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Abstract: A total of 47 flavanones were expediently synthesized via one-pot β-arylation of 

chromanones, a class of simple ketones possessing chemically unactivated β sites, with arylboronic 

acids via tandem palladium(II) catalysis. This reaction provides a novel route to various flavanones, 

including natural products such as naringenin trimethyl ether, in yields up to 92%.

INTRODUCTION

Flavonoids, which feature 15-carbon skeleton including 2 phenyl rings and 1 oxacycle, are a 

class of natural products from medicinal plants and their synthetic analogues.1 For the past decades, 

flavonoids have been considered a privileged repository of various drug candidates due to their 

biological activities such as anti-oxidative, anti-inflammatory and anti-cancer effects.2 Among 

flavonoids, flavanones, which are also known as 2-arylchroman-4-ones and include natural 

compounds such as naringenin trimethyl ether, have recently been identified as novel privileged 

structures with potent anti-cancer activity (Figure 1).3 To date, the Claisen-Schmidt condensation of 2-

hydroxyacetophenones and corresponding benzaldehydes has generally been used to provide 

chalcone intermediates that can be transformed into flavanones under acidic or basic refluxing 

conditions.4 However, such conditions are harsh and not compatible with acid/base-labile compounds. 
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Therefore, novel synthetic routes for flavanones have been pursued.

Figure 1. Examples of natural flavanones

OH

HO O

O

Pinocembrin

OH

MeO O

O

Pinostrobin

OMe

MeO O

O

OMe
Naringenin trimethyl ether

MeO O

O

OMe
Liquiritigenin dimethyl ether

Recently, nucleophilic 1,4-addition to the electrophilic β sites of chromones, a class of enones, 

were reported for the synthesis of flavanones (Scheme 1).5 These methods provided flavanones in 

good yields under mild conditions, mainly involving transition metal catalysis. In particular, they did not 

require acidic or basic refluxing conditions which were generally used in the Claisen-Schmidt 

condensation. Therefore, they showed good to excellent functional group compatibility and the 

feasibility of late-stage functionalization which has been central focus in the medicinal chemistry and 

chemical biology fields. However, chromones are sometimes prepared from chromanones,6 a class of 

simple ketones, via additional oxidation processes7 and generally not unmanageable because they 

possess reactive α,β-unsaturated carbonyl and enol ether which chromanones do not have. 

Therefore, chromanones might be applicable substrates to the synthesis of flavanones if it is possible 

to use them.
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Scheme 1. One-Pot β-Arylation Strategy for Flavanones
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Thus, direct β-arylation of chromanones with aryl synthons would be a versatile approach to 

functionalized flavanones although a direct and transformative arylation of the chemically unactivated 

β-sites of various chromanones has not been reported. Recently, the MacMillan group and Dong 

group reported catalytic β-arylation of ketones with aryl synthons in the metal catalysis, respectively.8 

Furthermore, Li group reported palladium catalyzed β-arylation of ketones using arylboronic acid with 

o-iodoxybenzoic aicd (IBX) as an oxidant.9 Inspired by these pioneering works, we aimed to develop 

novel methodologies that provide a diversity of privileged flavanones by one-pot arylation of 

chromanones via metal catalysis. In particular, an efficient transformation of a broad scope of 

substrates with high yields in the reaction would be expected to be desirable for the methodology 

towards flavanones. Herein, we report palladium(II)-catalyzed one-pot β-arylation of chromanones 

with arylboronic acids for the synthesis of flavanones.

RESULTS AND DISCUSSION

To obtain flavanones via β-arylation of chromanones in a one-pot sequence, we speculated that 

the overall reaction would involve oxidative chromone formation and sequential nucleophilic conjugate 

addition. Recently, preliminary reports suggested the potential of palladium(II) catalysis to enable 

dehydrogenation as well as conjugate addition of organoboron reagents, respectively.5c, 5f, 8d, 10 Based 

on this speculation, we chose 4-chromanone 1a and phenylboronic acid as the model compounds to 
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investigate the feasibility of a reaction in which they could be assembled into flavanones via 

palladium(II)-catalyzed dehydrogenation and sequential conjugate addition (Table 1). In our previous 

report on the synthesis of flavones from chromanones via a palladium(II) catalysis, we observed that 

the reaction with Pd(TFA)2, 5-nitro-1,10-phenanthroline and DMSO solvent under an O2 provided 

flavanone 3a as a minor product (25%) along with flavone 4a in 42% yield (entry 1).11 For the 

successful conversion from chromanone to flavanone, we speculated that dehydrogenation would 

precede conjugate addition; however, formation of the flavone and arylboronic acid-derived 

byproducts should be avoided in the reaction.12 For this purpose, we tried to screen many conditions 

and found that the yield of flavanone 3a was significantly increased to 46% and that the yield of 

flavone, the oxidative boron-Heck product, was lowered to 14% (entry 2) when adding phenylboronic 

acid (conjugate addition) after complete conversion of chromanone into chromone 2a 

(dehydrogenation). Given recent reports that protonolysis could induce conjugate addition rather than 

oxidative boron-Heck coupling in palladium(II) catalysis,11, 13 we tried to add an acid in the conjugate 

addition step. In the presence of TFA, the yield of flavanone was increased to 60%, whereas the yield 

of flavone was lowered (14% to 10%), as anticipated (entry 3). Next, ligands were screened,10a, 12d, 14 

and 2,2′-bipyridine (bpy) was found to be superior to other ligands, providing flavanone in 65% 

isolated yield (entry 8). On the other hand, in the absence of ligand or with monodentate ligands such 

as DMAP, the reactions produced only trace amounts of the desired flavanones (entries 4-6). When 

TFA was changed to AcOH, the yield of the reaction was slightly reduced (entry 9).

Table 1. Optimization of the Reaction Conditiona

O

O O

Othen

1a 3a: Flavanone

O

O

4a: Flavone

Pd(TFA)2, ligand
solvent, O2

O

O

2a

(HO)2B

++
TFA

Yield (%)b

Entry Solvent Ligand Acid 2a 3a 4a

1c DMSO 5-Nitro phen - 1 25 42

2 DMSO 5-Nitro phen - 1 46 14

3 DMSO 5-Nitro phen TFA 4 60 10

4 DMSO - TFA 86 1 7

5 DMSO DMAP TFA 85 0 0
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6 DMSO Pyridine TFA 76 1 1

7 DMSO Phendione TFA 35 11 1

8 DMSO bpy TFA 3 65 3

9 DMSO bpy AcOH 1 56 5

10 AcOH bpy TFA 26 4 0

11 Toluene bpy TFA 1 35 8

12 NMP bpy TFA 1 50 26

13 DMA bpy TFA 1 55 10

14 DMF bpy TFA 9 48 10

15 1,4-Dioxane bpy TFA 26 63 2

16d i-PrOH bpy TFA 1 63 3

17 DMSO/i-PrOH(1:1) bpy TFA 4 76 2

18 DMSO/dioxane(1:1) bpy TFA 3 80 3

19 DMSO/dioxane(1:2) bpy TFA 3 81 4

20 DMSO/dioxane(1:3) bpy TFA 1 82 3

21 DMSO/dioxane(1:4) bpy TFA 1 85 3

22e DMSO/dioxane(1:4) bpy TFA 1 73 2

23 DMSO/dioxane(1:8) bpy TFA 1 80 2

aReaction conditions: 1a (0.34 mmol), Pd(TFA)2 (15 mol%), ligand (30 mol%), and solvent (0.5 mL) at 

100 °C under O2, 24-48 h; then phenylboronic acid (1.02 mmol), acid (0.34 mmol) and solvent (0.5 

mL) at 80 °C under O2, 4-48 h. bIsolated yield. c1a and phenylboronic acid were added simultaneously 

and the reaction was done at 100 °C. d80 °C. ePd(TFA)2 (10 mol%), bpy (20 mol%) and phenylboronic 

acid (0.51 mmol).

We also screened several solvents ranging from nonpolar to aprotic polar systems (entries 10-

16). The reaction worked moderately in aprotic polar solvents while it did not in nonpolar toluene. 

Other solvents were not as good as DMSO, but 1,4-dioxane was similarly effective. i-PrOH was also 

moderate for the reaction (63%), but AcOH was not. Upon screening for the optimal condition, we 

observed that dehydrogenation from chromanone to chromone occurred faster and more smoothly in 

DMSO than in 1,4-dioxane and i-PrOH, while the conjugate addition in 1,4-dioxane and i-PrOH 

progressed well, compared that in DMSO. Based on this observation, we tried to screen the reaction 

conditions using co-solvents such as DMSO/dioxane. To our delight, compared to those in single 

solvents, the yields of flavanone in the reactions using co-solvent conditions were significantly 

increased (entries 17-23). Notably, the use of DMSO/dioxane (1:4) as a co-solvent system enables 
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the reaction to provide the desired flavanone 3a with the highest yield of 85% within a shorter reaction 

time than those required under other conditions. In the case of decreasing loading amounts of 

catalyst, ligand, and phenylboronic acid, the yield for desired flavanone was slightly decreased. 

Under the optimized condition, the reactions of chromanone 1a with a series of arylboronic acids 

were performed to investigate the functional group tolerance of the reaction (Table 2). The reactions 

were successfully applied to synthesize a series of flavanones from 1a with arylboronic acids 

possessing either electron-donating aryl or alkyl groups (3b-g) or electron-withdrawing groups (3h-o). 

Hydroxy (3p and 3q) and methoxy (3r-v) flavanones mimicking natural flavanones were also readily 

synthesized using corresponding arylboronic acids. Furthermore, thiophene group (3x), a kind of 

heteroaryl group, was also tolerated in the reaction although the yield was slightly decreased. In 

particular, the highest yield of 92% was obtained for trimethoxy flavanone 3s, while a relatively lower 

yield was obtained for nitro flavanone 3o.

Table 2. Scope of Reactions Using Arylboronic Acidsa, b
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aReaction conditions: 1a (0.34 mmol), Pd(TFA)2 (15 mol%), bpy (30 mol%), and DMSO/dioxane (1:4) 

(0.5 mL) at 100 °C under O2, 16 h; then arylboronic acid (1.02 mmol), TFA (0.34 mmol) and 

DMSO/dioxane (1:4) (0.5 mL) at 80 °C under O2, 4-24 h. bIsolated yield.

Subsequently, to further broaden the scope of the reaction, phenylboronic acid was reacted with 

a variety of chromanones under the optimized condition (Table 3). In the case of using chromanones 

with both electron-donating alkyl groups (3y and 3z) and electron-withdrawing halogen substituents 

(3aa and 3bb), the reactions progressed well. Hydroxy (3cc and 3dd), methoxy (3ee-ii), and 

benzyloxy (3jj) flavanones were also expediently synthesized under the condition. In addition, OH−-
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labile ester functional groups, such as those in (3kk-mm), and H+-labile acetal group 3nn were also 

tolerated in the reaction.

Table 3. Scope of Reactions Using Chromanonesa, b

O

O
Cl

O

O

O

O

O

O

O

O

F

MeO

MeO

OMe

MeO

O

O

O

O

HO

O

O

O

OOMe

3aa (80%) 3bb (76%)

O

O

O

O

PivO

3y (78%)

3hh (71%)

3ee (64%)

3gg (85%)

O

O
PivO

3z (84%)

O

O
BnO

O

O
AcO O

O

3kk (71%)

3jj (77%)

3mm (80%)

3ff (87%)

3nn (72%)3ll (65%)

O

O

MeO

3ii (76%)

MeO

3dd (70%)

O

O
HO

3cc (79%)

O

O
(HO)2BO

O

then TFA

Pd(TFA)2, bpy
DMSO/dioxane, O2

1 3

R R

aReaction conditions: 1 (0.34 mmol), Pd(TFA)2 (15 mol%), bpy (30 mol%), and DMSO/dioxane (1:4) 

(0.5 mL) at 100 °C under O2, 12-24 h; then phenylboronic acid (1.02 mmol), TFA (0.34 mmol) and 

DMSO/dioxane (1:4) (0.5 mL) at 80 °C under O2, 4-24 h. bIsolated yield.

To further confirm the utility of our methodology, we tried to synthesize natural flavanones via the 

reaction (Scheme 2a).15 First, we attempted to synthesize liquiritigenin dimethyl ether16 7 and butin 

trimethyl ether17 8 from 7-methoxy-4-chromanone 5, and successfully obtained the desired flavanones 

in good yields of 82% and 80%, respectively. Furthermore, 3 natural flavanones (9-11),18 were also 

obtained from 5,7-dimethoxy-4-chromanone 6 as a common intermediate. Among these natural 

compounds, compound 7 and 9 have been known to exhibit potent anti-cancer activity through cell 

cycle arrest, indicating that our methodology can be useful for further pharmacological studies by 

providing anti-cancer flavanones.19 In addition, pinocembrin 12 and pinostrobin 13,20 natural hydroxyl 
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flavanones were readily converted from a common intermediate, 3hh.21 A scaled-up one-pot β-

arylation using 5 and 4-methoxyphenylboronic acid as starting materials was also successfully 

performed, providing the desired anti-cancer flavanone 7 in 80% yield (Scheme 2b). Also, to expand 

the scope our methodology, we tried to synthesize α- or β-substituted flavanone (Scheme S2, ESI†). 

However, only trace amount of β-substituted product was isolated in the reaction with 2-

methylchroman-4-one and no conjugate addition product was obtained with α-substituted 

chromanone, 3-methylchroman-4-one.

Scheme 2. Synthesis of Natural Flavanones and Scaled-Up Reaction
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Next, to investigate the detailed mechanism of our methodology, we performed kinetic analysis of 
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the reaction by monitoring the time-dependent conversion of chromanone to chromone 

(dehydrogenation), eventually resulting in the formation of the flavanone (conjugate addition) under 

the optimal condition (Scheme 3a and Table S2, ESI†). During the first step of the reaction, 

chromanone 1a was smoothly converted into chromone 2a. Within 16 hours, chromanone was 

completely consumed, and chromone was concurrently produced in quantitative yield. After adding 

phenylboronic acid and TFA dropwise, chromone was subsequently converted into the desired 

flavanone 3a by conjugate addition in a yield of 85% within 8 hours, along with a small amount of 

flavone 4a. In addition, we confirmed whether an acid is beneficial in the reaction. In the 

dehydrogenation step, acidic condition resulted slightly lower conversion of chromanone to chromone 

with the yield of 84%, compared to 92% of optimized condition (Table S3, ESI†). Furthermore, in the 

absence of an acid, chromone was slowly converted to flavanone, and complete consumption of 

chromone took more than 16 hours with a decreased yield of 78% as a final output (Table S4, ESI†). 

These results suggested that acid is beneficial for the conjugate addition but not for dehydrogenation, 

compared to its absence. In this study, when chromanone, phenylboronic acid and TFA were reacted 

simultaneously, it was observed that a small amount of chromanone was converted into chromone, 

leading to only a trace amount of flavanone (Table S1 and S5, ESI†). Based on previous reports that 

arylboronic acid is undesirably transformed into arene through protodeboronation under acidic 

palladium(II) catalysis,12a, 12b we presumed that the all-in-one reaction would be sluggish due to the 

competitive protodeboronation of arylboronic acid. To validate our speculation, all-in-one β-arylation 

was executed, and its progress was analyzed by monitoring the conversion of chromanone into 

flavanone and byproducts (Scheme 3b). As anticipated, 1,2-dimethoxy benzene, the 

protodeboronated compound, was detected as a major product in yields up to 60% with little 

chromone and flavanone. Thus, tandem Pd(II) catalysis involving dehydrogenation and sequential 

conjugate addition would be more favorable than simultaneous catalysis for the conversion of 

chromanones into flavanones in the reaction.

Scheme 3. Mechanism Study by Kinetic Analysis 

O

O O

O

1a

Pd(TFA)2, bpy
DMSO/dioxane, O2

then TFA
(HO)2B

3a
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Based on mechanistic analysis, a plausible mechanism of the reaction is depicted in Scheme 4. 

In the first step, Pd(II) enolate A might be initially formed, followed by sequential β-hydride 

elimination.10a, 10b, 22 As a result, enone intermediate chromone 2a is formed, and its electrophilic β-site 

could be assembled with palladated intermediate B transformed from phenylboronic acid via 

transmetallation in the next step, resulting in intermediate C.23 Finally, this intermediate is converted 

into the desired flavanone 3a through concurrent protonolysis, along with the formation of a small 

amount of flavone 4a as a byproduct by competitive β-hydride elimination.24 During dehydrogenation, 

Pd(0) species formed in the reaction would be regenerated into Pd(II) via the [O] process, where O2 
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works as the main oxidant in the reoxidation process.25

Scheme 4. A Plausible Mechanism of the Reaction
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CONCLUSION

In conclusion, we developed a novel and efficient method to access a variety of flavanones via 

palladium(II)-catalyzed one-pot β-arylation of chromanones, possessing chemically unactivated β-

sites, with arylboronic acids. This methodology has various advantages, including providing products 

in high yields (up to 92%), using easily accessible reagents, and offering good compatibilities with a 

wide range of functional groups. It also provides novel synthetic routes to diverse biologically active 

natural flavanones, such as liquiritigenin dimethyl ether. Further investigations on the biological 

studies of flavanones synthesized by our methodology are ongoing.
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Experimental Section

General information. Unless noted otherwise, all starting materials and reagents were obtained 

from commercial suppliers (Aldrich, Acros Organics, Alfa Aesar, and TCI) and were used without 

further purification. All solvents used for routine isolation of products and chromatography were 

reagent grade. Reaction flasks were dried at 80 °C. Analytical thin-layer chromatography (TLC) was 

performed using Merck silica gel glass plates with F-254 indicator, visualized by UV light (254 nm, 

365 nm), in some cases stained with Hanessian’s or p-anisaldehyde followed by heating. Flash 

column chromatography was performed using silica gel 60 (230-400 mesh) with the indicated 

solvents. NMR spectra were recorded and obtained using a Bruker 400 (400 MHz for 1H-NMR) and 

Varian VNMRS500 (125 MHz for 13C{1H}-NMR and 470 MHz for 19F-NMR) spectrometer, 

respectively. 1H, 13C, and 19F-NMR chemical shifts are reported in parts per million (ppm) relative to 

TMS (tetramethylsilane), with the residual solvent peak used as an internal reference. Signals are 

reported as m (multiplet), s (singlet), d (doublet), t (triplet), q (quartet), bs (broad singlet), bd (broad 

doublet), dd (doublet of doublets); the coupling constants (J) are reported in Hertz (Hz). High-

resolution mass spectrometry (HRMS) data were obtained with a JEOL JMS-700 instrument (EI-

quadrupole). 4-Chromanone derivatives 1, starting materials for the synthesis of flavanones, were 

prepared, according to the reported procedures.3e, 6c All of the spectral data of the synthesized 4-

chromanones were in accordance with the reported ones. The representative scheme for 4-

chromanone synthesis was described in the supporting information.

General procedure for palladium(II)-catalyzed β-arylation to flavanones. To a 10 mL two 

neck round bottom flask, 4-chromanone 1 (0.337 mmol, 1.0 equiv.), Pd(TFA)2 (0.051 mmol, 15 mol%), 

and 2,2′-bipyridine (0.102 mmol, 30 mol%) were added and then dissolved with anhydrous 

DMSO/dioxane (1:4) (0.5 mL). Under an oxygen (balloon) atmosphere, the reaction mixture was 

stirred at 100 °C in oil bath with reflux condenser until complete conversion of the starting material to 

chromone on TLC. Then, the reaction temperature was lowered to 80 °C and a solution of arylboronic 

acid (1.011 mmol, 3.0 equiv.) and TFA (0.337 mmol, 1.0 equiv.) in anhydrous DMSO/dioxane (1:4) 

(0.5 mL) was added dropwise to flask. The reaction mixture was stirred until complete consumption of 

chromone. Then, the reaction mixture was cooled to room temperature. 2N aq. HCl was added and 

the resulting mixture was extracted with EtOAc. The combined organic layers were dried with MgSO4, 

Page 14 of 35

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography.

2-phenylchroman-4-one (3a). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

phenylboronic acid using the general procedure described above. The residue was purified by silica 

gel column chromatography (EtOAc : n-hexane = 1 : 60) to afford 64.2 mg (85%) of compound 3a as 

a white solid; mp 75-76 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.95 (dd, 1H, J = 7.9, 1.3 Hz), 7.57-7.35 (m, 

6H), 7.11-7.01 (m, 2H), 5.49 (dd, 1H, J = 13.3, 2.7 Hz), 3.10 (dd, 1H, J = 16.8, 13.4 Hz), 2.90 (dd, 1H, 

J = 16.9, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 192.1, 161.7, 138.9, 136.3, 129.0, 128.9, 127.2, 

126.3, 121.7, 121.0. 118.3, 79.7. 44.8; HR-MS (EI+) calcd for C15H12O2 224.0837, found 224.0837.

2-(p-tolyl)chroman-4-one (3b). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 4-

methylphenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 40) to afford 67.5 mg (84%) of compound 

3b as a white needle; mp 61-63 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 7.79 (dd, 1H, J = 8.0, 1.7 Hz), 

7.59 (m, 1H), 7.43 (d, 2H, J = 8.0 Hz), 7.24 (d, 2H, J = 7.9 Hz), 7.12-7.06 (m, 2H), 5.63 (dd, 1H, J = 

12.8, 2.8 Hz), 3.25 (dd, 1H, J = 16.8, 12.9 Hz), 2.80 (dd, 1H, J = 16.8, 2.9 Hz), 2.32 (s, 3H); 13C{1H}-

NMR (CDCl3, 125 MHz) δ 192.3, 161.8, 138.9, 136.3, 135.9, 129.6, 127.2, 126.3, 121.7, 121.1, 118.3, 

79.7, 44.7, 21.4; HR-MS (EI+) calcd for C16H14O2 238.0994, found 238.0994.

2-(2,4-dimethylphenyl)chroman-4-one (3c). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) 

and 2,4-dimethylphenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 60) to afford 63.1 mg (74%) of 

compound 3c as a white solid; mp 82-83 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.97 (dd, 1H, J = 7.7, 0.9 

Hz), 7.55-7.42 (m, 2H), 7.13 (d, 1H, J = 7.8 Hz), 7.10-7.02 (m, 3H), 5.66 (dd, 1H, J = 13.7, 2.2 Hz), 

3.10 (dd, 1H, J = 16.8, 13.8 Hz), 2.83 (dd, 1H, J = 16.9, 2.5 Hz), 2.37 (s, 3H), 2.36 (s, 3H); 13C{1H}-

NMR (CDCl3, 125 MHz) δ 192.6, 162.1, 138.6, 136.3, 135.3, 133.9, 131.8, 127.3, 127.2, 125.9, 121.7, 

121.1, 118.3, 76.9, 43.7, 21.2, 19.1; HR-MS (EI+) calcd for C17H16O2 252.1150, found 252.1148.

2-(4-(tert-butyl)phenyl)chroman-4-one (3d). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) 

and 4-tert-butylphenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 60) to afford 85.4 mg (90%) of 

compound 3d as a white solid; mp 99-100 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 7.80 (dd, 1H, J = 8.0, 

1.7 Hz) 7.59 (m, 1H), 7.50-7.42 (m, 4H), 7.13-7.06 (m, 2H), 5.64 (dd, 1H, J = 12.8, 2.8 Hz), 3.27 (dd, 

1H, J = 16.8, 12.9 Hz), 2.83 (dd, 1H, J = 16.9, 3.0 Hz), 1.29 (s, 9H); 13C{1H}-NMR (CDCl3, 125 MHz) 
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δ 192.4, 161.8, 152.1, 136.3, 135.8, 127.2, 126.2, 125.9, 121.7, 121.1, 118.3, 79.7, 44.6, 34.8, 31.4; 

HR-MS (EI+) calcd for C19H20O2 280.1463, found 280.1467.

2-([1,1′-biphenyl]-4-yl)chroman-4-one (3e). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

4-biphenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (DCM : methanol = 1 : 100) to afford 69.7 mg (69%) of compound 

3e as a white solid; mp 115-116 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.96 (d, 1H, J = 7.8 Hz), 7.71-7.35 

(m, 10H), 7.11-7.04 (m, 2H), 5.55 (dd, 1H, J = 13.3, 2.3 Hz), 3.15 (dd, 1H, J = 16.8, 13.4 Hz), 2.95 

(dd, 1H, J = 16.8, 2.7 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 192.1, 161.7, 142.0, 140.6, 137.8, 

136.4, 129.0, 127.8, 127.7, 127.3, 127.2, 126.8, 121.8, 121.1, 118.3, 79.6, 44.7; HR-MS (EI+) calcd 

for C21H16O2 300.1150, found 300.1150.

2-([1,1′′-biphenyl]-3-yl)chroman-4-one (3f). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

3-biphenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 50) to afford 90 mg (89%) of compound 3f 

as a colorless oil; 1H-NMR (CDCl3, 400 MHz) δ 7.97 (m, 1H) 7.76-7.35 (m, 10H), 7.14-7.04 (m, 2H), 

5.55 (dd, 1H, J = 13.4, 2.6 Hz), 3.16 (dd, 1H, J = 16.9, 13.5 Hz), 2.95 (dd, 1H, J = 16.9, 2.8 Hz); 

13C{1H}-NMR (CDCl3, 125 MHz) δ 192.0, 161.7, 142.1, 140.8, 139.4, 136.3, 129.4, 129.0, 127.7, 

127.7, 127.3, 127.2, 125.1, 125.1, 121.8, 121.1, 118.3, 79.8, 44.9; HR-MS (EI+) calcd for C21H16O2 

300.1150, found 300.1149.

2-(naphthalen-2-yl)chroman-4-one (3g). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 2-

naphtylboronic acid using the general procedure described above. The residue was purified by silica 

gel column chromatography (EtOAc : n-hexane = 1 : 70) to afford 72 mg (65%) of compound 3g as a 

white solid; mp 106-107 °C; 1H-NMR (CDCl3, 400 MHz) δ 8.01-7.82 (m, 5H), 7.61 (d, 1H, J = 8.4 Hz), 

7.58-7.49 (m, 3H), 7.15-7.03 (m, 2H), 5.66 (dd, 1H, J = 13.2, 2.3 Hz), 3.20 (dd, 1H, J = 16.8, 13.3 Hz), 

2.99 (dd, 1H, J = 16.9, 2.7 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 192.0, 161.7, 136.4, 136.2, 133.5, 

133.3, 128.9, 128.3, 127.9, 127.2, 126.7, 125.5, 123.8, 121.8, 121.1, 118.3, 79.8, 44.8; HR-MS (EI+) 

calcd for C19H14O2 274.0994, found 274.0994.

2-(4-fluorophenyl)chroman-4-one (3h). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 4-

fluorophenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 50) to afford 55.4 mg (68%) of compound 

3h as a yellow solid; mp 74-75 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.94 (d, 1H, J = 7.6 Hz), 7.56-7.41 
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(m, 3H), 7.17-7.01 (m, 4H), 5.47 (dd, 1H, J = 13.2, 2.1 Hz), 3.07 (dd, 1H, J = 16.7, 13.4 Hz), 2.88 (dd, 

1H, J = 16.8, 2.6 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 191.9, 163.0 (d, J = 246.2 Hz), 161.5, 136.4, 

134.7 (d, J = 3.2 Hz), 128.2 (d, J = 8.3 Hz), 127.2, 121.9, 121.0, 118.2, 116.0 (d, J = 21.5 Hz), 79.1, 

44.8; 19F-NMR (CDCl3, 470 MHz) δ −112.8 (m, 1F); HR-MS (EI+) calcd for C15H11FO2 242.0743, 

found 242.0741.

2-(4-chlorophenyl)chroman-4-one (3i). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 4-

chlorophenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 50) to afford 67.5 mg (77%) of compound 

3i as a white solid; mp 79-80 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.93 (dd, 1H, J = 7.7, 1.1 Hz), 7.53 (m, 

1H), 7.46-7.36 (m, 4H), 7.11-7.02 (m, 2H), 5.47 (dd, 1H, J = 13.1, 2.8 Hz), 3.05 (dd, 1H, J = 16.8, 13.2 

Hz), 2.88 (dd, 1H, J = 16.8, 2.9 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 191.7, 161.4, 137.4, 136.4, 

134.7, 129.2, 127.7, 127.2, 122.0, 121.0, 118.2, 79.0, 44.7; HR-MS (EI+) calcd for C15H11ClO2 

258.0448, found 258.0445.

2-(4-bromophenyl)chroman-4-one (3j). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 4-

bromophenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 60) to afford 77.6 mg (77%) of compound 

3j as a yellow solid; mp 111-113 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 7.80 (dd, 1H, J = 8.0, 1.6 Hz), 

7.67-7.48 (m, 5H), 7.14-7.07 (m, 2H), 5.69 (dd, 1H, J = 12.9, 2.5 Hz), 3.25 (dd, 1H, J = 16.8, 13.0 Hz), 

2.85 (dd, 1H, J = 16.8, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 191.6, 161.4, 137.9, 136.5, 132.1, 

127.9, 127.2, 122.9, 122.0, 121.0, 118.2, 79.0, 44.7; HR-MS (EI+) calcd for C15H11BrO2 301.9942, 

found 301.9944.

2-(4-(trimethylsilyl)phenyl)chroman-4-one (3k). Prepared from 4-chromanone (50.0 mg, 0.34 

mmol) and 4-trimethylsilylphenylboronic acid using the general procedure described above. The 

residue was purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 60) to afford 79 mg 

(79%) of compound 3k as a yellow solid; mp 66-68 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.95 (dd, 1H, J = 

8.0, 1.7 Hz), 7.62 (d, 2H, J = 7.9 Hz), 7.55-7.46 (m, 3H), 7.10-7.03 (m, 2H), 5.49 (dd, 1H, J = 13.4, 2.8 

Hz), 3.12 (dd, 1H, J = 16.8, 13.4 Hz), 2.91 (dd, 1H, J = 16.8, 2.9 Hz), 0.30 (s, 9H); 13C{1H}-NMR 

(CDCl3, 125 MHz) δ 192.1, 161.7, 141.6, 139.2, 136.3, 134.0, 127.2, 125.6, 121.7, 121.1, 118.3, 79.8, 

44.7, -1.0; HR-MS (EI+) calcd for C18H20O2Si 296.1233, found 296.1231.

2-(4-(trifluoromethyl)phenyl)chroman-4-one (3l). Prepared from 4-chromanone (50.0 mg, 0.34 
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mmol) and 4-trifluoromethylphenylboronic acid using the general procedure described above. The 

residue was purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 50) to afford 65.8 

mg (67%) of compound 3l as a white solid; mp 74-75 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.94 (dd, 1H, J 

= 8.1, 1.4 Hz), 7.71 (d, 2H, J = 8.2 Hz), 7.62 (d, 2H, J = 8.1 Hz), 7.54 (m, 1H), 7.13-7.02 (m, 2H), 5.56 

(dd, 1H, J = 13.0, 2.9 Hz), 3.05 (dd, 1H, J = 16.8, 13.0 Hz), 2.92 (dd, 1H, J = 16.8, 3.1 Hz); 13C{1H}-

NMR (CDCl3, 125 MHz) δ 191.3, 161.3, 142.8 (d, J = 1.2 Hz), 136.5, 131.0 (q, J = 32.4 Hz), 127.2, 

126.5, 126.0 (q, J = 3.8 Hz), 124.0 (q, J = 270.5 Hz), 122.1, 121.0, 118.2, 78.9, 44.8; 19F-NMR 

(CDCl3, 470 MHz) δ −62.6 (s, 3F); HR-MS (EI+) calcd for C16H11F3O2 292.0711, found 292.0713.

methyl 4-(4-oxochroman-2-yl)benzoate (3m). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) 

and 4-methoxycarbonylphenylboronic acid using the general procedure described above. The residue 

was purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 20) to afford 43.0 mg (45%) 

of compound 3m as a white solid; mp 133-134 °C; 1H-NMR (CDCl3, 400 MHz) δ 8.14-8.08 (m, 2H), 

7.94 (dd, 1H, J = 8.0, 1.8 Hz), 7.59-7.49 (m, 3H), 7.10-7.05 (m, 2H), 5.55 (dd, 1H, J = 13.0, 3.1 Hz), 

3.94 (s, 3H), 3.05 (dd, 1H, J = 16.9, 13.0 Hz), 2.92 (dd, 1H, J = 16.9, 3.2 Hz); 13C{1H}-NMR (CDCl3, 

125 MHz) δ 191.4, 166.7, 161.4, 143.8, 136.5, 130.5, 130.3, 127.2, 126.1, 122.0, 121.0, 118.2, 79.1, 

52.4, 44.8; HR-MS (EI+) calcd for C17H14O4 282.0892, found 282.0894.

4-(4-oxochroman-2-yl)benzaldehyde (3n). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

4-formylphenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 10) to afford 18.2 mg (21%) of compound 

3n as a white solid; mp 101-103 °C; 1H-NMR (CDCl3, 400 MHz) δ 10.06 (s, 1H), 7.99-7.92 (m, 3H), 

7.67 (d, 2H, J = 8.4 Hz), 7.55 (m, 1H), 7.12-7.07 (m, 2H), 5.58 (dd, 1H, J = 12.9, 3.3 Hz), 3.05 (dd, 

1H, J = 16.9, 12.9 Hz), 2.94 (dd, 1H, J = 16.8, 3.3 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 191.8, 

191.2, 161.3, 145.4, 136.6, 136.6, 130.4, 127.3, 126.7, 122.2, 121.1, 118.2, 79.0, 44.8; HR-MS (EI+) 

calcd for C16H12O3 252.0786, found 252.0772.

2-(3-nitrophenyl)chroman-4-one (3o). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 3-

nitrophenylboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 10) to afford 14.7 mg (16%) of compound 

3o as a white solid; mp 137-138 °C; 1H-NMR (CDCl3, 400 MHz) δ 8.42 (t, 1H, J = 1.8 Hz), 8.26 (m, 

1H), 7.95 (dd, 1H, J = 8.2, 1.8 Hz), 7.81 (d, 1H, J = 7.7 Hz), 7.64 (t, 1H, J = 8.0 Hz), 7.56 (m, 1H), 

7.14-7.07 (m, 2H), 5.61 (dd, 1H, J = 12.9, 3.3 Hz), 3.07 (dd, 1H, J = 16.8, 12.9 Hz), 2.96 (dd, 1H, J = 
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16.8, 3.4 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 190.9, 161.1, 148.8, 141.1, 136.7, 132.0, 130.1, 

127.3, 123.7, 122.3, 121.3, 121.0, 118.2, 78.4, 44.8; HR-MS (EI+) calcd for C15H11NO4 269.0688, 

found 269.0680.

2-(2-hydroxyphenyl)chroman-4-one (3p). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

2-hydroxyphenylboronic acid using the general procedure described above. The residue was purified 

by silica gel column chromatography (EtOAc : n-hexane = 1 : 12) to afford 49.2 mg (61%) of 

compound 3p as a yellow solid; mp 158-159 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 9.84 (bs, 1H), 7.80 

(d, 1H, J = 7.6 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.48 (d, 1H, J = 7.5 Hz), 7.20 (t, 1H, J = 7.3 Hz), 7.14-7.05 

(m, 2H), 6.92-6.83 (m, 2H), 5.79 (dd, 1H, J = 13.1, 2.3 Hz), 3.21 (dd, 1H, J = 16.6, 13.4 Hz), 2.78 (dd, 

1H, J = 16.7, 2.3 Hz); 13C{1H}-NMR (CD3OD, 125 MHz) δ 194.9, 163.7, 155.3, 137.5, 130.3, 127.8, 

127.6, 126.9, 122.4, 122.0, 120.7, 119.2, 116.2, 76.4, 43.9; HR-MS (EI+) calcd for C15H12O3 

240.0786, found 240.0786.

2-(3-hydroxyphenyl)chroman-4-one (3q). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

3-hydroxyphenylboronic acid using the general procedure described above. The residue was purified 

by silica gel column chromatography (EtOAc : n-hexane = 1 : 5) to afford 57.5 mg (71%) of compound 

3q as a yellow solid; mp 135-136 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 9.53 (s, 1H), 7.79 (dd, 1H, J = 

8.1, 1.5 Hz), 7.59 (m, 1H), 7.21 (t, 1H, J = 8.1 Hz), 7.12-7.06 (m, 2H), 6.95-6.90 (m, 2H), 6.76 (m, 1H), 

5.59 (dd, 1H, J = 12.6, 2.9 Hz), 3.19 (dd, 1H, J = 16.7, 12.6 Hz), 2.82 (dd, 1H, J = 16.8, 3.0 Hz); 

13C{1H}-NMR (CD3OD, 125 MHz) δ 194.1, 163.1, 158.8, 141.9, 137.5, 130.8, 127.7, 122.5, 122.0, 

119.2, 118.3, 116.4, 114.1, 80.7, 45.4; HR-MS (EI+) calcd for C15H12O3 240.0786, found 240.0786.

2-(2-methoxyphenyl)chroman-4-one (3r). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

2-methoxyphenylboronic acid using the general procedure described above. The residue was purified 

by silica gel column chromatography (EtOAc : n-hexane = 1 : 20) to afford 61.2 mg (71%) of 

compound 3r as a yellow oil; 1H-NMR (CDCl3, 400 MHz) δ 7.95 (dd, 1H, J = 7.8, 1.6 Hz), 7.65 (dd, 

1H, J = 7.6, 1.3 Hz), 7.51 (m, 1H), 7.35 (m, 1H), 7.10-7.03 (m, 3H), 6.93 (d, 1H, J = 8.1 Hz), 5.86 (dd, 

1H, J = 12.4, 3.8 Hz), 3.84 (s, 3H), 3.02-2.86 (m, 2H); 13C{1H}-NMR (CDCl3, 125 MHz) δ 192.8, 162.1, 

155.9, 136.1, 129.5, 127.6, 127.2, 126.5, 121.5, 121.1, 121.0, 118.2, 110.6, 74.8, 55.4, 43.8; HR-MS 

(EI+) calcd for C16H14O3 254.0943, found 254.0943.

2-(3-methoxyphenyl)chroman-4-one (3s). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

3-methoxyphenylboronic acid using the general procedure described above. The residue was purified 
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by silica gel column chromatography (DCM : methanol = 1 : 400) to afford 71.5 mg (83%) of 

compound 3s as a white solid; mp 72-73 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.93 (dd, 1H, J = 8.1, 1.6 

Hz), 7.51 (m, 1H), 7.35 (t, 1H, J = 8.2 Hz), 7.10-7.01 (m, 4H), 6.92 (dd, 1H, J = 8.2, 1.9 Hz), 5.45 (dd, 

1H, J = 13.3, 2.8 Hz), 3.84 (s, 3H), 3.08 (dd, 1H, J = 16.8, 13.4 Hz), 2.87 (dd, 1H, J = 16.8, 2.9 Hz); 

13C{1H}-NMR (CDCl3, 125 MHz) δ 192.0, 161.6, 160.0, 140.4, 136.3, 130.0, 127.1, 121.7, 121.0, 

118.4, 118.2, 114.1, 112.0, 79.5, 55.4, 44.8; HR-MS (EI+) calcd for C16H14O3 254.0943, found 

254.0943.

2-(4-methoxyphenyl)chroman-4-one (3t). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 

4-methoxyphenylboronic acid using the general procedure described above. The residue was purified 

by silica gel column chromatography (EtOAc : n-hexane = 1 : 5) to afford 63.6 mg (74%) of compound 

3t as a yellow solid; mp 82-83 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.93 (dd, 1H, J = 7.7, 0.9 Hz), 7.51 

(m, 1H), 7.42 (d, 2H, J = 8.6 Hz), 7.08-7.01 (m, 2H), 6.96 (d, 2H, J = 8.6 Hz), 5.44 (dd, 1H, J = 13.3, 

2.4 Hz), 3.84 (s, 3H), 3.11 (dd, 1H, J = 16.8, 13.4 Hz), 2.86 (dd, 1H, J = 16.8, 2.7 Hz); 13C{1H}-NMR 

(CDCl3, 125 MHz) δ 192.4, 161.8, 160.1, 136.3, 130.9, 127.9, 127.2, 121.7, 121.0, 118.3, 114.3, 79.5, 

55.5, 44.6; HR-MS (EI+) calcd for C16H14O3 254.0943, found 254.0943.

2-(3,4-dimethoxyphenyl)chroman-4-one (3u). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) 

and 3,4-dimethoxyphenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 5) to afford 57.8 mg (87%) of 

compound 3u as a yellow solid; mp 118-119 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.93 (dd, 1H, J = 7.9, 

1.2 Hz), 7.51 (m, 1H), 7.09-6.95 (m, 4H), 6.91 (d, 1H, J = 7.9 Hz), 5.43 (dd, 1H, J = 13.3, 2.3 Hz), 

3.92 (s, 3H), 3.90 (s, 3H), 3.12 (dd, 1H, J = 16.8, 13.4 Hz), 2.87 (dd, 1H, J = 16.8, 2.6 Hz); 13C{1H}-

NMR (CDCl3, 125 MHz) δ 192.2, 161.7, 149.6, 149.4, 136.3, 131.3, 127.2, 121.7, 121.0, 118.9, 118.3, 

111.3, 109.5, 79.7, 56.1, 56.1, 44.7; HR-MS (EI+) calcd for C17H16O4 284.1049, found 284.1051.

2-(3,4,5-trimethoxyphenyl)chroman-4-one (3v). Prepared from 4-chromanone (50.0 mg, 0.34 

mmol) and 3,4,5-trimethoxyphenylboronic acid using the general procedure described above. The 

residue was purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 6) to afford 97.4 mg 

(92%) of compound 3v as a white solid; mp 98-100 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.92 (dd, 1H, J = 

8.1, 1.6 Hz), 7.51 (m, 1H), 7.09-7.02 (m, 2H), 6.70 (s, 2H), 5.40 (dd, 1H, J = 13.4, 2.7 Hz), 3.89 (s, 

6H), 3.86 (s, 3H), 3.09 (dd, 1H, J = 16.9, 13.4 Hz), 2.87 (dd, 1H, J = 16.8, 2.8 Hz); 13C{1H}-NMR 

(CDCl3, 125 MHz) δ 191.9, 161.5, 153.6, 138.3, 136.3, 134.4, 127.1, 121.8, 120.9, 118.2, 103.3, 79.9, 

Page 20 of 35

ACS Paragon Plus Environment

The Journal of Organic Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



60.9, 56.2, 44.9; HR-MS (EI+) calcd for C18H18O5 314.1154, found 314.1156.

2-(4-(benzyloxy)phenyl)chroman-4-one (3w). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) 

and 4-benzyloxyphenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 50) to afford 65.2 mg (59%) of 

compound 3w as a white solid; mp 105-106 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.95 (dd, 1H, J = 7.7, 

1.5 Hz), 7.51 (m, 1H), 7.49-7.32 (m, 7H), 7.09-6.99 (m, 4H), 5.43 (dd, 1H, J = 13.4, 2.7 Hz), 5.10 (s, 

2H), 3.11 (dd, 1H, J = 16.8, 13.4 Hz), 2.87 (dd, 1H, J = 16.8, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) 

δ 192.3, 161.7, 159.2, 136.8, 136.2, 131.1, 128.7, 128.1, 127.8, 127.5, 127.1, 121.6, 121.0, 118.2, 

115.2, 79.4, 70.1, 44.5; HR-MS (EI+) calcd for C22H18O3 330.1256, found 330.1259.

2-(thiophen-3-yl)chroman-4-one (3x). Prepared from 4-chromanone (50.0 mg, 0.34 mmol) and 3-

thiopheneboronic acid using the general procedure described above. The residue was purified by 

silica gel column chromatography (EtOAc : n-hexane = 1 : 40) to afford 25.8 mg (33%) of compound 

3x as a brown solid; mp 76-78 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.92 (dd, 1H, J = 8.1, 1.7 Hz), 7.51 

(m, 1H), 7.41-7.37 (m, 2H), 7.20 (m, 1H), 7.08-7.02 (m, 2H), 5.60 (dd, 1H, J = 12.1, 3.3 Hz), 3.12 (dd, 

1H, J = 16.8, 12.1 Hz), 2.99 (dd, 1H, J = 16.8, 3.3 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 191.9, 

161.4, 140.0, 136.3, 127.2, 127.0, 125.8, 123.0, 121.8, 121.2, 118.2, 75.7, 44.0; HR-MS (EI+) calcd 

for C13H10O2S 230.0402 found, 230.0401.

6-methyl-2-phenylchroman-4-one (3y). Prepared from 6-methyl-4-chromanone (55.0 mg, 0.34 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 60) to afford 62.0 mg (78%) of 

compound 3y as a white solid; mp 103-104 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.73 (s, 1H), 7.52-7.30 

(m, 6H), 6.96 (d, 1H, J = 8.4 Hz), 5.45 (dd, 1H, J = 13.3, 2.7 Hz), 3.07 (dd, 1H, J = 16.9, 13.4 Hz), 

2.87 (dd, 1H, J = 17.0, 2.9 Hz), 2.33 (s, 3H); 13C{1H}-NMR (CDCl3, 125 MHz) δ 192.3, 159.7, 139.0, 

137.3, 131.1, 128.9, 128.8, 126.7, 126.2, 120.6, 118.0, 79.6, 44.8, 20.5; HR-MS (EI+) calcd for 

C16H14O2 238.0994, found 238.0996.

6,7-dimethyl-2-phenylchroman-4-one (3z). Prepared from 6,7-dimethyl-4-chromanone (56.0 mg, 

0.32 mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 50) to afford 67.5 mg (84%) of 

compound 3z as a white solid; mp 78-79 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.67 (s, 1H), 7.51-7.35 (m, 

5H), 6.85 (s, 1H), 5.43 (dd, 1H, J = 13.2, 2.8 Hz), 3.04 (dd, 1H, J = 16.9, 13.3 Hz), 2.84 (dd, 1H, J = 
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17.0, 2.9 Hz), 2.28 (s, 3H), 2.24 (s, 3H); 13C{1H}-NMR (CDCl3, 125 MHz) δ 192.0, 160.0, 146.8, 

139.1, 130.3, 128.9, 128.7, 127.0, 126.2, 118.8, 118.7, 79.6, 44.7, 20.6, 18.9; HR-MS (EI+) calcd for 

C17H16O2 252.1150, found 252.1148.

6-fluoro-2-phenylchroman-4-one (3aa). Prepared from 6-fluoro-4-chromanone (56.0 mg, 0.34 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 70) to afford 65.6 mg (80%) of 

compound 3aa as a yellow solid; mp 71-73 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.58 (dd, 1H, J = 8.2, 3.2 

Hz), 7.52-7.36 (m, 5H), 7.24 (m, 1H), 7.04 (m, 1H), 5.47 (dd, 1H, J = 13.4, 2.9 Hz), 3.08 (dd, 1H, J = 

17.0, 13.4 Hz), 2.90 (dd, 1H, J = 16.9, 2.9 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 191.2 (d, J = 1.8 

Hz), 158.4, 157.8 (d, J = 1.7 Hz), 156.5, 138.5, 129.0, 126.2, 123.8 (d, J = 24.4 Hz), 121.5 (d, J = 6.5 

Hz), 119.9 (d, J = 7.1 Hz), 112.1 (d, J = 23.2 Hz), 79.9, 44.4 (d, J = 1.0 Hz); 19F-NMR (CDCl3, 470 

MHz) δ −121.0 (m, 1F); HR-MS (EI+) calcd for C15H11FO2 242.0743, found 242.0741.

6-chloro-2-phenylchroman-4-one (3bb). Prepared from 6-chloro-4-chromanone (62.0 mg, 0.34 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 70) to afford 65.4 mg (75%) of 

compound 3bb as a yellow solid; mp 91-92 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.89 (d, 1H, J = 2.6 Hz), 

7.50-7.37 (m, 6H), 7.02 (d, 1H, J = 8.8 Hz), 5.47 (dd, 1H, J = 13.2, 3.0 Hz), 3.08 (dd, 1H, J = 16.8, 

13.2 Hz), 2.91 (dd, 1H, J = 16.9, 3.0 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 190.9, 160.0, 138.4, 

136.1, 129.1, 129.0, 127.3, 126.5, 126.3, 121.8, 120.0, 79.9, 44.4; HR-MS (EI+) calcd for C15H11ClO2 

258.0448, found 258.0447.

6-hydroxy-2-phenylchroman-4-one (3cc). Prepared from 6-hydroxy-chroman-4-one (54.0 mg, 0.33 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (DCM : methanol = 100 : 1) to afford 62.3 mg (79%) of 

compound 3cc as a yellow solid; mp 214-216 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 9.43 (s, 1H), 7.54 

(s, 1H), 7.52 (s, 1H), 7.46-7.34 (m, 3H), 7.12 (d, 1H, J = 2.9 Hz), 7.04 (dd, 1H, J = 8.8, 3.0 Hz), 6.96 

(d, 1H, J = 8.8 Hz), 5.55 (dd, 1H, J = 13.0, 2.6 Hz), 3.17 (dd, 1H, J = 16.8, 13.0 Hz), 2.77 (dd, 1H, J = 

16.8, 2.8 Hz); 13C{1H}-NMR (DMSO-d6, 125 MHz) δ 191.7, 154.4, 151.6, 139.2, 128.5, 128.4, 126.6, 

124.5, 120.8, 119.0, 109.9, 78.7, 43.7; HR-MS (EI+) calcd for C15H12O3 240.0786, found 240.0782.

7-hydroxy-2-phenylchroman-4-one (3dd). Prepared from 7-hydroxy-chroman-4-one (50.0 mg, 0.30 

mmol) and phenylboronic acid using the general procedure described above. The residue was 
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purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 5) to afford 51.5 mg (70%) of 

compound 3dd as a white solid; mp 185-186 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 10.64 (bs, 1H), 7.66 

(d, 1H, J = 8.7 Hz), 7.53 (d, 2H, J = 7.0 Hz), 7.46-7.33 (m, 3H), 6.52 (dd, 1H, J = 8.7, 2.2 Hz), 6.37 (d, 

1H, J = 2.2 Hz), 5.59 (dd, 1H, J = 12.7, 2.8 Hz), 3.12 (dd, 1H, J = 16.7, 12.8 Hz), 2.71 (dd, 1H, J = 

16.8, 3.0 Hz); 13C{1H}-NMR (CD3OD, 125 MHz) δ 193.0, 166.9, 165.4, 140.7, 129.9, 129.7, 129.6, 

127.3, 115.0, 111.9, 103.9, 81.0, 45.1; HR-MS (EI+) calcd for C15H12O3 240.0786, found 240.0786.

5-methoxy-2-phenylchroman-4-one (3ee). Prepared from 5-methoxy-4-chromanone (50.9 mg, 0.29 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 4) to afford 46.8 mg (64%) of 

compound 3ee as a white solid; mp 141-143 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.49-7.33 (m, 6H), 6.66 

(d, 1H, J = 8.3 Hz), 6.55 (d, 1H, J = 8.3 Hz), 5.44 (dd, 1H, J = 13.2, 2.8 Hz), 3.94 (s, 3H), 3.07 (dd, 

1H, J = 16.4, 13.2 Hz), 2.85 (dd, 1H, J = 16.7, 2.9 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 190.8, 

163.3, 160.9, 138.8, 136.1, 128.9, 128.8, 126.2, 111.5, 110.3, 104.1, 79.0, 56.3, 46.0; HR-MS (EI+) 

calcd for C16H14O3 254.0943, found 254.0943.

6-methoxy-2-phenylchroman-4-one (3ff). Prepared from 6-methoxy-4-chromanone (55.0 mg, 0.31 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 30) to afford 68.5 mg (87%) of 

compound 3ff as a pale yellow solid; mp 138-139 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.52-7.32 (m, 6H), 

7.13 (dd, 1H, J = 9.0, 3.1 Hz), 7.00 (d, 1H, J = 9.0 Hz), 5.45 (dd, 1H, J = 13.4, 2.6 Hz), 3.82 (s, 3H), 

3.08 (dd, 1H, J = 16.9, 13.5 Hz), 2.88 (dd, 1H, J = 16.9, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 

192.1, 156.4, 154.3, 139.0, 128.9, 128.8, 126.2, 125.5, 120.9, 119.5, 107.4, 79.8, 55.9, 44.7; HR-MS 

(EI+) calcd for C16H14O3 254.0943, found 254.0943.

7-methoxy-2-phenylchroman-4-one (3gg). Prepared from 7-methoxy-4-chromanone (57.0 mg, 0.32 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 20) to afford 68.9 mg (85%) of 

compound 3gg as a white solid; mp 84-86 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.87 (d, 1H, J = 8.8 Hz), 

7.50-7.35 (m, 5H), 6.62 (dd, 1H, J = 8.8, 2.4 Hz), 6.50 (d, 1H, J = 2.4 Hz), 5.47 (dd, 1H, J = 13.3, 2.9 

Hz), 3.83 (s, 3H), 3.04 (dd, 1H, J = 16.9, 13.3 Hz), 2.83 (dd, 1H, J = 16.9, 2.9 Hz); 13C{1H}-NMR 

(CDCl3, 125 MHz) δ 190.6, 166.3, 163.6, 138.9, 128.9, 128.8, 128.8, 126.2, 114.9, 110.3, 101.0, 80.1, 

55.7, 44.4; HR-MS (EI+) calcd for C16H14O3 254.0943, found 254.0943.
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5,7-dimethoxy-2-phenylchroman-4-one (3hh). Prepared from 5,7-dimethoxy-4-chromanone (62.6 

mg, 0.3 mmol) and phenylboronic acid using the general procedure described above. The residue 

was purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 3) to afford 61.0 mg (71%) 

of compound 3hh as a yellow solid; mp 140-141 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.47-7.32 (m, 5H), 

6.15 (d, 1H, J = 2.1 Hz), 6.08 (d, 1H, J = 2.1 Hz), 5.39 (dd, 1H, J = 13.1, 2.8 Hz), 3.88 (s, 3H), 3.80 (s, 

3H), 3.00 (dd, 1H, J = 16.5, 13.2 Hz), 2.78 (dd, 1H, J = 16.6, 2.9 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) 

δ 189.4, 166.1, 165.1, 162.4, 138.9, 128.9, 128.8, 126.2, 106.1, 93.7, 93.3, 79.4, 56.3, 55.7, 45.7; 

HR-MS (EI+) calcd for C17H16O4 284.1049, found 284.1049.

6,7-dimethoxy-2-phenylchroman-4-one (3ii). Prepared from 6,7-dimethoxy-4-chromanone (70.0 

mg, 0.34 mmol) and phenylboronic acid using the general procedure described above. The residue 

was purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 6) to afford 73.1 mg (76%) 

of compound 3ii as a yellow solid; mp 170-171 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.52-7.36 (m, 5H), 

7.32 (s, 1H), 6.53 (s, 1H), 5.46 (dd, 1H, J = 13.5, 2.9 Hz), 3.91 (s, 3H), 3.90 (s, 3H), 3.04 (dd, 1H, J = 

16.9, 13.5 Hz), 2.82 (dd, 1H, J = 16.9, 3.0 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 190.6, 158.0, 156.3, 

144.7, 138.9, 128.9, 128.8, 126.2, 113.2, 106.7, 100.3, 80.3, 56.3, 56.2, 44.2; HR-MS (EI+) calcd for 

C17H16O4 284.1049, found 284.1049.

6-(benzyloxy)-2-phenylchroman-4-one (3jj). Prepared from 6-(benzyloxy)chroman-4-one (80.0 mg, 

0.31 mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 60) to afford 79.7 mg (77%) of 

compound 3jj as a yellow solid; mp 103-104 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 7.54 (d, 2H, J = 7.2 

Hz), 7.47-7.26 (m, 10H), 7.08 (d, 1H, J = 8.7 Hz), 5.61 (dd, 1H, J = 12.9, 2.5 Hz), 5.13 (s, 2H), 3.23 

(dd, 1H, J = 16.8, 13.1 Hz), 2.82 (dd, 1H, J = 16.7, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 192.0, 

156.5, 153.4, 138.9, 136.7, 128.9, 128.8, 128.7, 128.2, 127.7, 126.2, 126.0, 120.9, 119.6, 108.9, 79.8, 

70.6, 44.6; HR-MS (EI+) calcd for C22H18O3 330.1256, found 330.1257.

4-oxo-2-phenylchroman-6-ylpivalate (3kk). Prepared from 4-oxochroman-7-yl pivalate (77.0 mg, 

0.31 mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 40) to afford 65.9 mg (65%) of 

compound 3kk as a white solid; mp 106-107 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.59 (d, 1H, J = 2.7 

Hz), 7.50-7.37 (m, 5H), 7.21 (dd, 1H, J = 8.9, 2.8 Hz), 7.07 (d, 1H, J = 8.9 Hz), 5.49 (dd, 1H, J = 13.3, 

2.5 Hz), 3.09 (dd, 1H, J = 16.9, 13.5 Hz), 2.90 (dd, 1H, J = 16.9, 2.7 Hz), 1.36 (s, 9H); 13C{1H}-NMR 
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(CDCl3, 125 MHz) δ 191.4, 177.3, 159.2, 145.3, 138.6, 130.1, 129.0, 129.0, 126.2, 121.3, 119.3, 

119.2, 79.9, 44.5, 39.2, 27.2; HR-MS (EI+) calcd for C20H20O4 324.1362, found 324.1363.

4-oxo-2-phenylchroman-7-ylpivalate (3ll). Prepared from 4-oxochroman-7-ylpivalate (76.6 mg, 0.31 

mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 40) to afford 65.9 mg (65%) of 

compound 3ll as a colorless oil; 1H-NMR (CDCl3, 400 MHz) δ 7.96 (d, 1H, J = 8.6 Hz), 7.50-7.36 (m, 

5H), 6.84-6.72 (m, 2H), 5.50 (dd, 1H, J = 13.3, 2.8 Hz), 3.08 (dd, 1H, J = 16.9, 13.3 Hz), 2.89 (dd, 1H, 

J = 16.9, 2.9 Hz), 1.35 (s, 9H); 13C{1H}-NMR (CDCl3, 125 MHz) δ 191.0, 176.3, 162.5, 157.3, 138.6, 

128.9, 128.9, 128.5, 126.2, 118.8, 115.8, 111.2, 80.0, 44.5, 39.3, 27.1, 27.1, 27.1; HR-MS (EI+) calcd 

for C20H20O4 324.1362, found 324.1360.

4-oxo-2-phenylchroman-6-yl acetate (3mm). Prepared from 6-acetoxy-chroman-4-one (69.5 mg, 

0.34 mmol) and phenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 30) to afford 76.0 mg (80%) of 

compound 3mm as a yellow solid; mp 99-101 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.63 (d, 1H, J = 2.7 

Hz), 7.51-7.36 (m, 5H), 7.24 (dd, 1H, J = 9.1, 2.9 Hz), 7.08 (d, 1H, J = 9.0 Hz), 5.48 (dd, 1H, J = 13.4, 

2.5 Hz), 3.08 (dd, 1H, J = 16.9, 13.5 Hz), 2.89 (dd, 1H, J = 17.0, 2.9 Hz), 2.30 (s, 3H); 13C{1H}-NMR 

(CDCl3, 125 MHz) δ 191.2, 169.6, 159.3, 144.8, 138.5, 130.0, 129.0, 126.2, 121.2, 119.4, 119.3, 79.9, 

44.4, 21.0; HR-MS (EI+) calcd for C17H14O4 282.0892, found 282.0892.

6-phenyl-6,7-dihydro-8H-[1,3]dioxolo[4,5-g]chromen-8-one (3nn) Prepared from 6,7-

methylenedioxy-chromanone (58.7 mg, 0.31 mmol) and phenylboronic acid using the general 

procedure described above. The residue was purified by silica gel column chromatography (EtOAc : 

n-hexane = 1 : 30) to afford 58.7 mg (72%) of compound 3nn as a yellow solid; mp 114-115 °C; 1H-

NMR (CDCl3, 400 MHz) δ 7.51-7.36 (m, 5H), 7.30 (s, 1H), 6.51 (s, 1H), 6.00 (d, 2H, J = 2.4 Hz), 5.43 

(dd, 1H, J = 13.4, 2.5 Hz), 3.01 (dd, 1H, J = 16.8, 13.6 Hz), 2.82 (dd, 1H, J = 16.9, 2.7 Hz); 13C{1H}-

NMR (CDCl3, 125 MHz) δ 190.4, 159.7, 154.5, 143.3, 138.8, 128.9, 128.8, 126.2, 114.7, 104.1, 102.1, 

98.7, 80.2, 44.1; HR-MS (EI+) calcd for C16H12O4 268.0736, found 268.0740.

Liquiritigenin dimethyl ether (7). Prepared from 7-methoxy-4-chromanone (60.0 mg, 0.34 mmol) 

and 4-methoxyphenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 15) to afford 79.0 mg (82%) of 

compound 7 as a white solid; mp 87-88 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.85 (d, 1H, J = 8.8 Hz), 
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7.39 (d, 2H, J = 8.6 Hz), 6.94 (d, 2H, J = 8.6 Hz), 6.59 (dd, 1H, J = 8.8, 2.3 Hz), 6.46 (d, 1H, J = 2.2), 

5.39 (dd, 1H, J = 13.2, 2.7 Hz), 3.81 (s, 3H), 3.80 (s, 3H), 3.03 (dd, 1H, J = 16.8, 13.3 Hz), 2.77 (dd, 

1H, J = 16.8, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 190.9, 166.3, 163.7, 160.1, 130.9, 128.8, 

127.9, 114.9, 114.3, 110.3, 101.0, 79.9, 55.7, 55.5, 44.2; HR-MS (EI+) calcd for C17H16O4 284.1049, 

found 284.1050.

Butin trimethyl ether (8). Prepared from 7-methoxy-4-chromanone (60.0 mg, 0.34 mmol) and 3,4-

dimethoxyphenylboronic acid using the general procedure described above. The residue was purified 

by silica gel column chromatography (EtOAc : n-hexane = 1 : 6) to afford 85.2 mg (80%) of compound 

8 as a yellow solid; mp 114-115 °C; 1H-NMR (CDCl3, 400 MHz) δ 7.86 (d, 1H, J = 8.8 Hz), 7.03-6.97 

(m, 2H), 6.90 (d, 1H, J = 8.6 Hz), 6.61 (dd, 1H, J = 8.8, 2.4 Hz), 6.49 (d, 1H, J = 2.3 Hz), 5.41 (dd, 1H, 

J = 13.3, 2.7 Hz), 3.92 (s, 3H), 3.90 (s, 3H), 3.83 (s, 3H), 3.06 (dd, 1H, J = 16.8, 13.3 Hz), 2.80 (dd, 

1H, J = 16.8, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 190.1, 166.2, 163.6, 149.5, 149.3, 131.3, 

128.8, 118.9, 114.9, 111.2, 110.3, 109.5, 101.0, 80.0, 56.0, 56.0, 55.7, 44.3; HR-MS (EI+) calcd for 

C18H18O5 314.1154, found 314.1157.

Naringenin trimethyl ether (9). Prepared from 5,7-dimethoxy-4-chromanone (70.0 mg, 0.34 mmol) 

and 4-methoxyphenylboronic acid using the general procedure described above. The residue was 

purified by silica gel column chromatography (EtOAc : n-hexane = 1 : 1) to afford 59.7 mg (56%) of 

compound 9 as a yellow solid; mp 86-87 °C 1H-NMR (DMSO-d6, 400 MHz) δ 7.43 (d, 2H, J = 8.4 Hz), 

6.96 (d, 2H, J = 8.5 Hz), 6.20 (d, 2H, J = 3.8 Hz), 5.45 (dd, 1H, J = 12.5, 2.2 Hz), 3.79 (s, 3H), 3.77 (s, 

3H), 3.76 (s, 3H), 3.06 (dd, 1H, J = 16.2, 12.8 Hz), 2.58 (dd, 1H, J = 16.3, 2.5 Hz); 13C{1H}-NMR 

(CDCl3, 125 MHz) δ 189.6, 166.0, 165.2, 162.4, 160.0, 130.9, 127.8, 114.2, 106.1, 93.6, 93.2, 79.1, 

56.3, 55.7, 55.4, 45.5; HR-MS (EI+) calcd for C18H18O5 314.1154, found 314.1157.

2-(3,4-dimethoxyphenyl)-5,7-dimethoxychroman-4-one (10). Prepared from 5,7-dimethoxy-4-

chromanone (56.0 mg, 0.27 mmol) and 3,4-dimethoxyphenylboronic acid using the general procedure 

described above. The residue was purified by silica gel column chromatography (EtOAc : n-hexane = 

2 : 1) to afford 40.1 mg (43%) of compound 10 as a yellow solid; mp 152-153 °C 1H-NMR (CDCl3, 400 

MHz) δ 7.02-6.95 (m, 2H), 6.88 (d, 1H, J = 8.7 Hz), 6.15 (d, 1H, J = 2.2 Hz), 6.09 (d, 1H, J = 2.1 Hz), 

5.35 (dd, 1H, J = 13.2, 2.7 Hz), 3.92 (s, 3H), 3.90 (s, 6H), 3.82 (s, 3H), 3.04 (dd, 1H, J = 16.4, 13.3 

Hz), 2.77 (dd, 1H, J = 16.5, 2.8 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 189.5, 166.1, 165.1, 162.4, 

149.5, 149.3, 131.3, 118.9, 111.2, 109.5, 106.1, 93.7, 93.3, 79.3, 56.3, 56.1, 56.1, 55.7, 45.6; HR-MS 
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(EI+) calcd for C19H20O6 344.1260, found 344.1262.

2-(2,5-dimethoxyphenyl)-5,7-dimethoxychroman-4-one (11). Prepared from 5,7-dimethoxy-4-

chromanone (70.0 mg, 0.34 mmol) and 2,5-dimethoxyphenylboronic acid using the general procedure 

described above. The residue was purified by silica gel column chromatography (EtOAc : n-hexane = 

1 : 1) to afford 52.2 mg (45%) of compound 11 as a yellow solid; mp 117-118 °C 1H-NMR (CDCl3, 400 

MHz) δ 7.17 (d, 1H, J = 1.5 Hz), 6.86-6.79 (m, 2H), 6.18 (d, 1H, J = 2.3 Hz), 6.09 (d, 1H, J = 2.3 Hz), 

5.75 (dd, 1H, J = 11.9, 4.2 Hz), 3.90 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H), 2.91-2.77 (m, 

2H); 13C{1H}-NMR (CDCl3, 125 MHz) δ 190.0, 165.9, 165.5, 162.4, 153.9, 150.1, 128.7, 113.7, 112.6, 

111.7, 106.2, 93.7, 93.2, 77.4, 56.3, 56.0, 55.9, 55.7, 44.9; HR-MS (EI+) calcd for C19H20O6 344.1260, 

found 344.1259.

Pinocembrin (12).21a Yield 21.1 mg (47%) from 50.0 mg (0.18 mmol) of 3hh as a brown solid; mp 

195-197 °C; 1H-NMR (DMSO-d6, 400 MHz) δ 12.14 (s, 1H), 10.85 (s, 1H), 7.56-7.47 (m, 2H), 7.47-

7.34 (m, 3H), 5.97-5.85 (m, 2H), 5.59 (dd, 1H, J = 12.5, 2.5 Hz), 3.27 (dd, 1H, J = 17.1, 12.7 Hz), 2.78 

(dd, 1H, J = 17.1, 2.8 Hz); 13C{1H}-NMR (CD3OD, 125 MHz) δ 197.3, 168.4, 165.5, 164.7, 140.4, 

129.7, 129.6, 127.3, 103.4, 97.2, 96.2, 80.4, 44.2; HR-MS (EI+) calcd for C15H12O4 256.0736, found 

256.0735.

Pinostrobin (13).21b Yield 16.9 mg (77%) from 23.0 mg (0.08 mmol) of 3hh as a yellow solid; mp 96-

97 °C; 1H-NMR (CDCl3, 400 MHz) δ 12.03 (s, 1H), 7.50-7.35 (m, 5H), 6.08 (d, 1H, J = 2.0 Hz), 6.08 

(d, 1H, J = 3.9 Hz), 5.42 (dd, 1H, J = 13.0, 2.7 Hz), 3.81 (s, 3H), 3.09 (dd, 1H, J = 17.1, 13.1 Hz), 2.82 

(dd, 1H, J = 17.1, 2.9 Hz); 13C{1H}-NMR (CDCl3, 125 MHz) δ 195.9, 168.1, 164.3, 162.9, 138.5, 

129.0, 126.3, 103.3, 95.3, 94.4, 79.4, 55.8, 43.5; HR-MS (EI+) calcd for C16H14O4 270.0892, found 

270.0895.

General procedure for scaled up palladium(II)-catalyzed β-arylation to 7. To a 25 mL two 

neck round bottom flask, 7-methoxy-4-chromanone 5 (535.0 mg, 3.0 mmol, 1.0 equiv.), Pd(TFA)2 

(150.0mg, 0.45 mmol, 15 mol%), and 2,2′-bipyridine (141.0mg, 0.90 mmol, 30 mol%) were added and 

then dissolved with anhydrous DMSO/dioxane (1:4) (4.0 mL). Under an oxygen (balloon) atmosphere, 

the reaction mixture was stirred at 100 °C in oil bath with reflux condenser until complete conversion 

of the starting material to chromone on TLC. Then, the reaction temperature was lowered to 80 °C 

and a solution of 4-methoxyphenylboronic acid (1.37 g, 9.0 mmol, 3.0 equiv.) and TFA (230.0 μL, 3.0 
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mmol, 1.0 equiv.) in anhydrous DMSO/dioxane (1:4) (4.0 mL) was added dropwise to flask. The 

reaction mixture was stirred until complete consumption of chromone. Then, the reaction mixture was 

cooled to room temperature. 2N aq. HCl was added and the resulting mixture was extracted with 

EtOAc. The combined organic layers were dried with MgSO4, filtered, and concentrated in vacuo. The 

residue was purified by silica gel column chromatography to give liquiritigenin dimethyl ether 7 (679.7 

mg, 80%).

General procedure for kinetic analysis of palladium(II)-catalyzed dehydrogenation of 4-

chromanone in acidic condition. To a 10 mL two neck round bottom flask, 4-chromanone 1a (50.0 

mg, 0.337 mmol, 1.0 equiv.), Pd(TFA)2 (17.0 mg, 0.051 mmol, 15 mol%), 2,2′-bipyridine (15.9 mg, 

0.102 mmol, 30 mol%), and TFA (26.0 μL, 0.337 mmol, 1.00 equiv.) were added and then dissolved 

with anhydrous DMSO/dioxane (1:4) (1.0 mL). Under an oxygen (balloon) atmosphere, the reaction 

mixture was stirred at 100 °C in oil bath with reflux condenser for the indicated time. Then, the 

reaction mixture was cooled to room temperature. 2N aq. HCl was added and the resulting mixture 

was extracted with EtOAc. The combined organic layers were dried with MgSO4 and concentrated in 

vacuo. The residue was purified by silica gel column chromatography.

General procedure for kinetic analysis of palladium(II)-catalyzed β-arylation to flavanone 

3a. To a 10 mL two neck round bottom flask, 4-chromanone 1a (50.0 mg, 0.337 mmol, 1.0 equiv.), 

Pd(TFA)2 (17.0 mg, 0.051 mmol, 15 mol%), and 2,2′-bipyridine (15.9 mg, 0.102 mmol, 30 mol%) were 

added and then dissolved with anhydrous DMSO/dioxane (1:4) (0.5 mL). Under an oxygen (balloon) 

atmosphere, the reaction mixture was stirred at 100 °C in oil bath with reflux condenser for the 

indicated time. After 960 minutes, the reaction temperature was lowered to 80 °C and a solution of 

phenylboronic acid (123.3 mg, 1.011 mmol, 3.0 equiv.) and TFA (26.0 μL, 0.337 mmol, 1.0 equiv.) in 

anhydrous DMSO/dioxane (1:4) (0.5 mL) was added dropwise to flask with stirring for the indicated 

time. Then, the reaction mixture was cooled to room temperature. 2N aq. HCl was added and the 

resulting mixture was extracted with EtOAc. The combined organic layers were dried with MgSO4, 

filtered, and concentrated in vacuo. The residue was purified by silica gel column chromatography.

General procedure for kinetic analysis of all-in-one palladium(II)-catalyzed β-arylation to 

flavanone 3u. To a 10 mL two neck round bottom flask, 4-chromanone 1a (50.0 mg, 0.337 mmol, 1.0 

equiv.), Pd(TFA)2 (17.0 mg, 0.051 mmol, 15 mol%), 2,2′-bipyridine (15.9 mg, 0.102 mmol, 30 mol%), 
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3,4-dimethoxyphenylboronic acid (183.8 mg, 1.01 mmol, 3.00 equiv.), and TFA (26.0 μL, 0.337 mmol, 

1.00 equiv.) were added and then dissolved with anhydrous DMSO/dioxane (1:4) (1.0 mL). Under an 

oxygen (balloon) atmosphere, the reaction mixture was stirred at 100 °C in oil bath with reflux 

condenser for the indicated time. Then, the reaction mixture was cooled to room temperature. 2N aq. 

HCl was added and the resulting mixture was extracted with EtOAc. The combined organic layers 

were dried with MgSO4 and concentrated in vacuo. The residue was purified by silica gel column 

chromatography.
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