HIGHLY STEREOSELECTIVE SYNTHESIS OF VITAMIN A AND ALL-TRANS RETINOIC ACID BY LOW-VALENT TITANIUM INDUCED REDUCTIVE ELIMINATION

Guy Solladié* and André Girardin
Ecole Européenne des Hautes Etudes des Industries Chimiques
(UA 466), 67008 STRASBOURG (FRANCE)

<u>Abstract</u> Application of the low-valent Titanium induced reductive elimination gave a new and highly stereoselective approach to Vitamin A and all-trans retinoic acid.

Since the first industrial synthesis of Vitamin A reported by Isler¹ at Hoffmann La Roche in 1947, many papers describing different approaches appeared². The BASF industrial preparation³ of all-trans retinoic acid featured Wittig condensations, while Hoffmann La Roche chemists⁴ and Rhône-Poulenc Industries⁵ developed efficient syntheses of Vitamin A by a sulfone coupling reaction, which was first reported by Julia⁶.

During the last ten years, the discovery of new biological activities⁷ of Vitamin A and retinoids, dependent on the geometry of the polyene chain and structural variation, stimulated the search of new methodologies for preparation of the pentaene derivatives².

We recently reported 8 the application of the low-valent Titanium induced reductive elimination 9 to the synthesis of the diene molety of Vitamin D₂ analogues.

We describe now in this paper a highly stereoselective synthesis of Vitamin A based on the same methodology—formation of the E,E-1,3-diene central unit of Vitamin A by Ti(0) induced reductive elimination of the corresponding allylic diol

Vitamin A

The synthesis of the parent allylic diol was performed in a few steps from \$-ionone.

Ethyl γ -oxysenecionate $\underline{1},\underline{E}$ was readily prepared from the dimethylacetal of pyruvaldehyde by a Wittig reaction giving a mixture of \underline{E} and \underline{Z} acetals which were hydrolyzed in acidic medium with complete isomerization to the pure E isomer $\underline{1}$. Further addition of the Grignard derived from ethynyl β -ionol $\underline{2}$ gave in high yield the diol $\underline{3}$ as a mixture of diastereoisomers

After the reduction of the ester function with DIBAL and protection of the resulting primary alcohol with a TBDMS group, the triple bond was reduced into a cis double bond with Lindlar catalyst and to a trans double bond with LiAlH $_{\Delta}$.

The reductive elimination was conducted on compounds $\underline{4}$ and $\underline{5}$ in THF at room temperature using the mixture LiAlH_A/TiCl₃ in the ratio 1/2.

Both \underline{Z} and \underline{E} isomers $\underline{4}$ and $\underline{5}$ gave only one product $\underline{6}$ in 85% yield which afforded, after removing the protection group and purification by flash chromatography, Vitamin A (80% yield) identical in all respect to an authentic sample 10 .

Therefore, this reductive elimination with Ti(0) affords a highly stereoselective route to Vitamin A from cis or trans allylic diols as long as the protecting group of the primary alcohol is a silyl group. If this primary hydroxyle is protected as an acetate, the reductive elimination with Ti(0) gave indeed a mixture of E and Z isomers.

Finally all-trans retinoic acid was prepared from Vitamin A in 2 steps by oxidation with activated $Mn0_2^{-11}$ to retinal and subsequent oxidation with argentic oxid in presence of cyanide ion as catalyst 12 leading in 80% overall yield to a compound identical in all respect to an authentic sample 13 ,2.

All-Trans Retinoic acid

Acknowledgment Financial support from L'OREAL is gratefully acknowledged. We also thank Prof. H.M Walborsky for valuable discussions and advice

Bibliography

- 1) O. Isler, W. Huber, A. Ronco and M. Kofler, Helv. Chim. Acta, 1947, <u>30</u>, 1911
- 2) R.S.H. Liu and A.E. Asato, Tetrahedron, 1984, 40, 1931.
- H. Pommer and W. Sarnecki, Ger. Pat. 1 068 702; Chem Abstr. 1961, 55, 10.812e Ger. Pat. 1 059 900 , Chem. Abstr. 1961, 55, 14.511a , H. Pommer, Angew. Chem., 1960, 22, 811
- 4) a) P.S. Manchand, M. Rosenberger, G. Saucy, P.A Wehrli, H Wong, L. Chambers, M.P. Ferro and W. Jackson, Helv. Chim. Acta, 1976, 59, 387. b) G L. Olson, H.C. Cheung, K.D. Morgan, C. Neukom and G. Saucy, J. Org. Chem., 1976, 41, 3287
 - c) A. Fischli, H. Mayer, W. Simon and, H J Stoller, Helv. Chim. Acta, 1976, 59, 397.
- 5) P Chabardes, J P. Decor and, J. Varagnat, Tetrahedron, 1977, 33, 2799.
 6) M. Julia and D. Arnould, Bull Soc. Chim. Fr., 1973, 746
- 7) H. Mayer, W Bollag, R. Hannı and R. Ruegg, Experienta, 1978, 34, 1105.
- 8) G Solladié and J. Hutt, J. Org. Chem., 1987, <u>52</u>, 3560. 9) H.M. Walborsky and H.H. Wust, J. Am Chem. Soc., 1982, <u>104</u>, 5807 for the first report on the application of this reaction to 1,3-dienes synthesis.
- 10) 200MHz NMR (CDC1₃) δ 1.02 (s, 6H, CH₃ at C₁) , 1.36 - 1.68 (m, 4H, CH₂ at C₂ and C_{3}), 1 71 (s, 3H, CH_{3} at C_{5}); 1 87 (s, 3H, CH_{3} at C_{13}); 1 96 (s, 3H, CH_{3} at C_{0}), 2.02 (t, 2H, J = 6Hz, CH_2 at C_4), 4.31 (d, 2H, J = 7Hz, CH_2 at C_{15}), 5 69 (t, 1H, H_{1d} , J = 7Hz), 6.10 (d, 1H, H_{10} , J = 11Hz) , 6 13 and 6 14 (2s, 2H, H_{7} and H_{8}) ; 6.28
- (d, 1H, J = 16Hz, H₁₂), 6.62 (dd, 1H, H₁₁, J = 11Hz and J = 16Hz).
 11) J Attenburrow, A.F.B. Cameron, J H. Chapman, R M. Evans, B.A. Hems, A.B.A Jansen and T. Walker, J Chem. Soc., 1952, 1104
 12) E.J. Corey, N.W. Gilman and B.E. Ganem, J. Am. Chem. Soc., 1968, 90, 5616.
- 13) This sample was shown to be pure by HPLC. m p. 179-180°C (Lit. 14 179-180°C) - 1 H NMR (200MHz, CDCl₃) δ 1.03 (s, 6H, 2CH₃ at C_1), 1.44 - 1.62 (m, 4H, CH_2 at C_2 and C_3), 1.72 (s, 3H, CH_3 at C_5), 2.01 - 2.06 (broad s, 5H, CH₂ at C₄ and CH₃ at C₉) , 2.37 (s, 3H, CH₃ at C₁₃) ; 5 80 (s, 1H, H₁₄) ; 6.14 (d, 1H, H_8 , J = 16Hz) , 6.15 (d, 1H, H_{10} , J = 11Hz) ; 6.23 (d, 1H, H_7 , J = 11Hz) 16Hz); 6.31 (d, 1H, H_{12} , J=15Hz), 7.05 (dd, 1H, H_{11} , J=15Hz, J=11Hz) 14) G. Pattenden, B.C.L. Weedon, J Chem Soc (c), 1968, 1984

(Received in France 12 November 1987)