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Abstract: The enzyme-mediated highly enantioselective hydrolysis of dicarboxylic acid monoesters was investigated. 

The racemic substrates, which were prepared by coupling of the corresponding alcohols with dicarboxylic anhydrides, 

were enantioselectively hydrolyzed by lipase from Candida antarctica (Novozym 435) in a buffer at 30 °C. The products 

were easily separated by a simple extraction procedure without laborious column chromatography to afford both enanti-

omers of the alcohols. We then determined that the dicarboxylic acid monoesters were suitable alternative substrates for 

the preparation of optically active alcohols. 

Keywords: Dicarboxylic acid monoesters, enzymatic hydrolysis, kinetic resolution, lipase, optically active alcohols. 

INTRODUCTION 

The enzyme-mediated kinetic resolution of racemic alco-
hols and esters is one of the attractive methods for the prepa-
ration of optically active compounds [1-11]. During the reac-
tion process, however, the products and the remaining sub-
strates must be separated by column chromatography, which 
is the bottleneck to a sustainable production and an easy op-
eration. The use of succinic anhydride as an acylating agent 
during enzymatic esterification could resolve this concern 
[12-22]. Although the separation of the resulting dicarbox-
ylic monoesters from the remaining alcohols could be 
achieved by a simple extraction process, the procedure is not 
always satisfactory in terms of the enantioselectivity and the 
necessity for high amount of enzymes. 

In our previous study, we succeeded in the enanti-
oselective hydrolysis of monomethoxy poly(ethylene glycol) 
(MPEG; av MW 5000)-supported carboxylates using lipase 
from Candida antarctica (Novozym 435; CAL-B), and the 
separation of the reaction products was achieved by simple 
filtration because the MPEG-supported substrates were eas-
ily precipitated in Et2O [23]. At the beginning of the study, 
we carried out the enzymatic hydrolysis of the MPEG-
supported diester (±)-1 (Fig. 1). Unfortunately, Novozym 
435 catalyzed the hydrolysis of two ester bonds, and the sub-
strate was decomposed into several components. After the 
detail analysis of the products, however, we found that the 
MPEG ester part was first hydrolyzed to give the corre-
sponding succinic acid monoester (±)-2a, because hydrolases 
generally preferred a primary ester. In addition, the resulting 
racemate (±)-2a was then enantioselectively hydrolyzed to 
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the optically active 3. We noted that the dicarboxylic acid 
monoesters could be a good substrate for hydrolytic en-
zymes, because the remaining dicarboxylic acid monoesters 
could be separated from the resulting alcohols by  the same 
process as in the case of the enzymatic esterification with 
succinic anhydride as mentioned above. To the best of our 
knowledge, there have been only a very few reports on the 
enzyme-mediated enantioselective hydrolysis of dicarbox-
ylic acid monoesters (Fig. 2) [24, 25], and the E values (the 
ratio of the specificity constants of enantiomers (R and S); E 
value=(VR/KR)/(VS/KS)) [26] indicated that the enantioselec-
tivities of the reactions using an industrial glutaryl acylase 
were low. However, the dicarboxylic acid monoesters are 
well known for use as prodrugs, which are hydrolyzed by 
hydrolases [27]. In addition, a free terminal carboxylate 
group could cause an interaction between the substrates and 
the enzyme active site residue through a hydrogen bonding 
[28-30]. We now disclose the enzyme-mediated enantiose-
lective hydrolysis of dicarboxylic acid monoesters, and also 
report the structure of the acyl moiety that affects both the 
reactivity and enantioselectivity. 

RESULTS AND DISCUSSION 

We selected 1-phenylethanol (3) as the representative al-
cohol, and the racemate (±)-3 was combined with succinic 
anhydride using DMAP in CH2Cl2 to give the corresponding 
substrate (±)-2a (Fig. 3). The other substrates were synthe-
sized by the same procedure. 

At first, the enzymatic reaction using Novozym 435 of 
the succinic acid monoester (±)-2a was carried out (Fig. 4). 
In a typical experiment, 89 mg of (±)-2a (sub. concn. 10 
mmol L-1) and 20 mg of Novozym 435 were added to 0.1 
mol L-1 phosphate buffer (pH 6.5, 40 mL) in a recovery 
flask, and the reaction was stirred for 24 h at 30 °C. The wa-
ter solubility of the substrate under suitable basic conditions 
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(ca. pH 11) enabled us to establish a facile separation of the 
remaining 2a and the resulting alcohol 3. After acidification 
of the reaction mixture with 2 mol L-1 HCl, the first extrac-
tion process was performed with Et2O. In this step, both the 
substrate 2a and the alcohol 3 were extracted into the or-
ganic phase. In the following second extraction from the 
organic phase with 1 mol L-1 Na2CO3 aq, the substrate 2a 
was then selectively obtained in the basic aqueous phase. 
The alcohol 3 successfully remained in the organic phase, 
and was isolated after evaporation. On the other hand, 
chemical hydrolysis of the substrate 2a by the addition of 2 
mol L-1 NaOH aq to the aqueous phase gave the correspond-

ing 3, which was also extracted with Et2O. The yields of the 
compounds were determined after passing through a small 
amount of silica gel. The enantiomeric excesses (ee) were 
evaluated by a chiral GLC analysis. As expected, the hy-
drolysis proceeded with a high enantioselectivity to afford 
the optically active (S)-3 (derived from (S)-2a; 45%, 48% 
ee) and (R)-3 (15%, 99% ee). Although the reactivity was 
moderate (conv.=0.33; the conversion was calculated using 
ees/(ees+eep); ees, ee of (S)-alcohol; eep, ee of (R)-alcohol), 
the enantioselectivity (E value=320; the E value was calcu-
lated using ln[(1–conv.)(1–ees)]/ ln[(1–conv.)(1+ees)]) was 
very high. 
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Fig. (1). Enzymatic hydrolysis of a MPEG-supported diester. 
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Fig. (2). Enzymatic hydrolysis of carboxylic acid monoesters with glutaryl acylase. 

HO
O

O

O Me

Ph

(±)-2a

Ph Me

OH

(±)-3

OO O

, DMAP

CH2Cl2
rt, 24 h

 

Fig. (3). Preparation of the substrate (±)-2a. 
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We next investigated changing the acyl group of the sub-
strate in order to increase the conversion rate, because we 
speculated that a suitable acyl group could increase the affin-
ity to the active site of the enzyme (Fig. 5). The results are 
summarized in Table 1. Surprisingly, changing the acyl 
group significantly affected not only the conversion, but also 
the enantioselectivity. The glutaric acid monoester (±)-2b 
was smoothly hydrolyzed, and the conversion was up to 0.48 
(entry 1). In addition, an excellent enantioselectivity was 
observed (E value>640) to afford both almost optically pure 
enantiomers. This reaction was also useful as a preparative-
scale operation (entry 2, >1 g of (±)-2b). Finally, both the 
reactivity and enantioselectivity in the case of the dicarbox-
ylic acid monoester 2b were eventually comparable to those 
for the enzymatic hydrolysis of the racemic 1-phenylethyl 
acetate ((±)-4), which was a typical substrate, under the same 
reaction conditions (conv.=0.50, E value=920). On the other 
hand, the reactivity of the 3-methylglutaric acid monoester 
(±)-2c significantly decreased (conv.=0.14) under the same 
reaction conditions, and the enantioselectivity (E value=77) 
was also lower than that for 2a and 2b (entry 3). As ex-
pected, the hydrolysis reaction of the compounds 2d bearing 
a bulky substituent (3,3-dimethyl group) did not proceed at 
all (entry 4). Fiaud et al. reported the esterifications of (±)-3 
with dicarboxylic anhydride using the same enzyme in Et2O 
for 24 h, and the enantioselectivities were almost same as 
those obtained by our hydrolysis version [22]. However, in 
this study, the enzymatic esterification of 3 with glutaric 
anhydride (conv.=0.23) was slower than that for the reaction 

with succinic anhydride (conv.=0.50). Interestingly, the re-
sults were apparently contrary to the effect of the acyl moi-
ety in our cases. 

In order to apply the concept of this reaction for the ki-

netic resolution of other secondary alcohols, we next exam-
ined the enzymatic hydrolysis of several succinic and glu-
taric acid monoesters (Fig. 6), and these results are shown in 
Table 2. In all cases, the reactions were performed for a 

longer reaction time (48 h) using a higher amount of the en-
zyme (40 mg), because the reactivities were lower than that 
in the case of the substrate 2b. While the hydrolysis of the 

succinic acid monoester (±)-5a bearing an ethyl group as the 
R2 substituent (R1=Ph, R2=Et) with a moderate enantioselec-
tivity was very slow (entry 1; conv.=0.08, E value=72), 
changing the acyl moiety to the glutaric acid monoester ((±)-

5b) drastically improved both the reactivity and enantiose-
lectivity (entry 2; conv.=0.35, E value=340). In the case of 
(±)-6b bearing a phenylmethyl group (R1=CH2Ph, R2=Me), 

the enzyme also catalyzed the hydrolysis of the compound 
with a higher enantioselectivity (conv.=0.46, E value=520) 
than that of (±)-6a (conv.=0.38, E value=180) to afford the 
highly optically active compounds (entries 3 and 4). On the 

other hand, the reactions of the substrates bearing a naphthyl 
group as the R1 substituent also proceeded. Although the 
enantioselectivities of the esters ((±)-8a and 8b, R1=1-

naphthyl, R2=Et) of 1-(1-naphthyl)ethanol (13) were low 
(entries 7 and 8; E value = 16 and 18, respectively),  
both  esters  ((±)-7a  and 7b, R1=2-naphthyl, R2=Et) of 1-(2- 
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Fig. (5). Enzymatic hydrolysis of the substrates bearing various acyl parts. 

Table 1. Enantioselective hydrolysis of dicarboxylic acid monoesters 2b-d with Novozym 435.
a
 

Entry Substrate (S)-3 (R)-3 Conv.
b
 E value

c
 

  Yield (%) Ee (%)d Yield (%) Ee (%)d   

1 (±)-2b 34 91 38 >99 0.48 >640 

2e (±)-2b 42 96 41 >99 0.49 >790 

3 (±)-2c 73 16 10 97 0.14 77 

4 (±)-2d No reaction – – 

aThe reaction was performed using 10 mM of the substrate with Novozym 435 (20 mg) in 0.1 M phosphate buffer (pH 6.5) for 24 h at 30 °C. 
bCalculated using ees/(ees+eep). 
cCalculated using ln[(1–conv.)(1–ees)]/ ln[(1–conv.)(1+ees)]. 
dDetermined by GC analysis. 
eThe reaction was performed on a gram scale of the substrate. 
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Fig. (6). Enzymatic hydrolysis of the various carboxylic acid monoesters. 

Table 2. Enantioselective hydrolysis of dicarboxylic monoesters 5-9 with Novozym 435.
 a

 

(S)-alcohol
b
 (R)-alcohol

b
 

Entry Substrate 

Yield (%) Ee (%) Yield (%) Ee (%) 

Conv.
c
 E value

d
 

1 (±)-5a 64 9 10 97 0.08 72 

2 (±)-5b 54 55 17 99 0.35 340 

3 (±)-6a 48 59 22 98 0.38 180 

4 (±)-6b 38 83 39 99 0.46 520 

5 (±)-7a 50 97 49 99 0.49 840 

6 (±)-7b 35 99 35 98 0.50 530 

7 (±)-8a 72 9 10 87 0.09 16 

8 (±)-8b 75 12 11 88 0.12 18 

9 (±)-9a 48 98 44 99 0.50 920 

10 (±)-9b 36 99 45 97 0.51 350 

aThe reactions were performed using 10 m mol L-1 of the substrate with Novozym 435 (40 mg) in 0.1 mol L-1 phosphate buffer (pH 6.5) for 48 h at 30 °C. 
bThe absolute configurations were determined by comparing the specific rotation signs with those reported. 
cCalculated using ees/(ees+eep). 
dCalculated using ln[(1–conv.)(1–ees)]/ ln[(1–conv.)(1+ees)]. 
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Fig. (7). Enzymatic hydrolysis of the acetate (±)-15 with Novozym 435. 
 
naphtyl)ethanol (12) were hydrolyzed with excellent enanti-

oselectivities (entries 5 and 6; E value=840 and 530, respec-
tively). It is noteworthy that the kinetic resolutions of (±)-9a 
and 9b, which contain a benzyloxyethyl group 

(R1=CH2CH2OBn, R2=Me), were smoothly accomplished to 
afford almost optically pure compounds (entries 9 and 10; E 

value=920 and 350, respectively). We also examined the 

enzymatic hydrolysis of the acetate (±)-15 for 24 h at 30 °C 
(Fig. 7). Although the enzymatic hydrolysis smoothly pro-
ceeded, the enantioselectivity was only moderate 

(conv.=0.52, E value=47). These results indicated that the 
structure of the acyl moieties of 9 apparently affects the in-
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teraction between the substrate and the active site of the en-

zyme. 

Except for the substrate 13 bearing a 1-naphthyl group, 

all the reactions gave enough high E values (over 180), re-

gardless of the size of the R1 substituent. We then supposed 
that many aromatic and aliphatic R1 substituents, which had 

a suitable size, could be acceptable for the substrates. We 

also speculated that a 1-naphthyl group would be too bulky 

for the interaction between the substrate and the enzyme due 

to the position of the naphthyl group. On the other hand, the 

conversions for the substrates with an ethyl group as the R2 

substituent (5a and 5b) were lower than those for the sub-

strates with a methyl group, and we supposed that the size of 

the R2 substituent should be restricted. In order to improve 

the conversion for the practical synthesis, a much longer 

reaction time and a much higher amount of the enzyme 

could be required. 

CONCLUSION 

In conclusion, we succeeded in the enzyme-mediated 
enantioselective hydrolysis of dicarboxylic acid monoesters, 
and obtained several enantiomers of 3, 10, 11, 12, 13, and 
14. We also have disclosed that the reactivity and eantiose-
lectivity can be controlled using a suitable acyl group of the 
substrates. In our method, the separation of the reaction 
products was achieved by a simple extraction procedure. 
Further investigations into the reactions are now in progress. 

EXPERIMENTAL 

General 

1H (500 MHz or 300 MHz) and 13C (125 MHz or 75 

MHz) NMR spectra were measured on a JEOL -500 or a 

JEOL JNM AL-300 with tetramethylsilane (TMS) as the 

internal standard. IR spectra were recorded with Shimadzu 

IR Prestige-21 spectrometers. Mass spectra were obtained 

with a JEOL EI/FAB mate BU25 Instrument by the EI 

method or a JEOL JMS-T100 by the ESI-TOF method. Op-

tical rotations were measured with a Jasco DIP-1000 po-

larimeter. HPLC data were obtained on Shimadzu LC-

10ADVP, SPD-10AVP, and sic 480II data station (System 

Instruments Co., Ltd.). 

Preparation of the Substrate, (±)-3-((1-

phenylethoxy)carbonyl)Propanoic Acid (2a) 

Under an argon atmosphere, succinic anhydride (490 mg, 
4.89 mmol) and DMAP (599 mg, 4.901 mmol) were added 
to a solution of 1-phenyletanol ((±)-3, 299.1 mg, 2.45 mmol) 
in CH2Cl2 (10 mL), and the solution was stirred for 2 h at 
room temperature. After the mixture was washed with 2 mol 
L-1 HCl, the products were extracted with CH2Cl2 (x4), and 
dried over Na2SO4. After evaporation in vacuo, the residue 
was purified by column chromatography on silica gel (hex-
ane/AcOEt = 3/1) to give the (±)-2a as a colorless oil in 97% 
yield (528 mg); IR (neat) 2982, 2934, 1736, 1713, 1495, 
1450, 1375, 1285, 1207, 1169, 1063, 959, 762, 700 cm-1; 1H 
NMR (500 MHz, CDCl3)  1.53 (d, J = 6.5 Hz, 3H), 2.56-
2.74 (m, 4H), 5.89 (q, J = 6.5 Hz, 1H), 7.21-7.41 (m, 5H); 

13C NMR (125 MHz, CDCl3)  22.1, 28.9, 29.1, 72.9, 126.0, 
127.9, 128.5, 141.3, 171.4, 178.2; HRMS m/z (ESI) 
245.0788 (calcd for C12H14O4Na: 245.0790, M+Na+). 

The other substrates were synthesized by the same pro-
cedure. 

Typical Experimental Procedure for Enantioselective 

Hydrolysis of Dicarboxylic Monoesters (1-phenylethanol 

(3)) 

To a recovery flask containing 88.9 mg of (±)-2a (sub. 
conc., 10 mmol L-1) were added 40 mL of 0.1 mol L-1 phos-
phate buffer (pH6.5). To the mixture was added 20 mg of 
Novozym 435 (2.0 U/mg, using tributyrin at pH 8.0 and 40 
°C), and the solution was stirred for 24 h at 30 °C. After ad-
dition of 2 mol L-1 HCl to the mixture, the products were 
extracted with Et2O (x4), and dried over Na2SO4. After the 
organic phase was evaporated in order to reduce the volume, 
(S)-2a was selectively extracted with 1 mol L-1 Na2CO3 aq 
(x4). Evaporation of the remaining organic phase afforded 
(R)-3. On the other hand, to the water phase was added 2 
mol L-1 NaOH aq (5 mL), and the mixture was stirred for 2 h 
at room temperature. The products were extracted with Et2O 
(x4), and dried over Na2SO4. Evaporation of the organic 
phase afforded (S)-3. In order to determine the exact isolated 
yields and ees of the products, both enantiomers were puri-
fied by column chromatography on a small amount of silica 
gel (hexane/Et2O = 2/1) to give (S)-3 (22.0 mg, 45%, 48% 
ee) and (R)-3 (7.5 mg, 15%, 99% ee), respectively. [ ]D

28 = 
–43.0 (c 1.13, MeOH) (96% ee, (S)-form), [ ]D

27 = +41.0 (c 
1.30, MeOH) (>99% ee, (R)-form); lit. [ ]D

20 = +45 (c 5.15, 
MeOH) ((R)-form) [31]. GC conditions: column, CP-
Cyclodextrin-B-236-M19 (Chrompack), 0.25 mm x 50 m; 
injection, 140 °C; detection, 140 °C; oven, 120 °C; carrier 
gas, He; head pressure, 2.4 kg/cm2; retention time, 14.6 (R) 
and 15.2 (S) min. 

The reactions of the other substrates were carried out by 
the same procedure. The results were shown in the text. All 
the spectral data (1H and 13C NMR, IR, and MS) were in full 
agreement with those of the racemates, commercial sources, 
or those reported. 

1-phenyl-1-propanol (10) 

[ ]D
25 = +42.8 (c 0.93, CHCl3) (99% ee, (R)-form); lit. 

[ ]D
20 = –47.0 (c 1.00, CHCl3) ((S)-form) [32]. GC condi-

tions: column, CP-Cyclodextrin-B-236-M19 (Chrompack), 
0.25 mm x 50 m; injection, 140 °C; detection, 140 °C; oven, 
120 °C; carrier gas, He; head pressure, 2.4 kg/cm2; retention 
time, 22.6 (R) and 23.4 (S) min. 

1-phenyl-2-propanol (11) 

[ ]D
28 = –35.4 (c 0.75, CHCl3) (99% ee, (R)-form); lit. 

[ ]D
20 = –37.6 (c 5.00, CHCl3) ((R)-form) [33]. GC condi-

tions: column, CP-Cyclodextrin-B-236-M19 (Chrompack), 
0.25 mm x 50 m; injection, 130 °C; detection, 130 °C; oven, 
110 °C; carrier gas, He; head pressure, 2.4 kg/cm2; retention 
time, 27.1 (R) and 27.5 (S) min. 

1-(2-naphthyl)ethanol (12) 

Mp 68.2-68.8 °C (recrystallized from Et2O-hexane); lit. 
68-70 °C [34]. [ ]D

28 = +38.3 (c 1.01, MeOH) (98% ee, (R)-
form); lit. [ ]D = +34.6 (c 1.20, MeOH) ((R)-form) [35]. GC 
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conditions: column, CP-Cyclodextrin-B-236-M19 (Chrom-
pack), 0.25 mm x 50 m; injection, 180 °C; detection, 180 °C; 
oven, 160 °C; carrier gas, He; head pressure, 2.4 kg/cm2; 
retention time, 41.9 (R) and 42.9 (S) min. 

1-(1-naphthyl)ethanol (13) 

Mp 62.0-62.3 °C (recrystallized from CH2Cl2-hexane); 
lit. 64 °C [36]. [ ]D

27 = +55.9 (c 0.64, MeOH) (88% ee, (R)-
form); lit. [ ]D

25 = +45.0 (c 2.00, MeOH) ((R)-form)[37]. 
GC conditions: column, CP-Cyclodextrin-B-236-M19 
(Chrompack), 0.25 mm x 50 m; injection, 180 °C; detection, 
180 °C; oven, 160 °C; carrier gas, He; head pressure, 2.4 
kg/cm2; retention time, 43.0 (R) and 44.3 (S) min. 

4-benzyloxy-2-butanol (14) 

[ ]D
29 = –14.9 (c 1.08, MeOH) (99% ee, (R)-form); lit. 

[ ]D
27 = +19.0 (c 0.95, MeOH) ((S)-form)[38]. HPLC condi-

tions: column, CHIRALCEL OD-H (Daicel Chemical Indus-
tries, Ltd.); eluent, hexane/2-propanol = 90/10; flow rate, 0.5 
mL/min; 254 nm; temperature, 25 °C; retention time, 12.8 
(S) and 14.0 (R) min. 
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