in the application of this novel ring-ex-
panding bishomologation methodology by thermo-
isomerization reactions to the synthesis of alkyl substitut-
ed macrocyclic ketones, e.g. a new short and straightfor-
ward synthesis of (�)-muscone, will be presented in a
subsequent communication.
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