Journal of Organometallic Chemistry, 258 (1983) 217–234 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

METAL CLUSTERS IN CATALYSIS. THE REACTIVITY OF ALKYNE-AND VINYLIDENE-SUBSTITUTED HOMO- AND HETERO-METALLIC CLUSTERS TOWARDS MOLECULAR HYDROGEN IN HOMOGENEOUS CONDITIONS

MARIO CASTIGLIONI, ROBERTO GIORDANO and ENRICO SAPPA*

Istituto di Chimica Generale ed Inorganica dell'Università di Torino, Corso Massimo d'Azeglio 48, 10125 Torino (Italy)

(Received June 21st, 1983)

Summary

The reactivity of alkyne- and vinylidene-substituted clusters towards molecular hydrogen in homogeneous conditions has been studied by means of GC and GC/MS techniques. The reactivity of the homo- and hetero-metallic cluster frames (containing nickel and one of the iron triad metals) is discussed, as well as that of the coordinated ligands. Under hydrogen the cluster cores are modified, sometimes as a part of a catalytic cycle. The products obtainable from the coordinated small molecules seem to depend mainly on the overall electronic situation of the clusters or on the C-C distances in the alkynes, and to a lesser extent on the number of coordinating metal centres. In some instances it was observed that when both free alkynes and substituted clusters were present, only the coordinated alkynes were hydrogenated.

Introduction

Selective hydrogenation of alkenes and alkynes under homogeneous conditions in the presence of metal clusters has been recently reported; Pt_2Co_2 clusters selectively catalyse hydrogenation of phenylacetylene to styrene [1]. In the presence of $Ru_3(CO)_{12}$ styrene is hydrogenated to ethylbenzene and alkyne-substituted butterfly clusters have been identified as intermediates [2]. The hydrogenation of alkynes to alkenes in a catalytic cycle based on $HRu_3(CO)_9(PPh_2)$ has been described [3]. The mechanism of the hydrogenation of ethylene to ethane catalyzed by $H_4Ru_4(CO)_{12}$ has been discussed [4]. Finally, a full hydrogenation cycle, starting from hexafluorobutyne and leading to *cis*- and *trans*-hexafluorobutene catalyzed by osmium clusters, has been established [5].

We previously found that t-butylalkyne is hydrogenated to neohexane in the presence of $HRu_3(CO)_9C_2Bu^1$ [6] and that the heterometallic derivative (η - C_5H_5)_3Ni_3Os_3(CO)_9, complex 1, and (η - C_5H_5)NiM₃(CO)₉(μ -H)₃ (M = Ru, com-

HOMO- AND HETERO-METAL	TIC SUBSTITUTED CLUST	ERS AND RELATED COMPLI	EXES CONSIDERED I	N THIS WORK	
	Cluster frame	Coordination of the ligand and C-C bond length	Reference	Structure ^a	1
Unsubstituted clusters H4Ru4(CO)12	homometallic tetrahedron	I	16	n n n n n n n n n n n n n n	1
(Cp)NiRu ₃ (CO) ₉ (H) ₃ (complex 2a) (Cp)NiOs ₃ (CO) ₉ (H) ₃ (complex 2b)	heterometallic tetrahedron heterometallic tetrahedron	1 1	7 7	Ξ Ξ Σ Σ	
(Cp) ₃ Ni ₃ Os ₃ (CO) ₉ (complex 1)	heterometallic capped trigonal bipyramid	1	F	z z so so z z	
Substituted clusters (a) Apical substituents Fe ₃ (CO) ₈ (HC ₂ Et) ₄ (complex 10) H ₃ Ru ₃ (CO) ₉ (CCH ₂ Bu ¹) (complex 11)	homometallic triangle homometallic triangle	apical, μ ₃ (1.509(5)) apical, μ ₃ (1.525(9))	17 6		

TABLE 1

			α	
11	18 18	20	15	11
apical, μ_3 (see also text) (1.42) apical, μ_3 (see also text) (1.45(4))	$\mu_3 \cdot \eta$ alkyne (1.34(2)) (R = Ph) $\mu_3 \cdot \eta$ alkyne (1.40(3)) (R = Ph)	μ ₃ -η ² alkyne (1.409(22)) μ ₃ -η ² alkyne	$\mu_4 \cdot \eta^2$ alkyne (1.431(23)) (R = Et)	$\mu_{4} - \eta^{2}$ alkyne (1.41(1))
heterometallic "spiked triangle" heterometallic "spiked triangle"	heterometallic triangle heterometallic triangle	homometallic triangle homometallic triangle	heterometallic square (see also text)	heterometallic square pyramid
Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₅ H ₆) complex 5a) Cp) ₂ Ni ₂ Ru ₂ (CO) ₆ (C ₅ H ₆) complex 5b)	 b) Alkyne substituents Cp)₂Ni₂Fe(CO)₃(C₂R₂) R = Ph, complex 7a) R = Et, complex 7b) Cp)₂Ni₂Ru(CO)₃(C₂Ph₂) complex 7c) 	e ₃ (CO) ₉ (C ₂ Ph ₂) complex 8a) 'e ₃ (CO) ₉ (C ₂ Et ₂) complex 8b)	Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (RC ₂ R') R = R' = Ph, complex 6b) R = R' = Et, complex 6c) R = H, R' = isopropenyl omplex 6a)	Cp)2Ni2Ru3(CO)8(C2Ph2) complex 4)

Structure a		
Reference	21	8 10 this work
Coordination of the ligand and C-C bond length	μ.4-η ² alkyne (1.46(2))	$\mu_{4} \cdot \eta^{2}$ vinylidenc (1.436(13) R = Bu ¹) (1.417(8) R = Pr ¹) (1.417(8) R = r ¹) $\mu_{4} \cdot \eta^{2}$ vinylidenc (1.44(3))
Cluster frame	homometallic butterfly	heterometallic butterfly heterometallic butterfly
	Ru_(CO) ₁₂ (C2Ph2) complex 9)	 μ₄-η² Vinylidene substituents (Cp)NiRu₃(CO)₉(H) (C = CHR) (R = Bu⁴ complex 3a) (R = Pr⁴ complex 3c) (R = Pr⁴ complex 3d) (Cp)NiOs₃(CO)₉(H)(C=CHR) (R = Bu⁴ complex 3b)

TABLE 1 (continued)

 a (Cp), H, and CO ligands omitted for clarity.

I

plex 2a; M = Os, complex 2b) selectively hydrogenate t-butylacetylene and t-butylethylene under homogeneous conditions [7]. The mechanism of, and the intermediates in the latter reactions were not established, but it was suggested that possible intermediates could be the vinylidene substituted butterfly clusters (η -C₅H₅)NiM₃(μ -H)(CO)₉(C=CHR) (M = Ru, R = Bu^t complex 3a [8]; M = Os, R = Bu^t, complex 3b [9]. The complex with M = Ru, R = Prⁱ complex 3c has also been characterized [10]).

The use of H₂ instead of N₂ as the reaction atmosphere considerably increased the yields of **3a** and **3c**, and was critical for the synthesis of **3b**. The presence of molecular hydrogen was shown to influence markedly both the yields and the nature of the vinylidene- and alkyne-substituted heterometallic clusters containing nickel and one metal of the iron triad; an example of this behaviour is the synthesis of $(\eta$ -C₅H₅)₂Ni₂Ru₃(CO)₈(C₂Ph₂), complex **4**, which was not obtained under N₂ [11]. Furthermore, the yields of the "spiked triangular" $(\eta$ -C₅H₅)₂Ni₂M₂(CO)₆-[CC(H)C(=CH₂)(CH₃)] (M = Fe, complex **5a** [12]; M = Ru, complex **5b** [13]) and of the "square planar" isomer $(\eta$ -C₅H₅)₂Ni₂Fe₂(CO)₆[HC₂C(=CH₂)(CH₃)], complex **6** [12] are hydrogen dependent. This led us to suspect that the above clusters play a role as intermediates in the selective hydrogenation of alkynes in homogeneous conditions.

The role of clusters in homogeneous catalysis is still under discussion. Only a few examples of true cluster catalysis have been reported, whereas several examples of catalysis by the decomposition products have been found. On the other hand, the multi-site coordination of small molecules on several metal centres, such as are present in clusters, has been used as a "model" for the chemisorption (and "activation") of the same small molecules on surfaces [14]. For these reasons, we considered it to be of interest to study the reactions of clusters substituted with alkynes and vinylidenes towards H_2 , under the same conditions as are used for the reactions of clusters 1 and 2 with alkynes.

The clusters chosen for this study are listed in Table 1; the structures of the majority of them have been determined by X-ray methods. The table also gives the C-C bond lengths where these are available.

We studied both the reactivity of the cluster frames towards H_2 and the hydrogenation products obtained from the coordinated ligands. The variation in the behaviour of a given alkyne in different coordination environments was also investigated.

Experimental

Products and reactants

The clusters listed in Table 1 were made as reported in earlier papers (see references in the table) and were recrystallized before use. The hydrocarbon solvents (Carlo Erba pure grade) were distilled from sodium and stored over molecular sieves; before use they were saturated with dry nitrogen. The organometallic derivatives produced in the reactions were separated by preparative TLC plates (Kieselgel G or PF Merck; eluants: mixtures of ethyl ether and light petroleum). High purity diphenylacetylene (Fluka), *trans*-stilbene (Fluka) and diphenylethane (bibenzyl, Schilling) were used as GC standards. *trans*-Stilbene contained trace amounts of the *cis*-isomer and of diphenylethane (GC/MS evidence); this was particularly useful for the identification of *cis*-stilbene in the GC chromatograms.

Hydrogenation experiments

These were performed in sealed glass vials of 100 or 50 ml volume, each containing either 10 or 5 ml of a 10 mM heptane solution of the complex. After freezing, the vials were evacuated and the solutions were then allowed to reach room temperature. Hydrogen (SIAD, ultrapure grade) (0.9 atm) was then introduced and after refreezing the vials were sealed off. They were then kept in a thermostated oven at $120 \pm 2^{\circ}$ C. After the reaction, the solutions were examined either by GC/MS to identify the organic products, and by TLC (followed by IR or mass spectrometric analyses) to identify the organometallic species. The gas content of the vials was not investigated.

For some hydrogenations smaller vials, 25 ml in volume, were used; these were filled with 2.5 ml of a 10 mM heptane solution of the complex and 0.9 atm of hydrogen, by the procedure described above. The organic products were analysed by GC and the organometallic products by TLC.

Blank tests. Metallic powders as catalysts

In all the experiments we observed the formation of metallic powder in varying amounts, and this was especially noticeable in the longer runs. Elemental analysis of these powders (Perkin-Elmer 303 Atomic Absorption Spectrophotometer) showed the presence of iron and nickel (or ruthenium and nickel) in ratios depending on the stoichiometry of the starting clusters.

Heptane (10 ml) containing diphenylacetylene (10 mmol/1) were placed into two 100 ml vials, containing either Fe/Ni or Ru/Ni powder (obtained as a precipitate from the hydrogenation of the clusters, and carefully washed with heptane). The vials were then filled with 0.9 atm of hydrogen sealed as described above, and kept in an oven at 120° for 18 h. The solutions were then analyzed by GC. In both cases no diphenylacetylene remained; the main product was diphenylethane and about 10% of *trans*-stilbene was also present.

Reactions of complexes 1 and 2b

The reaction of complexes 1, $(\eta - C_5 H_5)_3 Ni_3 Os_3 (CO)_9$ and 2b, $(\eta - C_5 H_5) NiOs_3 (\mu - H)_3 (CO)_9$ with t-butylacetylene in presence of hydrogen (sealed vials, homogeneous conditions) has previously been reported [7]. The reaction of 1 and 2b with alkynes under hydrogen and nitrogen were carried out in conventional glass apparatus by refluxing heptane or octane solutions of the complexes with a twofold molar excess of alkynes, as indicated below.

(a) Reactions of complex 1. Treatment of 1 with t-butylalkyne under N₂ in heptane for 90 min yielded small amounts of $HOs_3(CO)_9C_2Bu^t$ (ca. 1%) [10], $(\eta-C_5H_5)NiOs_3(CO)_9(\mu-H)(C=CHBu^t)$ (ca. 1%) and three, unidentified trace products.

Treatment of 1 in heptane, for 340 min under N₂ with diphenylalkyne yielded very small amounts of 5 products, of which we identified $Os_3(CO)_{10}(C_2Ph_2)$ [22] and $Os_3(CO)_9(C_2Ph_2)_2$ [23]. The same reaction under H₂ yielded about 15% of complex **2b**, together with small amounts of HOs₃(CO)₁₀[HC(Ph)=CPh] [24] and four unidentified trace products.

(b) Reactions of complex 2b. Treatment of 2b with t-butylalkyne under N₂ in octane for 120 min gave small amounts of $HOs_3(CO)_9C_2Bu^t$ and $(\eta - C_5H_5)NiOs_3(CO)_9(\mu-H)(C=CHBu^t)$ (about 1% each). The same reaction under CO

gave higher yields of these products (about 3% of each) and 7 unidentified trace products, probably arising from decomposition. Treatment of **2b** in heptane, under N_2 for 8 h with diphenylalkyne gave, besides large amounts of unchanged **2b**, only 4 trace products (not investigated). A GC/MS investigation of the solution showed the exclusive presence of diphenylalkyne.

The same reaction, for 7 h in octane under N₂ gave about 80% of unchanged **2b**, some decomposition, and small yields of $Os_3(CO)_{10}(C_2Ph_2)$ and $Os_3(CO)_9(C_2Ph_2)_2$; GC/MS investigation of the product solution showed the presence of diphenylal-kyne and trace amounts of diphenylalkenes.

The same reaction, under H_2 , gave about 80% of unreacted 2b, and 2% each of $Os_3(CO)_{10}(C_2Ph_2)$ and $HOs_3(CO)_{10}[H(Ph)C=CPh]$; GC/MS of the reaction solution showed the presence of equimolar amounts of diphenylalkyne and (trans + cis)-stilbene.

Physical measurements and GC separation of diphenylacetylene and its hydrogenation products

The organometallic products were generally obtained in very small amounts, and so not all of them could be characterized. This also precluded elemental analysis. The complexes were identified by spectroscopy.

The IR spectra were recorded on a Perkin-Elmer 580 B(KBr optics) instrument. The mass spectra were recorded on an Hitachi-Perkin-Elmer RMU 6H single focusing instrument, equipped with a direct inlet system and operating in E.I. at 70 eV.

The GC/MS analyses were performed with a Carlo Erba chromatograph (with SE 54 capillary columns, injections at 50°C, temperature program 10°C/min till 280°C), Kratos MS-50 instrument (Laboratorio di Gascromatografia-Spettrometria di Massa, Università-Provincia di Torino).

The GC analyses were performed on a Carlo Erba 4200 F.I.D. instrument operating with a 2 m, n-octane/Porasil C 100/120 mesh column, carrier N₂, 25 ml/min, in temperature programmed separations; the injections were at 60°C and the temperature was then raised at 5°C/min to 155°C. These conditions allowed the separation and identification of hexane and hexynes, and also of benzene, toluene, ethyl-benzene etc.

The separation of diphenylalkyne, stilbenes and diphenylethane was carried out with the same instrument using a 2 m SE 30 5% on Chromosorb W, AW, 60/80 mesh column, carrier N₂, 46 ml/min, temperature program $60-240^{\circ}$ C, 10° C/min. The order of elution of the components was: *cis*-stilbene, diphenylethane, diphenyl-acetylene and *trans*-stilbene. (The order seems to be related, at least in part to the boiling points of the hydrocarbons. To our knowledge, the GC separation of such a mixture has not been previously reported, in spite of its importance for hydrogenation studies with the widely used diphenylalkyne ligand.)

The nature of the products was unequivocally established by the use of standard solutions containing the hydrocarbons in various proportions; the trace amounts of *cis*-stilbene in the *trans*-stilbene standard allowed the identification of the isomers by means of GC/MS. Accurate comparison between the mass results and the GC results then enabled the detection of *cis*-stilbene in the GC chromatograms also.

Complex	Reaction condi- tions	Organic products (GC/MS)	Metal containing fragments in solu- tion (GC/MS)	Organometallic products (TLC) ^a	Refer- ence
Apical ligands Fe ₃ (CO) ₈ (HC ₂ Et) ₄ (complex 10)	٩ ۴	Н₅ССН₂СН₃°; С ₁₁ Н ₁₉ ¢; С.Н., ¢	Fa(CO) ₃ +	decomposition (metal powder) ^e	this work
H ₃ Ru ₃ (CO) ₉ (CCH ₂ Bu ^t) (complex 11)	see ref.6	verane neohexane	1	H ₄ Ru ₄ (CO) ₁₂	6
(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₅ H ₆) (complex 5a)	¥	<i>methylbutane</i> hydrogenated dimer cvclorentadiene	Fe(CO) ₃ ⁺ Fe ₂ ⁺ Fe ⁺	decomposition	this work
(Cp) ₂ Ni ₂ Ru ₂ (CO) ₆ (C ₅ H ₆) (complex 5b)	۲	methylbutane hydrogenated oligomers	1	H₄Ru₄(CO)12 (IR) (Cp)NiRu3(CO)9(H)3 (IR)	this work
	D	(n = 2-4) methylbutane, hydrogenated oligomers (n = 2-4)	1	H ₄ Ru ₄ (CO) ₁₂ (IR) (Cp)NiRu ₃ (CO) ₉ (H) ₃ (IR) (Cp) ₂ Ni ₂ Ru ₃ (CO) ₈ (HC ₂ R(IR,MS) [/]	this work
μ ₃ -η- <i>Alkynes</i> (Cp) ₂ Ni ₂ Fe(CO) ₃ (C ₂ Ph ₂) (complex 7a)	۲	benzene, ethylbenzene, styrene diphenylethylene (cis + trans) diphenylethane, diphenylalkyne		decomposition	this work (see also Table A
(Cp) ₂ Ni ₂ Ru(CO) ₃ (C ₂ Ph ₂) (complex 7c)	¥	ethylbenzene, stilbene (cis + trans) diphenylalkyne, diphenylethane, C ₁₄ H ₃₀	(Cp) ₂ Ru ⁺	(Cp) ₂ Ni ₂ Ru ₃ (CO) ₈ (C ₂ Ph ₂) (IR)	this work
μ ₃ -η ² -Alkynes Fe ₃ (CO) ₉ (C ₂ Ph ₂) (complex 8 9)	¥	diphenylalkyne, diphenylethylene (cis+trans), dinhenvlethane	Fe(CO) ₃ +	decomposition	this work
$Fe_3(CO)_9(C_2 Et_2)$ (complex 8b)	¥	3-hexyne , hexene, hexane, hydrogenated oligomers ($n = 2, 3$)	I	decomposition	this work
<i>μ</i> ₄ - η ² - Alkynes (Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Ph ₂)	۷	benzene, ethylbenzene	I	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Ph ₂) (10%)	this

TABLE 2. ORGANIC AND ORGANOMETALLIC PRODUCTS FORMED IN HYDROGENATION OF COMPLEXES 1-11

Bdiphenylalkyne(Cp)2 $(Cp)_2 Ni_2 Fe_2(CO)_6(C_2 Et_2)$ A $diphenylethyne(Cp)2(Cp)_2 Ni_2 Fe_2(CO)_6(C_2 Et_2)A3-hexene, hexane(Cp)2(complex 6c)(Cp)_2 Ni_2 Fe_2(CO)_6(C_2 H_6)A4-methylbutane, hexane(Cp)2(complex 6c)A4-methylbutane, hexane(Cp)2(complex 6a)CA4-methylbutane, hexane(Cp)2(complex 6a)CA4-methylbutane, hexane(Cp)2(complex 6a)CA4-methylbutane, hexaneNi(C)(complex 6a)CA4-methylbutane(Cp)2(complex 6a)CA4-methylbutane(Cp)2(complex 6a)CA4-methylbutane(Cp)2(complex 6a)CA4-methylbutane(Cp)2(complex 7a)A4-methylbutane(Cp)2(complex 4b)C4-methylbutane(Cp)2(complex 4)C(a_1 + a_2 + Frans))Ru - (Cp)2(complex 3c)A(a_2 + Hars))(a_2 + Hars)(a_2 + Trans)A(a_3 + a_2 + Frans))(a_2 + Frans)(a_2 + Trans)(a_2 + Hars))(a_2 + Hars)(a_2 + Hars)(a_2 + Trans)(a_2 + Hars)(a_2 + Hars))(a_2 + Hars)(a_2 + Trans)(a_2 + Hars)(a_2 + Hars)(a_2 + Hars)(a_3 + T^2 - Vinylidenes)(a_3 + T^2 - Vinylidenes)(a_3 + Hars)(a_2 + Hars)$	diphenylalkyne diphenylalkyne, diphenylethylene (cis + trans), diphenylethane (cis + trans), diphenylethane (cis + trans), diphenylethane 4-methylbuttane 4-methylbuttane 4-methylbuttane 4-methylbuttane (cis + trans) (cis + trans) (cis + trans)	Cp) ₂ Fe ⁺ Cp) ₁₁ + Cp) ₁₁ + Cp) ₁₁ + Cp) ₂ Fe ⁺ Cp) ₂ Fe ⁺ ² e(C0) ₂ + ² e(C) ₂	decomposition (Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Et ₂)(9%) ^g (IR) Fe ₂ (CO) ₆ (HC ₂ R) ₂ (IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	this work work work work work work work
Bdiphenylatkyne, diphenylethylene $(Cp)_2$ $(Cp)_2 Ni_2 Fe_2(CO)_6(C_2 Et_2)$ A $diphenylethylene(Cp)_2(Cp)_2 Ni_2 Fe_2(CO)_6(C_2 Et_2)Ad_{-methylbutane}, hexaneNi_2((C)_2)_2(Cp)_2 Ni_2 Fe_2(CO)_6(C_2 H_6)Ad_{-methylbutane}, hexaneNi_2(C)_2(Cp)_2 Ni_2 Fe_2(CO)_6(C_2 H_6)Ad_{-methylbutane}, Ni(CC)_2(Cp)_2 Ni_2 Ru_3(CO)_8(C_2 Ph_2)Ad_{-methylbutane}(Cp)_2(Cp)_2 Ni_2 Ru_3(CO)_8(Ph_2)Ad_{-methylbutane}(Cp)_2(Cp)_{12} (C_2 Ph_2)Ad_{-methylbutane}(Cp)_2(Cp)_{12} (C_2 Ph_2)Ad_{-methylbutane}(Cp)_2(Cp)_{12} (C)_{12} (C_2 Ph_2)Ad_{-methylbutane}(Cp)_2(Cp)_{12} (CO)_2 (H) (C-CHPr^1)Ad_{-methylbutane}(Cp)_2(Cp)_{12} (C)_2 (H) (C-CHPr^1)AC_3 H_{12}, hytorogenated oligomersRu (C)_2(Cp)_{12} (C)_2 (H) (Mu_2)A(dphenylethylethylethylethylethylethylethyleth$	diphenylalkyne, diphenylethylene (cis + trans), diphenylethane (cis + trans), diphenylethane (cis + trans), diphenylethane 4-methylbuttane 4-methylbuttane 4-methylbuttane (cis + trans) (cis + trans) (cis + trans)	Cp) ₂ Fe ⁺ Cp) ₁ i + Cp) ₁ i + Cp) ₁ i + Cp) ₂ Fe ⁺ Cp) ₂ Fe ⁺ *eNi + vi(CO) ⁺ vi(CO) ⁺ Vu ₃ C ₂ ⁺ , Ru ₃ C ₃ ⁺ tu ₃ C ₂ ⁺ , Ru ₃ C ₃ ⁺ tubh + tubh + tuC ² Ph ₂) ⁺	decomposition (Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Et ₂)(9%) ^g (IR) Fe ₂ (CO) ₆ (HC ₂ R) ₂ (IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	this work work work work work work work
(Cp)2 Ni12 Fe2 (CO)6 (C2 Et2)Adiphenylethylere(Cp)2(complex 6c)(cis + trans), diphenylethaneNi2 (C(complex 6c)(cis + trans), diphenylethaneNi2 (Cp)2(complex 6a)(cis + trans), diphenylethane(Cp)2(complex 6a)A4-methylbutane,(Cp)2(complex 6a)C4-methylbutane(Cp)2(complex 6a)C4-methylbutane(Cp)2(cp)2 Ni12 Fe2 (CO)6 (C2 Ph2)A4-methylbutane(Cp)2(cp)2 Ni12 Ru3 (CO)8 (C2 Ph2)A4-methylbutane(Cp)2(cp)2 Ni12 Ru3 (CO)8 (C2 Ph2)A4-methylbutane(Cp)2(cp)2 Ni12 Ru3 (CO)8 (C2 Ph2)A4-methylbutane(Cp)2(cp)2 Ni12 Ru3 (CO)3 (C2 Ph2)A4-methylbutane(Cp)2(complex 4)CA4-methylbutane(Cp)2(complex 3)AA4-methylbutane(Cp)2(complex 3e)AC3 H12, hydrogenated oligomersRu4C(complex 3e)C GP)NiRu3 (CO)3 (H)(C=CHP1)AC3 H12, hydrogenated oligomersRu2C(complex 3e)C GP)NiRu3 (CO)3 (H)(C=CHP1)AC3 H12, hydrogenated oligomersRu2C(complex 3d)AC3 H12, hydrogenated oligomersRu2C(complex 3d)AC3 H12, hydrogenated oligomersRu2C(complex 3d)AC3 H12, hydrogenated oligomersRu2C(complex 3d)AC3 H12, hydrogenated oligomersRu2C	 diphenylethylene (cis + trans), diphenylethane 3-hexene, hexane 3-hexene, hexane 4-methylbutane, 4-methylbutane 4-methylbutane 4-methylbutane 6-methylbutane 7 7 8 8 9 9	Cp)Ni + Vi_2(C_2 Ph_2) + Cp)_2 Fe + = Cp)_2 Fe + = eNi + vi(CO) + Vi(CO) + Vi(CO) + Cp)_2 Fe + Cp)_2 Ni(CO) + Uu Dh + tu Dh + tu C_2 Ph_2) + tu (C_2 Ph_2) +	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Et ₂)(9%) ^g (IR) Fe ₂ (CO) ₆ (HC ₂ R) ₂ (IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	work this work work this work work work
$(Cp)_2 Ni_2 Fe_2(CO)_6 (C_2 Et_2)$ A $(cis + trans), diphenylethaneNi_2 (Cp)_2(complex 6c)(complex 6c)(cis + trans), diphenylethane(Cp)_2(complex 6a)A(cis + trans), diphenylethane(Cp)_2(Cp)_2 Ni_2 Fe_2(CO)_6 (C_2 H_6)A(-methylbuttane, hexane(Cp)_2(complex 6a)C(-methylbuttane, hexane(Cp)_2(Cp)_2 Ni_2 Ru_3 (CO)_8 (C_2 Ph_2)A(-methylbuttane, hylbuttane(Cp)_2(Cp)_2 Ni_2 Ru_3 (CO)_8 (C_2 Ph_2)A(-methylbuttane, hylbuttane(Cp)_2(complex 4)C(-methylbuttane, hylbuttane(Cp)_2(Cp)_2 Ni_2 Ru_3 (CO)_8 (C_2 Ph_2)A(-methylbuttane, hylbuttane(Cp)_2(Cp)_2 Ni_2 Ru_3 (CO)_8 (C_2 Ph_2)A(-methylbuttane, hylbenzene, hylbenzene, hylbenzene(-p)_2(Cp)_2 Ni_2 Ru_3 (CO)_8 (C_2 Ph_2)A(-methylbuttane, hylbenzene, hylbenzene(-p)_2(Cp)_{12} (C_2 Ph_2)A(-p)_{13} (Cu)_{12} (Ph_2)(-p)_2 (Ph_2)_{12} (Ph_2)_{12} (Ph_2)(-p)_2 (Ph_2)_{12} ($	 (cis + trans), diphenylethane 3-hexene, hexane 3-hexene, hexane 4-methylbutane, 4-methylbutane 4	ui ₂ (C ₂ Ph ₂) ⁺ Cp) ₂ Fe ⁺ ⁷ e(C0) ₂ ⁺ ⁷ e(C0) ² ⁷ e(C0) ⁺ ui(C0) ⁺ Ui(C0) ⁺ Ui ₂ Ph ₂) ⁺ Ui ₂ Ph ₂) ⁺ Ui ₂ C ₂ Ph ₂) ⁺	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Et ₂)(9%) ^g (IR) Fe ₂ (CO) ₆ (HC ₂ R) ₂ (IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	this work work work work work
(Cp)2 Ni2 Fe2 (CO)6 (C2 Et2)A 3-hexene , hexane(Cp)2(complex 6c)(complex 6c)A 4-methylbuttane ,(Cp)2(complex 6a)C 4-methylbuttane ,Ni(CC(complex 7a)A 4-methylbuttane ,(Cp)2(complex 4)CC 4-methylbuttane ,NufC(complex 4)CA 4-methylbuttane ,(Cp)2Nu 4 (CO)12 (C2 Ph2)A ethylbenzene ,RufC(complex 9)(Cp)12 (C2 Ph2)A diphenylethane RufC(complex 9)(Cp)NiRu_3 (CO)9 (H)(C=CHPt)A C , H12, hydrogenated oligomersRu 2 (Cp)NiRu_3 (CO)9 (H)(C=CHPt) $\mu_4 - \eta^2 - VinylidenesCC, H12, hydrogenated oligomersRu 2 (Cp)NiRu_3 (CO)9 (H)(C=CHPt)AC, H12, hydrogenated oligomers\mu_4 - \eta^2 - VinylidenesCCCCCCornees h, nonanes hRu C^+\mu_4 - \eta^2 - VinylidenesCCCCCCC\mu_4 - \eta^2 - VinylidenesCCCCCCO)9 (H)(C=CHPh)ACCCCComplex 3d)CCC$	 3-hexene, hexane 3-hexene, hexane 4-methytbutane, 4-methylbutane 4-methylbutane 4-methylbutane 4-methylbutane 6-methylbutane 6-methylbutane 7 7 8-methylbutane 1 <li< td=""><td>Cp)₂Fe⁺ ⁷e(C0)₂ ⁺ ⁷e(C0)₂ ⁺ ⁷e(C0)⁺ ⁷e(C0)⁺ ⁷(C0)⁺ ⁷(C0)⁺ ⁷(C)⁺ ⁷(C)⁺ ⁷(C)⁺ ¹(C)⁺ ¹(C)⁺ ¹(C)⁺</td><td>(Cp)₂Ni₂Fe₂(CO)₆(C₂Et₂)(9%) ^g (IR) Fe₂(CO)₆(HC₂R)₂ (IR, MS) decomposition decomposition Ru₃(CO)₁₂ (IR)</td><td>this work work work work work work</td></li<>	Cp) ₂ Fe ⁺ ⁷ e(C0) ₂ ⁺ ⁷ e(C0) ₂ ⁺ ⁷ e(C0) ⁺ ⁷ e(C0) ⁺ ⁷ (C0) ⁺ ⁷ (C0) ⁺ ⁷ (C) ⁺ ⁷ (C) ⁺ ⁷ (C) ⁺ ¹ (C) ⁺ ¹ (C) ⁺ ¹ (C) ⁺	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Et ₂)(9%) ^g (IR) Fe ₂ (CO) ₆ (HC ₂ R) ₂ (IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	this work work work work work work
(complex 6c)(complex 6c)Fe(C $(CP)_2 Ni_2 Fe_2(CO)_6(C_5 H_6)$ A4-methylbuttane,Ni(CC $(complex 6a)$ C4-methylbuttane,Ni(CC $(complex 6a)$ C4-methylbuttane,($CP)_2$ $(complex 6a)$ C4-methylbuttane,($CP)_2$ $(complex 6a)$ C4-methylbuttane,($CP)_2$ $(CP)_2 Ni_2 Ru_3(CO)_8(C_2 Ph_2)$ A4-methylbuttane,($CP)_2$ $(CP)_2 Ni_2 Ru_3(CO)_8(C_2 Ph_2)$ Aethylbenzene,($CP)_2$ $(complex 4)$ CC $ethylbenzene,Rufh(complex 4)Cethylbenzene,Rufh(complex 4)Aethylbenzene,Rufh(complex 4)Aethylbenzene,Rufh(complex 4)Aethylbenzene,RufCRu 4 (CO)_{12}(C_2 Ph_2)AdiphenylethaneRufCRu 4 (CO)_{12}(C_2 Ph_2)AdiphenylethaneRufCRu 4 (CO)_{12}(C_2 Ph_2)AdiphenylethaneRufCRu 4 (CO)_{12}(CO)_9 (H)(C=CHPr^1)AC_3 H_{12}, hydrogenated oligonners ^n, nonanes ^nRu - 7^2 - Vinylidenes 3c)C(P)NiRu_3 (CO)_9 (H)(C=CHPh)AC_3 H_{12}, hydrogenated oligonners ^n, nonanes ^nRu - 7^2 - Vinylidenes 3d)RufbHydrogenated dimerRufbRu - 7^2 - Vinylidenes 3d)RufbHydrogenated dimerRufb$	 4-methylbutane, 4-methylbutane, 4-methylbutane 4-methylbutane 4-methylbutane 4-methylbutane 6-methylbutane 7-methylbutane 7-methylbutane 7-methylbutane 7-methylbutane 7-methylbutane 7-methylbutane 8-methylbutane 8-methylbutane 9-methylbutane 9-methylbutane	² e(CO) ₂ ⁺ ² eNi ⁺ ² eNi ⁺ ² eNi ² CD) ⁺ CD) ₂ Fe ⁺ CD) ₂ Ni(CO) ⁺ tuDh ⁺ tuC ₂ Ph ₂) ⁺ tu(C ₂ Ph ₂) ⁺ tu(C ₂ Ph ₂) ⁺	(IR) Fe ₂ (CO) ₆ (HC ₂ R) ₂ (IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	work this work work work this work
$(Cp)_2 Ni_2 Fe_2(CO)_6(C_3 H_6)$ A4-methylbutane,Ni(CC $(complex 6a)$ C4-methylbutane $(Cp)_2$ $(complex 6a)$ C4-methylbutane $(Cp)_2$ $(Cp)_2 Ni_3 Ru_3(CO)_8(C_2 Ph_2)$ A4-methylbutane $(Cp)_2$ $(Cp)_2 Ni_3 Ru_3(CO)_8(C_2 Ph_2)$ Aethylbutane $(Cp)_2$ $(Cp)_2 Ni_3 Ru_3(CO)_8(C_2 Ph_2)$ Aethylbutane $(Cp)_2$ $(Cp)_2 Ni_2 Ru_3(CO)_8(C_2 Ph_2)$ Aethylbenzene, $(Cp)_2$ $(complex 4)$ C g_{118} (several isomers) $Ru_9 C$ $(complex 9)$ $(Cp)_{12}(C_2 Ph_2)$ Adiphenylethane $(complex 9)$ $(Cp)_{12}(C)_9(H)(C=CHPr^1)$ A $C_3 H_{12}$, hydrogenated oligomers $Ru(C)$ $\mu_4 - \eta^2 - Vinylidenes$ $(Cp)_{NiRu_3}(CO)_9(H)(C=CHPr^1)$ A $C_3 H_{12}$, hydrogenated oligomers $Ru(C)$ $(Cp)NiRu_3(CO)_9(H)(C=CHPr^1)$ A $C_3 H_{12}$, hydrogenated oligomers $Ru(C)$ $(complex 3e)$ (Cp)NiRu_3(CO)_9(H)(C=CHPh)A $ethylbenzene(complex 3d)(dp)NiRu_3(co)_9(H)(C=CHPh)Aethylbenzene(complex 3d)(dp)NiRu_3(co)_9(H)(C=CHPh)A(dp)NiRu_3(co)_9(H)(C=CHPh)A(complex 3d)(dp)NiRu_3(co)_9(H)(C=CHPh)A(dp)NiRu_3(co)_9(H)(C=CHPh)A(complex 3d)(dp)NiRu_3(co)_9(H)(C=CHPh)A(dp)NiRu_3(co)_9(H)(C=CHPh)A(complex 3d)(dp)NiRu_3(co)_9(H)(C=CHPh)A(dp)NiRu_3(co)_9(H)(C=CHPh)A$	 4-methylbutane, 4-methylbutane, 4-methylbutane 4-methylbutane 4-methylbutane 4-methylbutane 4-methylbutane 6-methylbenzene, 6-methylbenzene, 6-methylbenzene, 7-mas 6-methylbene 6-methylbene 7-H.1. hydronenated Alianmere 6-methylbene 7-H.1. hydronenated Alianmere 	vi(CO) ⁺ CP) ₂ Fe ⁺ Cp) ₂ Ni(CO) ⁺ Cp) ₂ Ni(CO) ⁺ tuPh ⁺ , tuC ₂ Ph ₂) ⁺ tuC ₂ Ph ₂) ⁺ tuC ₂ Ph ₂) ⁺	Fe ₂ (CO) ₆ (HC ₂ R) ₂ (IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	this work work work this this
(complex 6a)4-methylbutane(Cp)2(complex 6a)C4-methylbutane(Cp)2(Cp)2Ni2Ru3(CO)8(C2Ph2)A4-methylbutane(Cp)2(complex 4)CPh2(Colon12(C2Ph2))Aethylbenzene,(Cp)2(complex 4)CsH2, (several isomers)RufhRufh(Cp)2(complex 4)CsH2, (several isomers)RufhRufh(Cp)2(complex 9)(complex 9)CsH1, (several isomers)Ru(C)Ru(C) $\mu_4 - \eta^2 - Vinylidenes$ Cp)NiRu3(CO)3(H)(C=CHPr ¹)AdiphenylethyleneRu(C)(complex 3e)(Cp)NiRu3(CO)3(H)(C=CHPh)AcitylbenzeneRuC ¹ (Cp)NiRu3(CO)3(H)(C=CHPh)AethylbenzeneRuC ¹ (complex 3d)(Cp)NiRu3(CO)3(H)(C=CHPh)AethylbenzeneRuC ¹ (complex 3d)AethylbenzeneRuC ¹ RuC ¹	4-methylbutene 4-methylbutene 4-methylbutene hydrogenated oligomers $(n = 2, 3)$ ethylbenzene, ethylcyclohexane, C_8H_{18} (several isomers) ethylethane diphenylethane diphenylethylene (C.H., hydrosenated aligomers	Cp) ₂ Fe ⁺ Cp) ₂ Ni(CO) ⁺ tu ₅ C ₂ ⁺ , Ru ₃ C ₃ ⁺ tuPh ⁺ , tuC ₂ Ph ₂) ⁺ tu(C ₂ Ph ₂) ⁺	(IR, MS) decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	work this work work this
C4-methylbutane(Cp)2 $(Cp)_2Ni_2Ru_3(CO)_8(C_2Ph_2)$ A-methylbutane(Cp)2 $(Cp)_2Ni_2Ru_3(CO)_8(C_2Ph_2)$ Aethylbenzene,(Cp)2 $(complex 4)$ ethylbenzene,Ruph $(complex 4)$ C_8H_{18} (several isomers)Ruph $Ru_4(CO)_{12}(C_2Ph_2)$ Aethylbenzene,Ruph $Ru_4(CO)_{12}(C_2Ph_2)$ AdiphenylethaneRu(C, $Ru_4(CO)_{12}(C_2Ph_2)$ AdiphenylethaneRu(C, $Ru_4(CO)_{12}(C_2Ph_2)$ AdiphenylethyleneRu(C, $Ru_4(CO)_{12}(C_2Ph_2)$ AdiphenylethaneRu(C, $Ru_4(CO)_{12}(C_2Ph_2)$ AdiphenylethaneRu(C, $Ru_4(CO)_{12}(C_2Ph_2)$ AdiphenylethaneRu(C, $Ru_4 = 2, 4$ C_3H_{12} , hydrogenated oligomersRu_2(C) $(Cp)NiRu_3(CO)_9(H)(C=CHPh)$ AethylbenzeneRuC^+(Cp)NiRu_3(CO)_9(H)(C=CHPh)AethylbenzeneRuC^+(Cp)NiRu_3(CO)_9(H)(C=CHPh)AethylbenzeneRuC^+	 4-methylbutane 4-methylbutene hydrogenated oligomers (n = 2, 3) ethylbenzene, ethylcyclohexane, C₈H₁₈ (several isomers) E diphenylethane diphenylethane (<i>cis + trans</i>) C.H., hydrosenated oligomers 	Cp) ₂ Fe ⁺ Cp) ₂ Ni(CO) ⁺ tu ₃ C ₂ ⁺ , Ru ₃ C ₃ ⁺ tuPh ⁺ , tuC ₂ Ph ₂) ⁺ tu(C ₂ Ph ₂) ⁺	decomposition decomposition Ru ₃ (CO) ₁₂ (IR)	this work work this
(Cp)2Ni2Ru3(CO)8(C2Ph2)A enthylbutene(Cp)2(complex 4)Ru3C(complex 4)ethylbenzene,(complex 4)ethylbenzene,(complex 4)ethylbenzene,(complex 4)citylcyclohexane,Ru4(CO)12(C2Ph2)AdiphenylethaneRu(C,(complex 9)(cis + <i>trans</i>) $\mu_4 - \eta^2 - Vinylidenes$ C, $\mu_4 - \eta^2 - Vinylidenes$ Ru2(C)(Cp)NiRu3(CO)9(H)(C=CHPt)A(complex 3d)A(complex 3d)A<	4-methylbutene hydrogenated oligomers ($n = 2, 3$) ethylbenzene, ethylcyclohexane, C ₈ H ₁₈ (several isomers) fighenylethane diphenylethane ($cis + trans$)	Cp) ₂ Ni(CO) ⁺ tu ₃ C ₂ ⁺ , Ru ₃ C ₃ ⁺ tuPh ⁺ , tuC ₂ Ph ₂) ⁺ tuC ₂ Ph ₂) ⁺	decomposition Ru ₃ (CO) ₁₂ (IR)	work this work this
(Cp)2Ni2Ru3(CO)8(C2Ph2)Ahydrogenated oligomers ($n = 2, 3$)Ru3C(complex 4)(complex 4)RuPh2RuPh2(complex 4)C5H12)Aethylbenzene,RuPh2Ru4(CO)12(C2Ph2)AdiphenylethaneRu(C,Ru4(CO)12(C2Ph2)AdiphenylethaneRu(C,Ru4(CO)12(C2Ph2)AdiphenylethaneRu(C,Ru4(CO)12(C2Ph2)AdiphenylethaneRu(C,Ru4(CO)12(C2Ph2)AdiphenylethaneRu(C,Ru5(Cp)NiRu3(CO)9(H)(C=CHPt)AC5H12, hydrogenated oligomersRu2(C,(Cp)NiRu3(CO)9(H)(C=CHPh)AethylbenzeneRuC ⁺ (Complex 3d)AethylbenzeneRuC ⁺ (complex 3d)hydrogenated dimerRuC ⁺	hydrogenated oligomers ($n = 2, 3$) ethylbenzene, tethylcyclohexane, C ₈ H ₁₈ (several isomers) diphenylethane diphenylethane (cis + trans) C.H., hydrosenated oligomers	Lu ₃ C ₂ ⁺ , Ru ₃ C ₃ ⁺ λuPh ⁺ , λuC ₂ Ph ₂) ⁺ λuC ₂ Ph ₂) ⁺	decomposition Ru ₃ (CO) ₁₂ (IR)	this work this
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	ethylbenzene, ethylcyclohexane, C ₈ H ₁₈ (several isomers) fiphenylethane diphenylethane (<i>cis + trans</i>) C.H., hydrosenated aligomers	ku ₃ C ₂ ⁺ , Ru ₃ C ₃ ⁺ kuPh ⁺ , ku(C ₂ Ph ₂) ⁺ ku(C ₂ Ph ₂) ⁺	decomposition Ru ₃ (CO) ₁₂ (IR)	this work this
(complex 4)cthylcyclohexane, C_8H_{18} (several isomers)Rufh Ru(C)Ru $_4(CO)_{12}(C_2Ph_2)$ Adiphenylethane diphenylethaneRu(C) Ru(C)(complex 9)(cis + trans)Ru(C) (cis + trans)Ru(C) Ru(C) $\mu_{4} - \eta^{2} - Yinylidenes$ (cis + trans)Ru(C) (cis + trans)(Cp)NiRu $_{3}(CO)_{9}(H)(C=CHPt^{1})$ A $C_{3}H_{12}$, hydrogenated oligomersRu $_{2}(C)$ (complex 3e)(Cp)NiRu $_{3}(CO)_{9}(H)(C=CHPh)$ A $C_{3}H_{12}$, hydrogenated oligomers h , nonanes l (n = 2, 4), octenes h , nonanes l (complex 3d)Ru C^{+}	ethylcyclohexane, C ₈ H ₁₈ (several isomers) diphenylethane diphenylethylene (<i>cis + trans</i>) C.H hydrosensated Alisonmers	kuPh ⁺ , ku(C ₂ Ph ₂) ⁺ ku(C ₂ Ph ₂) ⁺	Ru ₃ (CO) ₁₂ (IR)	work this
Ru $_4(CO)_{12}(C_2 Ph_2)$ A Cs $_8H_{18}$ (several isomers) Ru (C) (complex 9) (complex 9) diphenylethane Ru (C) $\mu_{4} - \eta^2 - Vinylidenes$ (cis + trans) Ru (C) $(C)_9(H)(C=CHPr^1)$ A $C_{3}H_{12}$, hydrogenated oligomers Ru $_2(C)$ (Cp)NiRu $_3(CO)_9(H)(C=CHPh)$ A $C_{4}H_{12}$, hydrogenated oligomers Ru $_2(C)$ (complex 3c) (CD)NiRu $_3(CO)_9(H)(C=CHPh)$ A ethylbenzene Ru $_2(C)$ (Cp)NiRu $_3(CO)_9(H)(C=CHPh)$ A ethylbenzene Ru $_2(C)$ (complex 3d) (C) $H_1(C=CHPh)$ A ethylbenzene (Cp)NiRu $_3(CO)_9(H)(C=CHPh)$ A ethylbenzene Ru $_2(C)$	C ₈ H ₁₈ (several isomers) diphenylethane diphenylethylene (<i>cis + trans</i>) C.H., hydrosensated Alisonmers	ku(C2Ph2) ⁺ ku(C2Ph2) ⁺	Ru ₃ (CO) ₁₂ (IR)	this
Ru $_4(CO)_{12}(C_2Ph_2)$ A diphenylethane Ru(C) (complex 9) (cis + trans) diphenylethylene Ru(C) $\mu_4 - \eta^2 - Vinylidenes$ (cis + trans) $(cis + trans)$ Ru $_2(C)$ $(Cp)NiRu_3(CO)_9(H)(C=CHPt^1)$ A C_3H_{12} , hydrogenated oligomers Ru $_2(C)$ (Cp)NiRu $_3(CO)_9(H)(C=CHPh)$ A C_3H_{12} , hydrogenated oligomers Ru $_2(C)$ (Cp)NiRu $_3(CO)_9(H)(C=CHPh)$ A ethylbenzene Ru $_2(C)$ (complex 3e) (CD)NiRu $_3(CO)_9(H)(C=CHPh)$ A ethylbenzene (Cp)NiRu $_3(CO)_9(H)(C=CHPh)$ A ethylbenzene Ru C^+ (complex 3d) hydrogenated dimer Ru C^+ Ru C^+	diphenylethane diphenylethylene (cis + trans) C. H hydrosenated Alisonners	ku(C2Ph2)+	Ru ₃ (CO) ₁₂ (IR)	this
(complex 9) (complex 9) (cis + trans) (Cp)NiRu ₃ (CO) ₉ (H)(C=CHPr ¹) A C ₅ H ₁₂ , hydrogenated oligomers Ru ₂ (C) (complex 3c) (n = 2, 4), octenes h , octanes h , nonanes I (complex 3d) (H)(C=CHPh) A ethynylbenzene RuC ⁺ (complex 3d) hydrogenated dimer RuDh	diphenylethylene (cis + trans) C. H hydrocenated Aliconners			work
$\begin{array}{llllllllllllllllllllllllllllllllllll$	(cis + trans) (C.H., hydrocensted Alionmere		H.Ru.(CO)., (IR)	
 μ₄-η²-Vinylidenes (Cp)NiRu₃(CO)₉(H)(C=CHPr¹) A C₅H₁₂, hydrogenated oligomers Ru₂(((complex 3c) (n = 2, 4), octenes ^h, octanes ^h, nonanes ¹ (complex 3c) (Cp)NiRu₃(CO)₉(H)(C=CHPh) A ethynylbenzene RuC⁺ (complex 3d) hydrogenated dimer 	C. H hydrnaenated aljanmere			
(Cp)NiRu ₃ (CO) ₉ (H)(C=CHPr ¹) A C_3H_{12} , hydrogenated oligomers $Ru_2(C)$ (complex 3c) (n = 2, 4), octenes h, nonanes i (n = 2, 4), octenes h, nonanes i (Cp)NiRu ₃ (CO) ₉ (H)(C=CHPh) A ethylbenzene RuC^+ (complex 3d) (H)(C=CHPh) A ethylbenzene RuC^+ (complex 3d) hydrogenated dimer RuPh	C.H., hvdmoensted oligomers			
<pre>(complex 3c) (n = 2, 4), octenes h, nonanes i (Cp)NiRu₃(CO)₉(H)(C=CHPh) A ethylbenzene (complex 3d) hydrogenated dimer</pre> RuPh		ζu,(CO) ⁺	H ₄ Ru ₄ (CO) ₁₂ (IR)	this
(Cp)NiRu ₃ (CO) ₉ (H)(C=CHPh) A ethylbenzene (complex 3d) (H)(C=CHPh) A ethynylbenzene hydrogenated dimer	(n = 2, 4), octenes ^h , octanes ^h , nonanes ^t		Ru ₃ (CO) ₁₂ (IR)	work
(Cp)NiRu ₃ (CO) ₉ (H)(C=CHPh) A ethylbenzene RuC ⁺ (complex 3d) (H)(C=CHPh) A ethynylbenzene RuPh hydrogenated dimer			$(Cp)NiRu_{3}(CO)_{9}(H)_{3}(IR)$	
(complex 3d) ethynylbenzene RuPh hydrogenated dimer	ethylbenzene	tuC+	(Cp)NiRu,(CO) ₆ (H), (IR)	this
hydrogenated dimer	ethynylbenzene	tuPh+	$H_4Ru_4(CO)_{12}$ (IR)	work
	hydrogenated dimer		-	
(Cp)NiRu ₃ (CO) ₉ (H)(C=CHBu') E neohexene , propane –	neohexene, propane		$HRu_{3}(CO)_{9}(C_{2}Bu^{t})$ (IR)	this
(complex 3a)			$H_2 Ru_3(CO)_9(C=CHBu^1)$ (IR,MS)	work
(Cp)NiRu ₃ (CO) ₉ (H)(C=CHBu ^t) B neohexane	neohexane		H ₃ Ru ₃ (CO) ₉ (C.CH ₂ Bu ^t) (IR,MS)	
(complex 3a) butanes	butanes		$H_4 Ru_4 (CO)_{12} (IR)$	this
			(Cp)NiRu ₃ (CO) ₉ (H) ₃ (IR)	work
(Cp)NiOs ₃ (CO) ₉ (H)(C=CHBu ^t) B neohexane, neohexene –	neohexane, neohexene		(Cp)NiOs ₃ (CO) ₉ (H) ₃ (IR)	this
(complex 3b) butanes	butanes			work

ΰ In parentnesses the identification method used for the complex (1K, MS etc.). "Relation conditions: (A) 100 mL vial (see experimental) 4 h at 120°C; (B) 18 h at 120°C; (C) 6 h at 120° C; (D) refluxing octane, hydrogen flow, 2 h; (E) refluxing pentane, 12 h, 1 atm H₂. ^c The main reaction products are printed in boldface, the high yield products in italics. ^d Hydrogenated vinylcyclopentadienyl and cyclopentadienyl ligands. ^e In all the experiments metal powder was observed. This will not mentioned again. The term "decomposition" is used when no organometallics could be detected. ^f See text.^s Percentage of unreacted complex.^d Products of methatesis-hydrogenation of the vinylidene. i Products of Cp + vinylidene.

ł

TABLE 3

Complex	Other reactant	Reaction conditions ^{<i>a</i>}	Organic products ^b	Organometallic products	Reference
$(Cp)_2Ni_2Fe_2(CO)_6(C_2Ph_2)$	C ₂ Et ₂ (2/1)	В	C ₂ Et ₂ , stilbene (cis + trans), diphenylethane,	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Ph ₂) (30%), Fe ₂ (CO) ₆ (C ₂ Ph ₂) ₂ (20%), (Cp) ₂ Ni ₂ Fe(CO) ₃ C ₂ Ph ₂ (20%)	this work
$(Cp)_2Ni_2Fe_2(CO)_6(C_2Ph_2)$	$C_2 Et_2 (2/1)$	Q	diphenylalkyne Not analyzed	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Ph ₂) (90%), (Cp) ₂ Ni ₂ Fe ₃ CO) ₃ (C ₂ Ph ₂) (3%),	this work
$(Cp)_2Ni_2Fe_2(CO)_6(C_2Et_2)$	C ₂ Ph ₂ (2/1)	B	C2Ph2, <i>hexene</i> , hexane, <i>oligomers</i> ,	(CP) ₂ Fe ₂ (CO) ₄ (5%) (CP) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Et ₂) (40%), (CP) ₂ NiFe(CO) ₃ (C ₂ Et ₂) (10%)	this work
H4Ru4(CO) ₁₂	[(Cp)Ni(CO)]2	¥	C ₂ Et ₂ -	H ₃ Ru ₃ (CO) ₉ (CpNi) (2%)	18
H₄Ru₄(CO)12 H₃Ru₃(CO)9CCH2Bu ^t Ru₃(CO)12	[(Cp)Ni(CO)] ₂ - (Cp) ₂ Ni ₂ [HC ₂ C(=CH ₂)CH ₃]	≺ a ∪	- neohexane -	I(CP)Nu(CO)212(10%) H ₃ Ru ₃ (CO) ₉ (CPNi) (2%) H ₃ Ru ₃ (CO) ₉ (CPNi) (1%) (CP)NiRu ₃ (CO) ₉ (H)(C=CHPr ¹)	6 this work 11
	· · · · · · · · · · · · · · · · · · ·	-			

^a Reaction conditions were: (A) Refluxing octane 20–30 min, nitrogen atmosphere; (B) Sealed 25 ml vial (2.5 ml of 10 m M solution in heptane), 0.9 atm H₂, 120°C, 4 h; (C) Refluxing octane, 20 min, hydrogen atmosphere; (D) Refluxing heptane, 90 min, hydrogen flow. ^b See footnote c Table 2.

Results and discussion

It is obviously impossible to unlink the reactivities of the cluster frames and the coordinated ligands, but for simplicity we consider the two separately.

Qualitative results for the hydrogenation of the complexes are reported in Table 2.

Other reactions, mainly involving the cluster frames, were performed with the aim of improving understanding the behaviour of the clusters under hydrogen and these are summarized in Table 3.

(a) Reactions of the cluster frames

In all the experiments, variable amounts of metal powder, due to reduction in presence of hydrogen, were observed; this was expected, and had been noted in previous experiments [6]. As reported in the Experimental (and in Table 4) (below), the metal powder catalyzes the complete hydrogenation of the triple bond; and this is consistent with previous findings [6]; C-C hydrogenolysis occurs only to a minor extent in the presence of the metallic powder.

On the other hand, several clusters show good stability, and even after being kept at 120°C under H_2 , were partly recovered unaltered.

The formally unsaturated, 62 electron, square planar complexes $((\eta - C_5H_5)_2Ni_2Fe_2(CO)_6(RC_2R')$, complexes 6) unexpectedly show good stability for short reaction times, whereas for longer times complete metal-metal bond hydrogenolysis occurs; the behaviour of the same clusters in the mass spectrometer (M.I.K.E. experiments [25]) and in solution under N₂ [26] is different, and results in "cluster contraction" [27] and formation of complexes 7. The reactions of complexes 6 with alkynes (Table 3), under H₂ are also noteworthy; neither coordination of further alkyne nor alkyne exchange with the cluster occurs, despite the formal unsaturation. Instead, hydrogenation of the cluster bound alkyne occurs, whereas the free alkyne is unaffected. This shows that, at least for the complexes 6, cluster coordinated alkynes are hydrogenated with greater efficiency.

In some instances, "cluster expansion" [27] reactions are also observed; thus, from $(\eta - C_5 H_5)_2 Ni_2 Ru(CO)_3 (C_2 Ph_2)$ the pentametallic $(\eta - C_5 H_5)_2 Ni_2 Ru_3 (CO)_8 - (C_2 Ph_2)$ has been obtained in small yields.

Finally, for some clusters, modification of the metal atom frames, and sometimes "isolobal substitution" occur [28]; these reactions may form part of a full hydrogenation cycle (although with very low efficiency). This is the case, for example, when the vinylidene-substituted butterfly clusters 3 are hydrogenated; these complexes release the fully and partly hydrogenated ligands, and give $(\eta - C_5H_5)NiM_3(CO)_9(H)_3$ and, for M = Ru, also $H_4Ru_4(CO)_{12}$. We previously suggested three possible reaction paths leading to clusters 3; in particular, for 3b (M = Os), metal-metal hydrogenolysis of $(\eta - C_5H_5)NiOs_3(CO)_9(H)_3$ in presence of alkynes was considered [10].

We have already reported that $(\eta$ -C₅H₅)NiRu₃(CO)₉(H)₃ can be obtained by treating with nickel reactants H₄Ru₄(CO)₁₂ [18]; the latter is an hydrogenation catalyst, and is also frequently found as a final product in the hydrogenation of several clusters, including H₃Ru₃(CO)₉CCH₂Bu^t [6]. In some instances, complexes of type 3 under H₂ release H₃M₃(CO)₉CCH₂R derivatives. Finally H₃-Ru₃(CO)₉CCH₂Bu^t reacts with $(\eta$ -C₅H₅)₂Ni₂(CO)₂ to give small amounts of

SCHEME 1

 $(\eta$ -C₅H₅)NiRu₃(CO)₉(H)₃ and neohexane (see Table 3).

Scheme 1 accounts for the above results.

Noteworthy are the isolobal substitutions of $(\eta$ -C₅H₅)Ni for Ru(CO)₃ or CCH₂R in tetrahedral cluster frames.

Attempts to isolate other intermediates for the formation of the clusters 3, starting from $(\eta$ -C₅H₅)NiOs₃(CO)₉(H)₃ and C₂Ph₂ (less reactive than the HC₂R alkynes) under hydrogen, gave only homometallic alkyneosmium substituted clusters; no edge-substituted tetrahedral derivatives comparable with those found by Johnson and Lewis were detected [29].

Treatment of $(\eta$ -C₅H₅)₃Ni₃Os₃(CO)₉ with C₂Ph₂ leads directly to $(\eta$ -C₅H₅)NiOs₃(CO)₉(H)₃ and homometallic substituted products. The hydrogenation of diphenylalkyne observed during these reactions probably occurs "via" homometallic alkyneosmium clusters; this is considered again in sections b and c below.

(b) Hydrogenation of the coordinated ligands

The hydrogenation products arising from the multi-site coordinated ligands are shown in Table 2 and (for C_2Ph_2) in Table 4. In the latter Table the results of hydrogenations for various times are listed; these involve the same ligand in different coordination environments on homo- and hetero-metallic clusters.

The nature (and yield) of the organic hydrogenation products is probably dependent on the following factors:

(i) the nature of the metals in the cluster;

(ii) the structure of the cluster, and thus on the coordination of the alkyne to three or four metal centres with C-C multiple bond "activation" [14];

(iii) the possible competition within the hydrogenolysis of the M-M, M-M', M-C and C-C (multiple) bonds;

(iv) the selectivity in the hydrogenation of coordinated and noncoordinated multiple C-C bonds (for isopropenylalkyne);

Complex	Reaction	"Light	Organic pr	oducts (GC)			Organometallic products
(and aikyne coordination)		products	$C_2 Ph_2$	H ₂ C ₂ Ph ₂ cis	trans ^c	H₄C₂Ph₂	
$(Cp)_2Ni_2Fe(CO)_3(C_2Ph_2)$	2 h 15 min	10%	2300	trace	100	5.4	(Cp) ₂ Ni ₂ Fe(CO) ₃ (C ₂ Ph ₂) (30%) ^d (Cp) ₂ Fe ₃ (CO), (10%)
- n.	6 ћ	20%	121	3.5	100	180	(Cp) ₂ Ni ₂ Fe(CO) ₃ (C ₂ Ph ₂) (10%) (Cp), Fe ₂ (CO) ₄ (12%)
	12 h	25%	15	21.0	100	447.2	
	24 h	40%	I	18.3	100	830.4	(Cp) ₂ Fe ₂ (CO) ₄ (20%)
Fe ₃ (CO) ₆ (C ₂ Ph ₂)	6 ћ	I	3200	trace	100	×	decomposition
µ ₃ -η ²	9 h 30 min	10%	647.0	13.0	100	51.7	decomposition
	18 h	15%	30.5	18.6	100	3540.7	decomposition
Ru4(CO) ₁₂ (C ₂ Ph ₂) un ²	3 h	trace	25700	trace	100	206	Ru4(CO) ₁₂ (C ₂ Ph ₂) (50%) H.Ru4(CO) ₁₅ (50%)
	6 ћ	5%	11200	trace	100	850	Ru4(CO) ₁₂ (C2,Ph ₂) (40%) H Ru (CO) (60%)
	12 h	795	C1CL	0.0	100	1630	114144(~~)12(~~)
	1 7	201	717/	0.4	100	3000	
	24 n	9K01	1130	0.0	100	cusc	$H_4 K H_4 (CU)_{12} (80\%)$
(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Ph ₂) μ ₄ -η ²	2 h 15 min	trace	33000	1.2	100	I	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Ph ₂) (35%) (Cp) ₂ Ni ₂ Fe(CO) ₃ (C ₂ Ph ₂) (10%) Fe ₅ (CO) ₆ (C, Ph ₂), (<i>m</i> = 1, 10%; <i>m</i> = 2, 10%)
	6 h	2%	16600	20	100	175	$(Cp)_2 Ni_2 Fe_2 (CO)_6 (C_2 Ph_2) (15\%)$
							$(Cp)_{2}Ni_{2}Fe(CO)_{3}(C_{2}Ph_{2})$ (10%) $Fe_{3}(CO)_{4}(C_{2}Ph_{2})_{4}$ ($n = 1, 2: 20\%$)
	12 h	12%	6300	18	100	1030	(Cp) ₂ Ni ₂ Fe ₂ (CO) ₆ (C ₂ Ph ₂) (5%) (CP) ₂ Ni ₂ Fe ₂ (CO) ₃ (C ₂ Ph ₂) (5%)
		ł		;			decomposition
	24 h	15%	1256	25	100	2205	decomposition
Fe/Ni powder	18 h	10%	ł	I	100	1086	1
Ru/Ni powder	18 h	12%	1	trace	100	1215	1

229 analyzed under different chromatographic conditions; the ratio of the products is expressed relative to trans-stilbene as 100 (intergration of the GC peaks). ^d The

percentages of the unreacted products were calculated by comparison with a control test of the starting reaction solution (densitometry on the TLC plates).

(v) the presence of the formed powder, as discussed above.

Two main trends are observed; the coordinated alkynes and vinylidenes undergo either partial or total hydrogenation of the C–C multiple bonds (in more or less selective way); or the ligands can undergo C–C hydrogenolysis. Side reactions are oligomerization-hydrogenation of the alkynes and olefin metathesis of the coordinated vinylidenes [30].

The nature of the metals seems to be of secondary importance. Thus for the C_2Ph_2 ligand (Table 4), similar hydrogenation products in comparable yields are obtained from $Ru_4(CO)_{12}(C_2Ph_2)$ and $(\eta-C_5H_5)_2Ni_2Fe_2(CO)_6(C_2Ph_2)$ under identical conditions. The unique feature of these clusters is the μ_4 - η^2 -coordination of the alkyne to four metal centres.

The coordination of the alkyne to several metals and the resulting alkyne activation must certainly influence the products but generally tri- and tetra-metallic clusters give similar products, with only minor differences in the yields.

The type of metal-carbon bonds can also be of importance in these reactions; thus from the results, it can be concluded that:

(i) the "apical" ligands readily and completely give the fully hydrogenated alkanes (see also ref. 6). In these complexes only $M-C(\sigma)$ bonds are observed;

(ii) the μ_4 - η^2 -vinylidene ligands give either olefins or alkanes. This feature is shown in Scheme 1;

(iii) the $\mu_3 - \eta^2$ and $\mu_4 - \eta^2$ coordinated alkynes generally give the corresponding alkenes and alkanes, and, in smaller amount, C-C hydrogenolysis products;

(iv) by contrast, the μ_3 - η and μ_4 - η^2 alkynes in the complexes 7 and 4 give considerable amounts of C-C hydrogenolysis products.

Thus the following sequence can be written for the ease of hydrogenation of the coordinated substrates: "apical ligands" > vinylidene ligands > alkynes. Apparently, hydrogenation is easier when a larger number of M-C (σ) bonds is present, these usually being more reactive than the M-C (π) bonds.

It can also be concluded that hydrogenation is easier when longer C-C distances are present; indeed, the "apical" ligands show the greatest "activation" of the C-C bonds whereas the $(Cp)_2Ni_2Fe(CO)_3(C_2Ph_2)$ complexes, which have the shortest C-C distances, give hydrogenation products with significantly greater difficulty. Other factors may influence this behaviour; Muetterties found that a C-C distance above 1.30 Å is sufficient for the activation of the alkyne to give hydrogenation [31]. However, the reactivity towards hydrogen also depends upon the possibility of reaching an "unsaturated transition state" and hence on the activation energy required. Indeed, among the μ_2 - η^2 -alkyne substituted bimetallic derivatives $Cp_2Mo_2(CO)_4(RCR_2')$, $Fe_2(CO)_6(RC_2R')$, $Co_2(CO)_6(RC_2R')$, $Cp_2Ni_2(RC_2R')$ CpNiCo(CO)₃(RC₂R') and (COD)₂Ni₂(RC₂R'), only the last complex and the iron derivatives react with hydrogen under mild temperatures and pressures [32].

It seems, especially for the coordinated alkynes, that the hydrogenation behaviour is the result of the balance of several effects; among these are (i) the thermal decomposition cluster species which can also act as catalysts, the presence of metal powder, and the competition between M-M, M-M', M-C and C-C hydrogenolysis. The M-M and M-M' hydrogenolysis is responsible for the formation of lower nuclearity products and the metal powder, and hence for the production of saturated hydrocarbons in some instance. The hydrogenolysis of $M-C(\sigma)$ and $M-C(\pi)$ bonds was considered above. Hydrogenolysis of C-C bonds also occurs in the above experiments. As shown by the control tests, this is a minor process when the metal powder is subjected to the reaction conditions. In contrast, clusters such as 7, which are characterized by short C-C bonds, give high yields of C-C hydrogenolysis products, and this is also the case for cluster 4. A possible explanation of this behaviour as might be that when formally unsaturated clusters are used, there is initial attack of hydrogen on the cluster metals, and then, by hydrogen transfer and M-C bond cleavage, hydrogenation products are formed; however, when "saturated" clusters, such as structures 7 and 4 (both "closo" complexes) are used, attack of hydrogen occurs directly on the ligand, and C-C hydrogenolysis becomes of primary importance. An alternative explanation might be that on "unsaturated" frames there is the possibility of coordinating hydrogen without M-M cleavage, whereas on "saturated" frames, addition of hydrogen would require M-M cleavage. This latter explanation would also lead to expectation of the formation of *cis*-stilbene (see ref. 33, below), but we usually found the *trans*-isomer.

(c) The hydrogenation of diphenylacetylene and the behaviour of isopropenylacetylene

The results of Table 4, for C_2Ph_2 , are consistent with the qualitative results of Table 2. An increase in the yields of hydrogenation products with time is observed; in particular, together with decomposition of the cluster to powder, increasing amounts of saturated hydrocarbons are observed *. However, for a discussion of the possible selectivity in the hydrogenation of alkynes on clusters the formation of alkenes is much more interesting.

In the hydrogenation products obtained from C_2Ph_2 , *trans*-stilbene is generally observed in considerable yield; smaller amounts of *cis*-stilbene were also detected (usually in almost constant ratio to the *trans*-isomer). Only *trans*-stilbene was observed, when C_2Ph_2 was treated with hydrogen at 100°C in hydrocarbons in the presence of the cluster catalyst HRu₃(CO)₁₁⁻ [37].

Muetterties found that when bimetallic products are hydrogenated, only *cis*-olefins are formed, and no saturated hydrocarbons are observed (the only exception being $Fe_2(CO)_6(C_2Bu_2^1)$); this was explained by suggesting that the reaction intermediates (not always precisely defined, but, at least for $(COD)_2Ni_2(RC_2R')$, assumed to be a species with weak or no Ni–Ni interaction requires *cis*-addition of hydrogen for stereochemical reasons. The *cis*-olefin is then expelled because of its low coordination ability, so that no isomerization or further hydrogenation to alkane takes place, even though these products are thermodynamically favoured [33].

In considering the results obtained with clusters, we must take account of another mechanism for the attack of hydrogen on the substrate. The results indicate that coordination of the alkyne to several metal centres, and its consequent activation, has some influence on the hydrogenation products; thus monometallic intermediates should not be considered for the above reactions. The determining step of the reactions may be either the H–H bond cleavage or the gradual cleavage of M–C bonds, to give intermediates with ethylenic, vinylidenic or alkenylidenic substituents, as well as apical ligands, and hence partly hydrogenated structures before the release of the final organic products. Once the partly hydrogenated intermediates formed,

^{*} For Ru₄(CO)₁₂(C₂Ph₂) results consistent with those obtained under reflux [34] have been found.

SCHEME 2A

easier hydrogenation would occur. Indeed, the vinylidene and apical derivatives have been found more prone to hydrogenation; the former gives either olefins or alkanes and the latter mainly alkanes.

(a)

The formation of homo-metallic vinylidene and alkenylidene complexes of osmium (with concomitant hydrogenation of $C_2 Ph_2$), as well as the synthesis and reactivity of the vinylidene products 3 provide indirect evidence for this hypothesis; hence, the formation of *trans*-ethylenes could occur via partly hydrogenated clusters as discussed by Shapley [24] and Deeming [35]. Thus the selectivity in alkyne hydrogenation on bimetallic or on cluster complexes may depend on the possibility of forming different intermediates.

The isopropenylalkyne ligand is also of interest for discussions of the selectivity of the above reactions. It contains a triple and a double C-C bond in conjugated positions and gives a considerable variety of interactions in homo- [36] and heterometallic [12,13] clusters.

As mentioned above (see Introduction) the reaction of $(\eta - C_5 H_5)_2 Ni_2$ (isopropenylalkyne) with $Ru_3(CO)_{12}$ under H_2 leads to the isopropylvinylidene cluster 3c [11] in which apparently the C=C bond has been hydrogenated; further hydrogenation of 3c leads to alkane. Noteworthy is the hydrogenation of the double bond before the hydrogenation of the triple bond. The same reaction under N_2 leads preferentially to complex 5b, in which the triple bond is considerably "activated" and the double bond preserved. Hydrogenation of 5b also gives the alkane but in this case the triple bond is reduced before the double bond.

These results are shown in Scheme 2 together with those of the hydrogenation of the isopropenylalkyne iron-nickel derivatives.

The behaviour of isopropenylalkyne seems to depend either on the method of preparing the clusters, and on the coordination of the ligand to the metals. These results are fully consistent with the previously discussed hypotheses for the formation of *trans*-olefins.

Conclusive remarks

The results presented provide evidence that cluster bound alkynes (and derived ligands) can be hydrogenated, sometimes in low efficiency catalytic cycles, and with selectivities depending on the alkynes bound to bimetallic derivatives.

The dependence of the hydrogenation products upon the overall cluster frame and electronic count, and other structural parameters of the cluster bound alkynes, as well as the reactivity of vinylidene and apical clusters, all point to hydrogenation processes occurring on clusters rather than on metal fragments.

The results obtained can not be fully explained in terms of hydrogenation of free alkynes or of mono- or bi-metallic alkyne derivatives. The hydrogenation of cluster bound alkynes in the presence of (unaffected) free alkynes reinforces this observation.

Thus, the alkyne substituted homo- and hetero-metallic clusters may be of importance as intermediates (or catalyst precursors) in the homogeneously catalyzed alkyne hydrogenation.

Further experiments on multi-site coordinated diphenylacetylene are being carried out.

Acknowledgements

This work was supported by C.N.R. Grant No 81007727.95, Programmi Finalizzati (Chimica Fine e Secondaria). We are indebted to Professor G.A. Vaglio for discussion of the GC/MS spectrometric results.

References

- 1 A. Fusi, R. Ugo, R. Psaro, P. Braunstein and J. Dehand, J. Mol. Catal., 16 (1982) 217.
- 2 B.F.G. Johnson, J. Lewis, S. Aime, L. Milone and D. Osella, J. Organomet. Chem., 233 (1982) 247. 3 A.J. Carty, Pure Appl. Chem., 54 (1982) 113.
- 4 Y. Doi, H. Koshizuka and T. Keii, Inorg. Chem., 21 (1982) 2732.
- 5 Z. Dawoodi, K. Henrick and M.J. Mays, J. Chem. Soc. Chem. Commun., 597 (1982).
- 6 M. Castiglioni, G. Gervasio and E. Sappa, Inorg. Chim. Acta, 49 (1981) 217.
- 7 M. Castiglioni, M. Valle, E. Sappa, M. Lanfranchi and A. Tiripicchio, J. Organomet. Chem., 241 (1983) 99.
- 8 E. Sappa, A. Tiripicchio and M. Tiripicchio Camellini, Inorg. Chim. Acta, 41 (1980) 11.
- 9 E. Sappa, A. Tiripicchio and M. Tiripicchio Camellini, J. Organomet. Chem., 246 (1983) 287.
- 10 A.J. Carty, N.J. Taylor, E. Sappa and A. Tiripicchio, Inorg. Chem., 22 (1983) 1871.
- 11 E. Sappa and A. Tiripicchio, J. Chem. Soc. Dalton Trans., in press.
- 12 E. Sappa and A. Tiripicchio, submitted for publication.
- 13 M. Lanfranchi, A. Tiripicchio, M. Tiripicchio Camellini, O. Gambino and E. Sappa, Inorg. Chim. Acta, 64 (1982) L. 269.
- 14 E.L. Muetterties, T.N. Rhodin, E. Band, C.F. Brucker and W.R. Pretzer, Chem. Revs., 79 (1979) 91.
- 15 E. Sappa, A. Tiripicchio and M. Tiripicchio Camellini, J. Organomet. Chem., 199 (1980) 243.
- 16 R.D. Wilson, S.M. Wu, R.A. Love and R. Bau, Inorg. Chem., 17 (1978) 1271, and ref. therein.
- 17 S. Aime, L. Milone, E. Sappa and A. Tiripicchio, J. Chem. Soc. Dalton Trans., (1977) 227.
- 18 E. Sappa, A.M. Manotti, Lanfredi and A. Tiripicchio, J. Organomet. Chem., 221 (1981) 93.
- 19 J.F. Blount, L.F. Dahl, C. Hoogzand and W. Hubel, J. Amer. Chem. Soc., 88 (1966) 292.
- 20 For synthesis see: S. Aime, L. Milone, E. Sappa, A. Tiripicchio and M. Tiripicchio Camellini, J. Chem. Soc. Dalton Trans., (1979) 1155. For spectroscopy see: E. Sappa and V. Raverdino, Ann. Chim. (Rome), 69 (1979) 349.
- 21 B.F.G. Johnson, J. Lewis, B. Reichert, K.T. Schorpp and G.M. Sheldrick, J. Chem. Soc. Dalton Trans., (1977) 1417.
- 22 C.G. Pierpoint, Inorg. Chem., 16 (1977) 636.
- 23 G. Ferraris and G. Gervasio, J. Chem. Soc. Dalton Trans., (1974) 1813.
- 24 A.D. Clauss, M. Tachikawa, J.R. Shapley and C.G. Pierpoint, Inorg. Chem., 20 (1981) 1528.
- 25 A. Marinetti and E. Sappa, Ann. Chim. (Rome), 81 (1981) 707.
- 26 Our unpublished results.
- 27 K. Wade, Adv. Inorg. Chem. Radiochem., 18 (1976) 1.
- 28 R. Hoffmann, Angew. Chem. Int. Ed. Engl., 21 (1982) 711.
- 29 B.F.G. Johnson, J.W. Kelland, J. Lewis, A.L. Mann and P.R. Raithby, J. Chem. Soc. Chem. Commun., (1980) 547.
- 30 A.J. Carty, M. Castiglioni, E. Sappa and A. Tiripicchio, EUCHEM Conference: The Challenge of polynuclear Inorganic Compounds, C-10 Venice (Italy), Sept. 28-30, 1981.
- 31 E.L. Muetterties, Pure Appl. Chem., 50 (1978) 941.
- 32 E.L. Muetterties, W.R. Pretzer, M.G. Thomas, B.F. Beier, D.L. Thorn, V.W. Day and A.B. Anderson, J. Amer. Chem. Soc., 100 (1978) 2090.
- 33 E.L. Muetterties, Inorg. Chim. Acta, 50 (1981) 1.
- 34 B.F.G. Johnson, J. Lewis and K.T. Schorpp, J. Organomet. Chem., 91 (1975) C13.
- 35 A.J. Deeming, S. Hasso and M. Underhill, J. Chem. Soc. Dalton Trans., (1975) 1614.
- 36 E. Sappa, O. Gambino, A.M. Manotti Lanfredi and A. Tiripicchio, Inorg. Chim. Acta, 36 (1979) 189;
 E. Sappa, A.M. Manotti Lanfredi and A. Tiripicchio, ibid. 36 (1979) 197.
- 37 G. Süss-Fink, personal communication (to E.S.).