

# Supporting Information © Wiley-VCH 2013

69451 Weinheim, Germany

# Indole Synthesis by Rhodium(III)-Catalyzed Hydrazine-Directed C–H Activation: Redox-Neutral and Traceless by N–N Bond Cleavage\*\*

Dongbing Zhao, Zhuangzhi Shi, and Frank Glorius\*

anie\_201306098\_sm\_miscellaneous\_information.pdf

# Supporting Information

## Table of content

| 1        | General information                                                      | S2               |
|----------|--------------------------------------------------------------------------|------------------|
| 2<br>alk | Synthesis of 2-acetyl-1-arylhydrazines and diaryl s cynes                | ubstituted<br>S3 |
| 3<br>to  | Rh(III)-catalyzed hydrazine-directed redox-neutral C-H a diverse indoles | nnulation<br>S4  |
| 4        | Mechanistic Experiments                                                  | S16              |
| 5        | References                                                               | S18              |
| 6        | NMR spectra                                                              | S19              |

#### **1** General information

Unless otherwise noted, all reactions were carried out under an atmosphere of argon in flamedried glassware. Reaction temperatures are reported as the temperature of the bath surrounding the vessel unless otherwise stated. The solvents used were purified by distillation over the drying agents indicated in parentheses and were transferred under argon.

Commercially available chemicals were obtained from Acros Organics, Aldrich Chemical Co., Strem Chemicals, Alfa Aesar, ABCR and TCI Europe and used as received unless otherwise stated.

Analytical thin layer chromatography was performed on Polygram SIL G/UV<sub>254</sub> plates. Flash chromatography was either performed on Merck silica gel (40-63 mesh) by standard technique eluting with solvents as indicated.

GC-MS Spectra were recorded on an Agilent Technologies 7890A GC-system with an Agilent 5975C VL MSD or an Agilent 5975 inert Mass Selective Detector (EI) and a HP-5MS column (0.25 mm  $\times$  30 m, Film: 0.25  $\mu$ m). The major signals are quoted in m/z with the relative intensity in parentheses.

<sup>1</sup>H and <sup>13</sup>C-NMR spectra were recorded on a Bruker AV 300 or AV 400, Varian 500 MHz INOVA or Varian Unity plus 600 in solvents as indicate. Chemical shifts ( $\delta$ ) are given in ppm relative to TMS. The residual solvent signals were used as references and the chemical shifts converted to the TMS scale (CDCl<sub>3</sub>:  $\delta_{\rm H} = 7.26$  ppm,  $\delta_{\rm C} = 77.16$  ppm). ESI mass spectra were recorded on a Bruker Daltonics MicroTof. No attempts were made to optimize yields for substrate synthesis.

#### 2 Synthesis of 2-acetyl-1-arylhydrazines and diaryl substituted alkynes

#### 2.1 General procedure for the synthesis of 2-acetyl-1-arylhydrazines<sup>[1]</sup>

$$R \xrightarrow[l]{I} NH_{2} \xrightarrow{\text{NaNO}_{2}/\text{Conc.HCl}} R \xrightarrow[l]{I} NHNH_{2} \xrightarrow{\text{HCl}} 1M \text{ NaOH} \xrightarrow{\text{THF}/\text{H}_{2}\text{O}, \text{ Ac}_{2}\text{O}} R \xrightarrow[l]{I} \xrightarrow{\text{NHNHAc}} R \xrightarrow[l]{I} \xrightarrow{\text{NHNHAc}} 3$$

Following a literature procedure,<sup>[1]</sup> to a suspension of aryl amine **1** (20 mmol) in water (65 mL) and conc. HCl (25 mL) cooled down to 0-5 °C, sodium nitrite (1.55 g, 22 mmol) in water (15 mL) was added dropwise. It was kept under stirring at the same temperature for 45 minutes and, subsequently, a solution of  $SnCl_2$  (40 mmol) in conc. HCl (10 mL) was added. Once the addition was performed, the temperature was allowed to slowly increase until achieving room temperature, and the suspension was filtered. The remaining solid was washed with saturated brine and diethyl ether and, subsequently, it was suspended in diethyl ether with stirring during a few minutes. It was filtered and dried resulting in a crude brown solid **2**, which was used directly in the following synthesis step.

The arylhydrazine hydrochloride salt **2** (13 mmol) was dissolved in 1*N* NaOH (25 mL) and THF (6 mL). With stirring, acetic anhydride (1.3 g, 13 mmol) was added dropwise, and after stirring for 30 min the mixture was extracted with EtOAc (3x20 mL). The combined organic solvent was evaporated to afford a solid residue. Recrystallization from a mixture of pentane and dichloromethane (1:1) gave 2-acetyl-1-arylhydrazine **3**.

### 2.2 General procedure for the synthesis of diaryl substituted alkynes<sup>[2]</sup>



Following a literature procedure,<sup>[2]</sup>  $Pd(PPh_3)_2Cl_2$  (105 mg, 0.15 mmol), 1,4bis(diphenylphosphino)butane (128 mg, 0.30 mmol), aryl halides (6.00 mmol), and propiolic acid (212 mg, 3.0 mmol) were combined with DBU (913 mg, 6.0 mmol) in a small roundbottomed flask. DMSO (15.0 mL) was added, and the flask was sealed with a septum. The resulting mixture was placed in an oil bath at 80 °C for 3 h. The reaction was poured into 25 mL of saturated aqueous ammonium chloride and extracted with EtOAc (4x20 mL). The combined EtOAc extracts were washed with brine (90 mL), dried over MgSO<sub>4</sub>, and filtered. The solvent was removed under vacuum, and the resulting crude product was purified by flash chromatography on silica gel. The product was eluted with 5% ethyl acetate in hexane.

# **3** Rh(III)-catalyzed hydrazine-directed redox-neutral C-H annulation to diverse indoles

# 3.1 Optimization of the Rh(III)-catalyzed hydrazine-directed redox-neutral C-H annulation to indole

|                   | NHR <sup>1 +</sup> Ph- | 2.5 mol% [RhCp*C<br>25 mol% CsOAc<br>25 mol% CsOAc | Ph       |                          |
|-------------------|------------------------|----------------------------------------------------|----------|--------------------------|
|                   | ∽ N<br>1a <sup>H</sup> | 2a                                                 | 3a       |                          |
| Entry             | R <sup>1</sup>         | Additive                                           | Solvent  | Yield [%] <sup>[b]</sup> |
| 1                 | Н                      |                                                    | DCE      | n.r                      |
| 2                 | Ac                     |                                                    | DCE      | 12                       |
| 3                 | Piv                    |                                                    | DCE      | n.r                      |
| 4 <sup>[c]</sup>  | Ac                     |                                                    | DCE      | n.r                      |
| 5                 | Ac                     | HOAc                                               | DCE      | 88                       |
| 6                 | Ac                     | TfOH                                               | DCE      | trace                    |
| 7                 | Ac                     | TFA                                                | DCE      | 41                       |
| 8                 | Ac                     | HOAc                                               | dioxane  | n.r                      |
| 9                 | Ac                     | HOAc                                               | methanol | 56                       |
| 10                | Ac                     | HOAc                                               | CHCl₃    | 58                       |
| 11                | Ac                     | HOAc                                               | toluene  | n.r                      |
| 12 <sup>[d</sup>  | Ac                     | HOAc                                               | DCE      | 73                       |
| 13 <sup>[e]</sup> | Ac                     | HOAc                                               | DCE      | 62                       |
| 14 <sup>[f]</sup> | Ac                     |                                                    | DCE      | 89                       |
| 15 <sup>[g]</sup> | Ac                     | HOAc                                               | DCE      | 77                       |
| 16 <sup>[h]</sup> | Ac                     | HOAc                                               | DCE      | 28                       |

Table S1. Optimization of the Rh(III)-catalyzed hydrazine-directed redox-neutral C-H annulation to indole.<sup>[a]</sup>

## **3.2** General procedure for the Rh(III)-catalyzed hydrazine-directed redoxneutral C-H annulation



To a 50 mL screw-capped vial equipped with a 10 x 5 mm spinvane-shaped Teflon stirrer bar were charged with 2-acetyl-1-arylhydrazine (0.2 mmol), alkyne **2** (0.22 mmol),  $[Cp*RhCl_2]_2$  (2.5 mol%), CsOAc (25 mol%), acetic acid (1.2 equiv.), and 1,2-dichloroethane (1.5 mL) under the Argon atmosphere. The resulting mixture was sealed with a Teflon-lined cap and

<sup>[</sup>a] Reactions were carried out by using  $[RhCp*Cl_2]_2$  (2.5 mol%), CsOAc (25 mol%), additive (0-1.2 equiv.), hydrazines (0.2 mmol), and diphenylacetylene (0.22 mmol) in solvent (1 mL) for 16 h at 70 °C under an argon atmosphere. [b] Isolated yield. [c] N'-methyl-N'-phenylacetohydrazide was used as the substrate. [d] NaOAc (25 mol%) was used as the base; [e] CsOPiv (25 mol%) was used as the base; [f] RhCp\*(OAc)<sub>2</sub> (5 mol%) was used as the catalyst; [g] 12 h; [h] room temperature. n.r = no reaction.

stirred at 70 °C for 16 h in an oil bath. The reaction was cooled to room temperature, filtered through a plug of celite and washed with dichloromethane (15 mL). The desired product was obtained by column chromatography using an appropriate eluent.

#### 3.3 Procedure for the gram scale preparation of 2,3-Diphenyl-1H-indole (3a)

To a 150 mL screw-capped vial equipped with a 10 x 5 mm spinvane-shaped Teflon stirrer bar were charged with 2-acetyl-1-phenylhydrazine (1.5 g, 10 mmol), alkyne **2** (1.96 g, 11 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (155 mg, 0.25 mmol), CsOAc (480 mg, 2.5 mmol), acetic acid (720  $\mu$ L, 12 mmol), and 1,2-dichloroethane (50 mL) under the Argon atmosphere. The resulting mixture was sealed with a Teflon-lined cap and stirred at 70 °C for 16 h in an oil bath. The reaction was cooled to room temperature, filtered through a plug of celite and washed with dichloromethane (25 mL). The desired product was obtained by column chromatography (pentane/ethyl acetate10:1). 2,3-Diphenyl-1H-indole **(3a)** was formed in 86% yield (2.32 g).

#### 2,3-Diphenyl-1H-indole (3a)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and

1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3-Diphenyl-1H-indole (**3a**) was formed in 88% yield. **R**<sub>f</sub> (pentane/ethyl acetate 10:1): 0.25; <sup>1</sup>**H NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  8.24 (s, 1H), 7.70 (d, J = 7.9 Hz, 1H), 7.54 – 7.21 (m, 12H), 7.17 (t, J = 7.5 Hz, 1H); <sup>13</sup>C NMR (75 MHz, **CDCl<sub>3</sub>):**  $\delta$  136.01, 135.17, 134.21, 132.83, 132.80, 130.29, 128.88, 128.83, 128.66, 128.30, 127.84, 126.37, 122.85, 120.57, 119.84, 111.01. **HRMS**: m/z (ESI) calcd for [C<sub>20</sub>H<sub>16</sub>N]<sup>+</sup>: 270.1283, found: 270.1277.

#### 6-Methyl-2,3-diphenyl-1*H*-indole (3b)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-(3-methylphenyl)hydrazine (32.8 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05

mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 6-Methyl-2,3-diphenyl-1*H*-indole (**3b**) was formed in 93% yield. R<sub>f</sub> (pentane/ethyl acetate = 10:1): 0.30; <sup>1</sup>H NMR (**300 MHz, CDCl<sub>3</sub>**):  $\delta$  8.09 (s, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.52 – 7.27 (m, 10H), 7.22 (s, 1H), 7.02 (dd, J = 8.2, 0.9 Hz, 1H), 2.52 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  136.35, 135.26, 133.38, 132.88, 132.60, 130.09, 128.62, 128.46, 128.04, 127.46, 126.69, 126.12, 122.18, 119.36, 114.94, 110.80, 21.72. HRMS: m/z (ESI) calcd for C<sub>21</sub>H<sub>17</sub>NNa (M + Na)<sup>+</sup> 306.1259, found 306.1253.

#### 5-Methyl-2,3-diphenyl-1H-indole (3c)

#### 5,6-Dimethyl-2,3-diphenyl-1*H*-indole (3d)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-(3,4-dimethylphenyl)hydrazine (35.6 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol),

CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 5,6-Dimethyl-2,3-diphenyl-1*H*-indole (**3d**) was formed in 90% yield. **R**<sub>f</sub> (pentane/ethyl acetate = 10:1): 0.30; <sup>1</sup>H NMR (**300 MHz, CDCl**<sub>3</sub>):  $\delta$  8.08 (s, 1H), 7.58 – 7.32 (m, 11H), 7.26 (s, 1H), 2.47 (s, 3H), 2.42 (s, 3H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  135.48, 134.91, 133.24, 133.00, 131.84, 130.15, 129.12, 128.58, 128.45, 127.98, 127.34, 127.23, 126.05, 119.64, 114.58, 111.25, 20.44, 20.10. HRMS: m/z (ESI) calcd for C<sub>21</sub>H<sub>17</sub>NONa (M + Na)<sup>+</sup> 322.1208, found 322.1202.

#### 5-Methoxy-2,3-diphenyl-1*H*-indole (3e)



methoxyphenyl)hydrazine (36 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 5-Methoxy-2,3-diphenyl-1*H*-indole (**3e**) was formed in 92% yield. **R**<sub>f</sub> (pentane/ethyl acetate = 10:1): 0.30; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.15 (s, 1H), 7.48 – 7.37 (m, 6H), 7.36 – 7.28 (m, 5H), 7.13 (d, *J* = 2.4 Hz, 1H), 6.92 (dd, *J* = 8.7, 2.4 Hz, 1H), 3.83 (s, 3H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  154.76, 135.18, 134.92, 132.70, 131.02, 130.06, 129.14, 128.63, 128.58, 128.04, 127.59, 126.16, 114.91, 112.99, 111.67, 101.18, 55.91. HRMS: m/z (ESI) calcd for C<sub>21</sub>H<sub>17</sub>NONa (M + Na)<sup>+</sup> 322.1208, found 322.1202.

#### 2,3,5-Triphenyl-1H-indole (3f)

Following the general procedure, the C-H activation/cyclization Ph reaction was carried out with 2-acetyl-1-(4-phenylphenyl)hydrazine Ph Ph (45.2 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), Ν diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 н mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3,5-Triphenyl-1H-indole (3f) was formed in 86% yield.  $R_f$  (pentane/ethyl acetate 8:1): 0.25; <sup>1</sup>H **NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  8.16 (s, 1H), 7.79 (s, 1H), 7.55 (dt, J = 8.3, 1.8 Hz, 2H), 7.48 – 7.17 (m, 15H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 142.65, 135.58, 135.10, 134.93, 134.28, 132.76, 130.37, 129.46, 128.85, 128.75, 128.28, 127.91, 127.56, 126.53, 126.49, 122.74, 118.34, 115.61, 111.26, **HRMS**: m/z (ESI) calcd for  $[C_{26}H_{19}N + Na]^+$ : 368.1415, found 368.1405.

#### 7-Fluoro-2,3-diphenyl-1H-indole (3g)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-(2-fluorophenyl)hydrazine (33.6 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 7-Fluoro-2,3-diphenyl-

1H-indole (3g) was formed in 83% yield.  $\mathbf{R}_{f}$  (pentane/ethyl acetate 10:1): 0.30; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): 8.40 (s, 1H), 7.57 – 7.27 (m, 11H), 7.08 (td, J = 7.9, 4.9 Hz, 1H), 6.98 (ddd, J = 10.9, 7.9, 0.9 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): 151.14, 147.91, 135.01, 134.72, 132.49, 132.43, 132.29, 130.21, 128.90, 128.73, 128.34, 128.18, 126.64, 124.41, 124.23,

120.75, 120.66, 115.80, 115.76, 115.61, 115.57, 107.69, 107.48. <sup>19</sup>F NMR (282.3 MHz, **CDCl<sub>3</sub>**): δ 135.6. **HRMS**: m/z (ESI) calcd for [C<sub>20</sub>H<sub>14</sub>FN]: 287.1110, found 287.1105.

#### 5-Fluoro-2,3-diphenyl-1*H*-indole (3h)

Following the general procedure, the C-H activation/cyclization Ph reaction was carried out with 2-acetyl-1-(4-fluorophenyl)hydrazine (33.6 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), н diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 5-Fluoro-2,3-diphenyl-1H-indole (3h) was formed in 64% yield.  $\mathbf{R}_{\mathbf{f}}$  (pentane/ethyl acetate = 10:1): 0.30; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.22 (s, 1H), 7.54 – 7.28 (m, 12H), 7.00 (td, J =9.0, 2.5 Hz, 1H). <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  158.46 (d,  $J_{1F}$  = 236.34 Hz), 135.84, 134.57, 132.34, 129.91, 129.20 (d,  $J_{3F} = 9.09$  Hz), 128.68 (d,  $J_{3F} = 11.11$  Hz), 128.11, 127.94, 126.41, 115.20, 115.53 (d,  $J_{4F}$  = 4.04 Hz), 110.00 (d,  $J_{2F}$  = 27.27 Hz), 104.57 (d,  $J_{2F}$  = 24.24 Hz).<sup>19</sup>F NMR (282.3 MHz, CDCl<sub>3</sub>): δ 123.55. HRMS: m/z (ESI) calcd for C<sub>20</sub>H<sub>14</sub>NFNa (M + Na)<sup>+</sup> 310.1108, found 310.1102.

#### 5-Chloro-2,3-diphenyl-1*H*-indole (3i)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-(4-chlorophenyl)hydrazine Ph (36.8 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 н mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 5-Chloro-2,3-diphenyl-1H-indole (3i) was formed in 78% yield.  $\mathbf{R}_{\mathbf{f}}$  (pentane/ethyl acetate = 10:1): 0.30; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.25 (s, 1H), 7.65 (d, J = 2.0 Hz, 1H), 7.49 – 7.28 (m, 11H), 7.20 (dd, J = 8.6, 2.0 Hz, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  135.40, 134.37, 134.20, 132.17, 130.02, 129.92, 128.73, 128.65, 128.10, 128.00, 126.54, 126.16, 122.91, 119.10, 114.78, 111.88. **HRMS:** m/z (ESI) calcd for  $C_{20}H_{14}NCINa (M + Na)^+$  326.0712, found 326.0708.

#### 5-Bromo-2,3-diphenyl-1H-indole (3j)



(45.8 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 5-Bromo-2,3-diphenyl-1H-indole (**3g**) was formed in 92% yield. **R**<sub>f</sub> (pentane/ethyl acetate 10:1): 0.30; <sup>1</sup>H NMR(300 MHz, CDCl\_3):  $\delta$  8.25 (s, 1H), 7.80 (d, J = 1.7 Hz, 1H), 7.46 – 7.37 (m, 6H), 7.37 – 7.27 (m, 6H); <sup>13</sup>C NMR (75 MHz, CDCl\_3):  $\delta$  135.33, 134.56, 134.43, 132.21, 130.64, 130.16, 128.89, 128.81, 128.24, 128.17, 126.70, 125.59, 122.29, 114.76, 113.82, 112.47, 77.58, 77.16, 76.74. HRMS: m/z (ESI) calcd for  $[C_{20}H_{14}BrN+Na]^+$ : 370.0207, found 370.0197.

#### 5,6-Dichloro-2,3-diphenyl-1*H*-indole (3k)

Following the general procedure, the C-H activation/cyclization Ph reaction carried out with 2-acetyl-1-(3,4was CI. dichlorophenyl)hydrazine (43.6 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, Ph Cľ 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 н mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 5,6-Dichloro-2,3-diphenyl-1*H*-indole (**3**k) was formed in 60% yield. R<sub>f</sub> (pentane/ethyl acetate = 10:1): 0.30; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.24 (s, 1H), 7.71 (s, 1H), 7.51 (s, 1H), 7.47 – 7.28 (m, 11H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 135.87, 134.58, 133.92, 131.80, 129.95, 128.82, 128.75, 128.68, 128.26, 128.07, 126.78, 126.28, 124.56, 120.66, 114.69, 112.31. **HRMS**: m/z (ESI) calcd for  $C_{20}H_{13}NCl_2Na (M + Na)^+$  360.0323, found 360.0317.

#### 6-Iodo-5-methyl-2,3-diphenyl-1H-indole (31)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-(4-iodo-3-methylphenyl)hydrazine (58 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc

(9.6 mg, 0.05 mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 6-Iodo-5-methyl-2,3-diphenyl-1H-indole (**3l**) was formed in 81% yield. **R**<sub>f</sub> (pentane/ethyl acetate 8:1): 0.30; <sup>1</sup>**H NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  8.09 (s, 1H), 7.91 (s, 1H), 7.53 (s, 1H), 7.49 – 7.27 (m, 10H), 2.51 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  135.72, 134.81, 132.45, 132.26, 130.25, 129.55, 128.87, 128.75, 128.23, 128.04, 126.59, 121.01, 119.71, 114.80, 93.84, 28.30. **HRMS**: m/z (ESI) calcd for [C<sub>21</sub>H<sub>16</sub>IN+Na]<sup>+</sup>: 432.0225, found 432.0215.

#### 2,3-Diphenyl-5-(trifluoromethoxy)-1H-indole (3m)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-(3-trifluoromethoxy phenyl)hydrazine (46.8 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc

(9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3-Diphenyl-5-(trifluoromethoxy)-1H-indole (3m) was formed in 92% yield. Rf (pentane/ethyl acetate 8:1): 0.25; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.30 (s, 1H), 7.65 (d, J = 8.7 Hz, 1H), 7.50 – 7.27 (m, 11H), 7.06 (ddg, J = 8.7, 1.9, 0.9 Hz, 1H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$ 145.59, 145.56, 135.58, 135.52, 134.57, 132.34, 130.21, 128.93, 128.80, 128.23, 128.17, 127.70, 126.73, 122.64, 120.59, 119.25, 115.22, 114.60, 104.04; <sup>19</sup>F NMR (282.3 MHz, **CDCl<sub>3</sub>**):  $\delta$  57.89. **HRMS**: m/z (ESI) calcd for  $[C_{21}H_{14}F_3NO + Na]^+$ : 376.0925, found 376.0920.

#### Methyl 2,3-diphenyl-1H-indole-5-carboxylate (3n)



Following the general procedure. activation/cyclization reaction was carried out with 2-acetyl-1-(methyl-4-phenyl carboxylate)hydrazine (41.6 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL,

the

C-H

0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 5-Methyl 2,3-diphenyl-1Hindole-5-carboxylate (3n) was formed in 82% yield.  $R_f$  (pentane/ethyl acetate 5:1): 0.30; <sup>1</sup>H **NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  8.50 (s, 1H), 8.46 – 8.37 (m, 1H), 7.96 (dd, J = 8.6, 1.6 Hz, 1H), 7.51 – 7.27 (m, 11H), 3.91 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>): δ 168.23, 138.55, 135.39, 134.36, 132.21, 130.30, 128.94, 128.85, 128.61, 128.26, 128.22, 126.79, 124.27, 122.84, 122.66, 116.29, 110.72, 52.03. **HRMS**: m/z (ESI) calcd for  $[C_{22}H_{17}NO_2 + Na]^+$ : 350.1157, found 350.1159.

#### 2,3-Diphenyl-1*H*-indole-5-carbonitrile (30)



carboxylate)hydrazine (35 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), diphenylacetylene (39.15 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3-Diphenyl-1*H*-indole-5-carbonitrile (**30**) was formed in 41% yield. **R**<sub>f</sub> (pentane/ethyl acetate = 3:1): 0.30; <sup>1</sup>H NMR (**400 MHz, CDCl<sub>3</sub>**):  $\delta$  8.60 (s, 1H), 8.00 (s, 1H), 7.53 – 7.30 (m, 12H). <sup>13</sup>C NMR (**101 MHz, CDCl<sub>3</sub>**):  $\delta$  137.58, 136.21, 133.67, 131.65, 130.10, 129.05, 128.99, 128.85, 128.62, 128.31, 127.16, 125.66, 125.57, 120.81, 115.65, 111.89, 103.67. HRMS: m/z (ESI) calcd for C<sub>21</sub>H<sub>14</sub>N<sub>2</sub>Na (M + Na)<sup>+</sup> 317.1055, found 326.0707.

#### 2,3-Di-*p*-tolyl-1H-indole (4a)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), 1,2-di-p-tolylethyne (45.32 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3-Di-*p*-tolyl-1H-indole (4a) was formed in 93%

yield. **R**<sub>f</sub> (pentane/ethyl acetate 10:1): 0.25; <sup>1</sup>**H NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  8.16 (s, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.45 – 7.28 (m, 5H), 7.27 – 7.07 (m, 6H), 2.39 (s, 3H), 2.35 (s, 3H); <sup>13</sup>**C NMR (75 MHz, CDCl<sub>3</sub>):**  $\delta$  137.60, 135.91, 135.80, 134.14, 132.25, 130.09, 130.02, 129.50, 129.38, 129.01, 128.11, 122.56, 120.37, 119.75, 114.62, 110.92, 21.40. **HRMS:** m/z (ESI) calcd for [C<sub>22</sub>H<sub>19</sub>N]: 297.1517, found 297.1512.

#### 2,3-Bis(4-methoxyphenyl)-1H-indole (4b)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), 1,2-bis(4-methoxyphenyl)ethyne (52.36 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h.

2,3-Bis(4-methoxyphenyl)-1H-indole (**4b**) was formed in 91% yield. **R**<sub>f</sub> (pentane/ethyl acetate 7:1): 0.25; <sup>1</sup>H NMR (**300** MHz, CDCl<sub>3</sub>):  $\delta$  8.24 (s, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.47 – 7.31 (m, 5H), 7.18 (dt, J = 14.9, 7.3 Hz, 2H), 6.96 (d, J = 8.7 Hz, 2H), 6.87 (d, J = 8.8 Hz, 2H), 3.87 (s, 3H), 3.82 (s, 3H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  159.17, 158.11, 135.82, 133.86, 131.26, 129.44, 129.08, 127.69, 125.42, 122.37, 120.29, 119.51, 114.22, 114.12, 113.80,

110.87, 55.36, 55.34. **HRMS**: m/z (ESI) calcd for  $[C_{22}H_{19}NO_2+Na]^+$ : 352.1313, found: 352.1296.

#### 2,3-Bis(3-methoxyphenyl)-1H-indole (4c)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), 1,2-bis(3-methoxyphenyl)ethyne (52.36 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3-Bis(3-methoxyphenyl)-1H-indole (**4b**) was formed in 70% yield. **R**<sub>f</sub>

(pentane/ethyl acetate 7:1): 0.25; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.24 (s, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.38 (d, J = 8.1 Hz, 1H), 7.30 – 7.17 (m, 3H), 7.12 (ddd, J = 8.0, 7.1, 1.0 Hz, 1H), 7.03 – 6.97 (m, 3H), 6.96 – 6.91 (m, 1H), 6.85 – 6.76 (m, 2H), 3.72 (s, 3H), 3.63 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  159.77, 159.68, 136.54, 135.88, 134.07, 133.97, 129.83, 129.60, 128.80, 122.90, 120.58, 120.49, 119.86, 115.54, 115.20, 113.85, 113.55, 112.29, 111.03, 55.32, 55.25. HRMS: m/z (ESI) calcd for [C<sub>22</sub>H<sub>19</sub>NO<sub>2</sub>+Na]<sup>+</sup>: 352.1313, found: 352.1308.

#### 2,3-Bis(4-chlorophenyl)-1H-indole (4d)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), 1,2-bis(4-chlorophenyl)ethyne (54.34 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 100 °C for 16 h. 2,3-Bis(4-

chlorophenyl)-1H-indole (**4d**) was formed in 58% yield. **R**<sub>f</sub> (pentane/ethyl acetate 9:1): 0.25; <sup>1</sup>H NMR (**300 MHz, CDCl<sub>3</sub>**):  $\delta$  8.18 (s, 1H), 7.58 (d, J = 7.9 Hz, 1H), 7.39 (d, J = 8.1 Hz, 1H), 7.36 – 7.17 (m, 9H), 7.18 – 7.06 (m, 1H); <sup>13</sup>C NMR (**75 MHz, CDCl<sub>3</sub>**):  $\delta$  136.05, 134.00, 133.35, 133.20, 132.80, 132.38, 131.43, 130.95, 129.51, 129.23, 129.04, 128.51, 123.31, 120.94, 119.60, 114.38, 111.18. **HRMS**: m/z (ESI) calcd for [C<sub>20</sub>H<sub>13</sub>Cl<sub>2</sub>N+Na]<sup>+</sup>: 360.0323, found: 360.0317.

#### 2,3-Bis(3-chlorophenyl)-1H-indole (4e)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), 1,2-bis(3-chlorophenyl)ethyne (54.34 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3-Bis(3-chlorophenyl)-1H-indole (**4e**) was

formed in 72% yield. **R**<sub>f</sub> (pentane/ethyl acetate 8:1): 0.25; <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$ 8.19 (s, 1H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.46 – 7.34 (m, 3H), 7.31 – 7.10 (m, 8H); <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  136.64, 136.04, 134.83, 134.51, 134.16, 133.00, 130.17, 130.03, 129.98, 128.45, 128.40, 128.12, 127.92, 126.79, 126.70, 123.48, 121.04, 119.70, 114.59, 111.23. HRMS: m/z (ESI) calcd for [C<sub>20</sub>H<sub>13</sub>Cl<sub>2</sub>N+Na]<sup>+</sup>: 360.0323, found: 360.0322.

#### 2,3-Bis(4-fluorophenyl)-1H-indole (4f)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), 1,2-bis(4-fluorophenyl)ethyne (47.08 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 70 °C for 16 h. 2,3-Bis(4-fluorophenyl)-1H-indole (**4f**)

was formed in 91% yield. **R**<sub>f</sub> (pentane/ethyl acetate 10:1): 0.25; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.19 (s, 1H), 7.64 (d, J = 7.9 Hz, 1H), 7.44 (d, J = 8.1 Hz, 1H), 7.42 – 7.33 (m, 4H), 7.31 – 7.24 (m, 1H), 7.18 (t, J = 7.5 Hz, 1H), 7.15 – 6.98 (m, 4H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$ 163.71, 162.96, 161.24, 160.53, 135.89, 133.33, 131.72, 131.64, 130.86, 130.83, 130.07, 129.99, 128.76, 128.72, 128.71, 123.03, 120.77, 119.56, 116.11, 115.90, 115.83, 115.62, 114.13, 111.08, 77.48, 77.16, 76.84. <sup>19</sup>F NMR (282.3 MHz, CDCl<sub>3</sub>):  $\delta$  118.3, 116.2. HRMS: m/z (ESI) calcd for [C<sub>14</sub>H<sub>20</sub>N]<sup>+</sup>: 202.1596, found: 202.1576.

#### 2,3-Diethyl-1H-indole (4g)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), hex-3-yne (18 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-

dichloroethane (1 mL) at 100 °C for 16 h. 2,3-Diethyl-1H-indole (4g) was formed in 68% yield.  $R_f$  (pentane/ethyl acetate 12:1): 0.25; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.70 (s, 1H), 7.59

- 7.53 (m, 1H), 7.32 - 7.27 (m, 1H), 7.18 - 7.06 (m, 2H), 2.76 (dq, J = 10.4, 7.6 Hz, 4H), 1.28 (dt, J = 15.3, 7.6 Hz, 6H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  136.15, 135.35, 128.59, 120.95, 119.07, 118.35, 113.26, 110.40, 77.48, 77.16, 76.84, 19.46, 17.44, 15.92, 14.60. HRMS: m/z (ESI) calcd for [C<sub>12</sub>H<sub>16</sub>N]<sup>+</sup>: 174.1283, found: 4174.1251.

#### 2,3-Dipropyl-1H-indole (4h)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), oct-4-yne (24.2 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 100 °C for 16 h. 2,3-Dipropyl-1H-indole

(4h) was formed in 86% yield.  $\mathbf{R}_{f}$  (pentane/ethyl acetate 12:1): 0.25; <sup>1</sup>H NMR (300 MHz, **CDCl<sub>3</sub>):**  $\delta$  7.63 (s, 1H), 7.48 – 7.40 (m, 1H), 7.22 – 7.16 (m, 1H), 7.08 – 6.91 (m, 2H), 2.71 – 2.51 (m, 4H), 1.59 (hept, J = 7.4 Hz, 4H), 0.90 (q, J = 7.4 Hz, 6H); <sup>13</sup>C NMR (101 MHz, **CDCl<sub>3</sub>):**  $\delta$  135.38, 135.33, 128.92, 120.85, 118.95, 118.46, 112.28, 110.31, 33.39, 32.20, 25.97, 24.04, 22.93, 22.66, 14.21, 14.06. HRMS m/z (ESI) calcd for [C<sub>14</sub>H<sub>19</sub>N]: 201.1517, found: 201.1513.

#### 2,3-Dibutyl-1H-indole (4i)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), dec-5-yne (30.4 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 100 °C for 16 h. 2,3-

Dibutyl-1H-indole (**4i**) was formed in 80% yield. **R**<sub>f</sub> (pentane/ethyl acetate 12:1): 0.25; <sup>1</sup>H **NMR (400 MHz, CDCl<sub>3</sub>):**  $\delta$  7.70 (s, 1H), 7.60 – 7.54 (m, 1H), 7.32 – 7.27 (m, 1H), 7.13 (pd, J = 7.1, 1.4 Hz, 2H), 2.81 – 2.65 (m, 4H), 1.65 (ddd, J = 12.5, 9.2, 6.3 Hz, 4H), 1.44 (dq, J = 14.4, 7.4 Hz, 4H), 0.99 (td, J = 7.3, 3.4 Hz, 6H); <sup>13</sup>C **NMR (101 MHz, CDCl<sub>3</sub>):**  $\delta$  135.38, 135.33, 128.92, 120.85, 118.95, 118.46, 112.28, 110.31, 33.39, 32.20, 25.97, 24.04, 22.93, 22.66, 14.21, 14.06. HRMS m/z (ESI) calcd for [C<sub>16</sub>H<sub>24</sub>N]<sup>+</sup>: 230.1909, found: 230.1856.

#### 3-Methyl-2-phenyl-1H-indole (4j)<sup>[3]</sup>



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol), [Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 0.005 mmol), prop-1-yn-1-ylbenzene (25.5 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4 µL,

0.24 mmol) and 1,2-dichloroethane (1 mL) at 100 °C for 16 h. 3-Methyl-2-phenyl-1H-indole (4j) was formed in 49% yield. **R**<sub>f</sub> (pentane/ethyl acetate 12:1): 0.25; <sup>1</sup>H NMR (400 MHz, **CDCl<sub>3</sub>):**  $\delta$  8.03 (s, 1H), 7.64 – 7.57 (m, 3H), 7.49 (t, *J* = 7.7 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.22 (td, *J* = 8.1, 7.6, 1.3 Hz, 1H), 7.15 (td, *J* = 7.5, 7.1, 1.1 Hz, 1H), 2.48 (s, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  135.94, 134.14, 133.47, 130.14, 128.95, 127.86, 127.45, 122.45, 119.65, 119.11, 110.78, 108.84, 9.80. HRMS m/z (ESI) calcd for [C<sub>15</sub>H<sub>14</sub>N]<sup>+</sup>: 208.1126, found: 208.1076.

#### 3-Ethyl-2-phenyl-1H-indole (4k)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), but-1-yn-1-ylbenzene (28.6 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 100 °C for 16 h. 3-

Ethyl-2-phenyl-1H-indole (**4k**) was formed in 58% yield. **R**<sub>f</sub> (pentane/ethyl acetate 12:1): 0.25; <sup>1</sup>**H NMR (300 MHz, CDCl<sub>3</sub>):**  $\delta$  7.99 (s, 1H), 7.68 (d, *J* = 7.7 Hz, 1H), 7.57 (dt, *J* = 8.0, 1.7 Hz, 2H), 7.49 (td, *J* = 6.8, 6.3, 1.7 Hz, 2H), 7.38 (tt, *J* = 6.8, 1.4 Hz, 2H), 7.19 (dtd, *J* = 19.3, 7.1, 1.2 Hz, 2H), 2.94 (q, *J* = 7.5 Hz, 2H), 1.37 (t, *J* = 7.5 Hz, 3H); <sup>13</sup>**C NMR (75 MHz, CDCl<sub>3</sub>):**  $\delta$  136.08, 133.82, 133.50, 129.14, 128.96, 127.99, 127.61, 122.34, 119.59, 119.33, 115.56, 110.93, 17.93, 15.77. HRMS m/z (ESI) calcd for [C<sub>16</sub>H<sub>16</sub>N]<sup>+</sup>: 222.1283, found: 222.1255.

#### 2-Phenyl-3-propyl-1H-indole (4l)



Following the general procedure, the C-H activation/cyclization reaction was carried out with 2-acetyl-1-phenylhydrazine (30 mg, 0.2 mmol),  $[Cp*RhCl_2]_2$  (3.1 mg, 0.005 mmol), pent-1-yn-1-ylbenzene (31.7 mg, 0.22 mmol), CsOAc (9.6 mg, 0.05 mmol), HOAc (14.4  $\mu$ L, 0.24 mmol) and 1,2-dichloroethane (1 mL) at 100 °C for 16 h. 2-

Phenyl-3-propyl-1H-indole (4I) was formed in 77% yield.  $\mathbf{R}_{\mathbf{f}}$  (pentane/ethyl acetate 12:1): 0.25; <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.99 (s, 1H), 7.67 (d, J = 7.8 Hz, 1H), 7.60 – 7.55 (m,

2H), 7.49 (td, J = 7.0, 1.7 Hz, 2H), 7.38 (dddd, J = 8.7, 4.0, 2.9, 1.3 Hz, 2H), 7.22 (ddd, J = 8.1, 7.1, 1.3 Hz, 1H), 7.16 (ddd, J = 8.0, 7.1, 1.1 Hz, 1H), 2.94 – 2.85 (m, 2H), 1.78 (dq, J = 15.0, 7.4 Hz, 2H), 1.02 (t, J = 7.4 Hz, 3H); <sup>13</sup>C NMR (101 MHz, CDCl<sub>3</sub>):  $\delta$  136.01, 134.24, 133.62, 129.48, 128.93, 128.08, 127.59, 122.28, 119.56, 119.49, 114.11, 110.86, 26.85, 24.39, 14.58. HRMS: m/z (ESI) calcd for [C<sub>17</sub>H<sub>17</sub>N]: 235.1361, found: 235.1356.

#### **4** Mechanistic Experiments

#### 4.1 Isotope-labeled experiments



To a 10 mL Schlenk tube was added [Cp<sup>\*</sup>RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 2.5 mol %), CsOAc (9.6 mg, 25.0 mol %), <sup>15</sup>N-**1a** (30.2 mg, 0.20 mmol), **2a** (40.0 mg, 0.22 mmol) and the tube was purged with Ar for three times, followed by addition of AcOH (14.4  $\mu$ L, 1.2 equiv), DCE (1.0 mL). The formed mixture was stirred at 70 °C under Ar for 16 h as monitored by TLC. The solution was then cooled to rt, and the solvent was removed under vaccum directly. The crude product was purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 10:1) to afford 47.0 mg (87%) of <sup>15</sup>N-**3a**. The ratio of **3a** and <sup>15</sup>N-**3a** was determined by <sup>15</sup>N NMR and HRMS. <sup>1</sup>H NMR (**300 MHz, CDCl<sub>3</sub>**):  $\delta$  8.08 (d, 1H), 7.60 (d, *J* = 7.9 Hz, 1H), 7.40 – 7.11 (m, 12H), 7.11 – 7.01 (m, 1H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>):  $\delta$  135.97, 135.77, 135.07, 134.14, 133.95, 132.71, 130.15, 128.65, 128.49, 128.16, 127.66, 126.21, 122.70, 122.67, 120.41, 119.69, 115.04, 110.87. <sup>15</sup>N NMR:  $\delta$  -253.70. HRMS: m/z (ESI) calcd for C<sub>20</sub>H<sub>15</sub><sup>15</sup>NNa (M + Na)<sup>+</sup> 293.1073, found 293.1067.

| Product                        | m/z      | Res  | S/N  | I    | FWHM   |
|--------------------------------|----------|------|------|------|--------|
| <b>3a</b> +Na                  | 292.1097 | -    | -    | -    | -      |
| <sup>15</sup> N <b>-3a</b> +Na | 293.1067 | 7522 | 96.1 | 5341 | 0.0390 |



#### 4.2 Deuteration experiments



[Cp<sup>\*</sup>RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 2.5 mol %), CsOAc (9.6 mg, 25.0 mol %), AcOH (14.4  $\mu$ L, 1.2 equiv), **1a** (30.0 mg, 0.20 mmol) or D5-**1a** (31.0 mg, 0.20 mmol), **2a** (40.0 mg, 0.22 mmol) and DCE (1.0 mL) were added in two separated Schlenk tubes. They were stirred at 70 °C under Ar for 30 minutes, then immediately quenched with EtOAc at the same time. Then two reaction mixtures were combined and the volatiles were removed under reduced pressure. The crude product was purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 10:1) to afford 24.0 mg of **3a** and **D4-3a**. The ratio of **3a** and **D4-3a** was determined by HRMS to be 2.9 : 1.

| Product           | m/z      | Res  | S/N   | I     | FWHM   |
|-------------------|----------|------|-------|-------|--------|
| 3a+Na             | 292.1103 | 7897 | 433.8 | 23914 | 0.0370 |
| D4 <b>-3a</b> +Na | 296.1331 | 7607 | 149.5 | 8410  | 0.0389 |



[Cp\*RhCl<sub>2</sub>]<sub>2</sub> (3.1 mg, 2.5 mol %), CsOAc (9.6 mg, 25.0 mol %), AcOH (14.4  $\mu$ L, 1.2 equiv), D1-1a (30.2 mg, 0.20 mmol), 2a (40.0 mg, 0.22 mmol) and DCE (1.0 mL) were added in a Schlenk tube. It was stirred at 70 °C under Ar for 30 minutes, then immediately quenched with EtOAc. Then the crude product was purified by column chromatography on silica gel (eluent: pentane/ethyl acetate = 10:1) to afford 16.0 mg of 3a and D1-3a. The ratio of 3a and D4-3a was determined by HRMS to be 2.3 : 1.

| Product           | m/z      | Res  | S/N   | Ι     | FWHM   |
|-------------------|----------|------|-------|-------|--------|
| 3a+Na             | 292.1097 | 7868 | 701.2 | 28195 | 0.0371 |
| D1 <b>-3a</b> +Na | 293.1159 | 7599 | 303.1 | 12248 | 0.0386 |

#### **5** References

- [1] a) L.-L. Jiang, Y. Tan, X.-L. Zhu, Z.-F. Wang, Y. Zuo, Q. Chen, Z. Xi, G.-F. Yang, J. Agric. Food Chem. 2010, 58, 2643; b) D. W. Brooks, A. Basha, L. Forest, B. P. Gunn, I. Lake, P. A. Bhatia, US 4970210.
- [2] K. Park, G. Bae, J. Moon, J. Choe, K. H. Song, S. Lee, J. Org. Chem. 2010, 75, 6244.
- [3] a) K. Sun, S. Liu, P. M. Bec, T. G. Driver, *Angew. Chem. Int. Ed.* 2011, 50, 1702; b) S. Gore, S. Baskaran, B. König, *Org. Lett.* 2012, 14, 4568; c) Q. Nguyen, T. Nguyen, T. G. Driver, *J. Am. Chem. Soc.* 2013, 135, 620.

### 6 NMR spectra























110 100 f1 (ppm)



110 100 f1 (ppm) 10 200 190 



Jul07-2013 ZBO-SZ-32-1 carbon CDCl3 /opt/topspin av1 48  $\frac{77.42}{77.00}$ 



















110 100 f1 (ppm) 































