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Rational design of 4-amino-5,6-diaryl-furo[2,3-d]pyrimidines
as potent glycogen synthase kinase-3 inhibitors
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Abstract—4-Amino-5,6-diaryl-furo[2,3-d]pyrimidines have been identified as inhibitors of glycogen synthase kinase-3b (GSK-3b).
One representative derivative, 4-amino-5-(4-(benzenesulfonylamino)-phenyl)-6-(3-pyridyl)-furo[2,3-d]pyrimidine (12) exhibited
potent GSK-3b inhibitory activity in low nanomolar level of IC50. The binding mode was proposed from a docking study.
� 2008 Elsevier Ltd. All rights reserved.
Protein kinases are important intracellular enzymes
mediating the signal transduction in the eukaryotic cells
by transferring a phosphate from ATP to a tyrosine, ser-
ine or threonine residue on target protein substrates.
This phosphorylation process controls a multitude of
cellular processes, including gene transcription, meta-
bolic pathways, cell growth and differentiation, and
apoptosis.1 Mutation and deregulation of protein
kinases have been linked to many diseases such as can-
cer, inflammation and diabetes, affording the potential
to develop inhibitors to regulate these enzymes for ther-
apeutic intervention.2

To date well over 160 X-ray crystal structures of more
than 40 different kinase catalytic domains have been
deposited in the Protein Data Bank (PDB) either with
or without bound ligands. This structural information
provides a wealth of knowledge in aiding development
of pharmacophore models of the kinase catalytic
domain which is of immense value in the design and
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development of small molecule inhibitors.3 Using such
structural-based design approaches, a large number of
kinase inhibitors have been reported to date in the
literature.

In an earlier report we disclosed the identification and
structure–activity relationship (SAR) of a series of
4-amino-5,6-diaryl-furo[2,3-d]pyrimidines 1 as Tie-2
and vascular endothelial growth factor-2 (VEGFR2)
dual inhibitors whose activity was rationalized based
on the crystal structure complexed with VEGFR2. As
shown in Figure 1, in binding to VEGFR2 the aminopy-
rimidine moiety interacted with the upper portion of the
kinase ATP-binding pocket hinge region via two hydro-
gen-bond interactions. Additionally, the two aryl rings
at the 5- and 6-positions were located in the hydropho-
bic backpocket and phosphate-binding sites, respec-
tively.4 In comparison, our attention was drawn to the
binding mode of two GSK-3 inhibitors, 4,5-diphenyl-
pyrazolo[3,4-c]pyridazine 2 and 5-aryl-pyrazolo[3,4-
b]pyridines 3, reported by Witherington et al., which
were studied in the GSK-3 homology protein. Those
docking studies suggested that the compounds were
bound with the hinge region via three hydrogen-bond
interactions (Fig. 1). Although structurally similar to
1, pyrazolopyridazine 2 binds with amine moiety in a
flipped conformation facing out towards the pocket with
the two aromatic rings of compound 2 located in the
sugar pocket and lysine-interacting sites. The reported
SAR and docking study of pyrazolopyridine 3 revealed
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Figure 1. Binding modes of the VEGFR2/Tie-2 inhibitor 4-amino-5,6-diaryl-furo[2,3-d]pyrimidine 1, and of GSK-3 inhibitors 4,5-diphenyl-

pyrazolo[3,4-c]pyridazine 2 and 5-aryl-pyrazolo[3,4-b]pyridine 3.
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that the 3-pyridine at the 5-position is one of the key
moieties to increase GSK-3 inhibitory activity via inter-
action with lysine 85 (Fig. 1).5

This information led us to postulate that the 4-amino-
5,6-diaryl-furo[2,3-d]pyrimidines 1 could potentially be
flipped to fit into the binding-pocket of GSK-3 similar
to compounds 2 and 3 and hence the potential existed
to alter the activity of this series away from Tie-2/
VEGFR2 to target GSK-3. In a model of this flipped
binding mode, both phenyl rings of furopyrimidine 1
appear to overlap well with those of pyrazolopyrid-
azine 2 as shown in Figure 2. Additionally, the 3-pyr-
idine of pyrazolopyridine 3 also overlaps well with
6-phenyl ring of furopyrimidine 1 (Fig. 2). Based on
these docking studies, we decided to incorporate a
3-pyridine into the 6 position of the furopyrimidine
Figure 2. Overlay of the flipped binding mode of furopyrimidine 1 (green) wi
scaffold to target the lysine 85 of GSK-3 to increase
potency.6

In this article, we wish to report that alternative substi-
tution at the 5- and 6-positions of the 4-amino-5,6-dia-
ryl-furo[2,3-d]pyrimidine changed the kinase inhibitory
profile to inhibit VEGFR2 and Tie-2 to GSK-3b.7

Docking studies of the GSK-3b inhibitor have allowed
us to envisage a different binding mode from that of
the crystallized molecule complexed with VEGFR2, sug-
gesting that kinase inhibitors can be designed for multi-
ple targets via different binding modes from one
chemical series by changing substitution in an effective
way.

A synthetic method to prepare our modified furopyrim-
idines to test this hypothesis is shown in Scheme 1.
th pyrazolopyridazine 2 (left) and pyrazolopyridine 3 (right) in GSK-3.
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Table 1. Enzyme inhibitory activity of 4-amino-5,6-diaryl-furo[2,3-

d]pyrimidines against GSK-3b

N

N O

NH2

N
H X

N

R

Compound X R IC50 (nM) SD

9 A(C@O)A Methyl 1628 2259, n = 3

10 A(C@O)A 3-Fluorophenyl 1585 1645, n = 2

11 ASO2A Methyl 475 169, n = 3

12 ASO2A Phenyl 30 47, n = 3

13 ASO2A 2-Thiophen 23 50, n = 2
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4-Aminoacetophenone 4 was converted to the a-hydrox-
yketone 5 via sequential acetylation, bromination and
hydroxylation with potassium formate. Treatment of
the a-hydroxyketone 5 with malononitrile in the pres-
ence of diethylamine provided 2-amino-3-cyano-furan
6. The furan 6 was treated with triethylorthoformate,
followed by amination and cyclization in the presence
of sodium ethoxide, affording 4-amino-furo[2,3-d]pyrim-
idine 7.4,13 After bromination at the 6-position with
NBS, Suzuki coupling was conducted with 3-pyridine-
boronic acid pinacol ester to provide furopyrimidine 9,
followed by deprotection of the acetyl group and reac-
tion of the resulting amine with either sulfonyl or acid
chlorides to yield the corresponding sulfonamide and
amides 10–13.

GSK-3b kinase inhibitory activity of furopyrimidines 9–
13 was determined using a fluorescence anisotropy bind-
ing assay.8 As indicated in Table 1, introduction of the
3-pyridine moiety at the 6-position and various sulfona-
mides and amides at the para position of the 5-phenyl
ring led to a range of GSK-3 activities from approxi-
mately 1.6 lM to 23 nM.9 The amides 9 and 10 showed
moderate potencies with similar activities for both alkyl
and aryl substituents. However, with the sulfonamides
although the methylsulfonamide 11 showed moderate
activity, the aryl sulfonamides 12 and 13 displayed po-
tent GSK-3 inhibitory activity of 23–30 nM.10

Furopyrimidine 12 was docked into the ATP-binding
site of GSK-3b available from crystal structures. Using
the original binding mode we observed from co-crystal
structures of furopyrimidine bound to VEGFR2, the
aryl ring of the sulfonamide at the 5-position would ap-
pear to clash with residues Met101, Leu112 and Leu130
of GSK-3, as shown in Figure 3. Contrary to this, in the
flipped binding mode, furopyrimidine 12 looks much
more likely to be accommodated in the pocket. The
N3 nitrogen and NH2 of aminopyrimidine are anchored
with the carbonyl moiety and NH of Val135, respec-
tively, via hydrogen bond interactions. Additionally,
the 3-pyridine moiety at the 6-position is close to
Lys85 of the conserved salt bridge (Lys85/Glu97). This
observation was consistent with the SAR of the 3-pyri-
dine moiety at the 5-position of the pyrazolopyridine
2. Furthermore, the flipped binding mode places the sul-
fonamide in the sugar pocket where interactions with
hydrophilic residues would be expected to assist in tight
binding. Thus, furopyrimidine 12 is speculated to bind
to GSK-3 in this flipped binding mode, different from



Figure 3. Proposed flipped binding (left) and compliant binding (right) of compound 12 in the GSK-3b protein. In the compliant mode phenyl ring is

bumped the residues composed by Met101, Leu112 and Leu130. In the flipped mode compound 12 is likely to be accommodated into the pocket well.

Key interactions with hinge region are indicated by green lines.

Table 2. Selectivity profile of compound 12a

AMPK CHK1 JNK1 MAPK MEK1 PKA PKBa SGK CDK2 GSK-3

44 3 7 5 0 0 29 3 27 100

a Values are % inhibition at 10 lM using 100 lM ATP.
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the binding mode observed in the case of VEGFR2.
These results indicate that one chemical series can exhi-
bit different potent kinase inhibitory activities by switch-
ing its binding mode.

Having identified furopyrimidines with GSK-3 activity,
we profiled compound 12, one of the most potent ana-
logue, by cross screening against a variety of kinases.11

As shown in Table 2, furopyrimidine 12 showed an
excellent overall selectivity profile against those kinases
tested. It is noteworthy that compound 12 showed good
selectivity against CDK2, where there is a high degree of
homology with GSK-3b.12

In conclusion, we identified novel potent GSK-3b inhib-
itors, represented by 4-amino-5-(4-(benzenesulfonylami-
no)-phenyl)-6-(3-pyridyl)-furo[2,3-d]pyrimidine 12, by
modification of an existing VEGFR2 series. The binding
mode is likely to be different from that observed in
VEGFR2; the core structure being flipped to better oc-
cupy the catalytic domain of GSK-3.
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