THE REACTION OF URANIUM TETRAFLUORIDE WITH URANIUM MONONITRIDE

HIROAKJ TAGAWA

Division of Chemistry, Japan Atomic Energy Research Institute, Tokai-mura, Ibaraki-ken, Japan

(First received 1 May 1974; in final form 8 July 1974)

Abstract—The reaction of UF₄ with UN at 950°C yields UF₃ or UNF depending on the mixing ratio; the product is UF₄ for the UF₄: UN ratio of 3:1, and UNF for 1:3. The reaction is generally expressed as

$$x \text{ UF}_4(s) + y \text{ UN}(s) \rightarrow \frac{3x - y}{2} \text{ UF}_3(s) + \frac{3y - x}{2} \text{ UNF}(s) + \frac{x - y}{4} \text{ N}_2(g).$$

The free energy change for the formation of UF_3 is discussed on the basis of the experimental results.

INTRODUCTION

IN THE course of studies of the high-temperature reactions with uranium nitride, it was found that UF_4 was readily converted to UF_3 or UNF. The typical reactions are represented by the equations:

$$3 \operatorname{UF}_4(s) + \operatorname{UN}(s) \to 4 \operatorname{UF}_3(s) + \frac{1}{2} \operatorname{N}_2(g) \tag{1}$$

and

UF₄(s) + 3 UN(s) +
$$\frac{1}{2}$$
N₂(g) → 4 UNF(s). (2)

In the present paper, the reaction of UF_4 with UN has been investigated, with the different mixing ratios of starting materials in a nitrogen atmosphere or in a vacuum at temperatures below 1000°C.

EXPERIMENTAL

Materials

UF₄ was provided from Sumitomo Metal and Mining Co., with the composition: UF₄, >99.0%; UO₂F₂, 0.8%; and UO₂, 0.05%. UN, prepared by arc-melting of uranium metal in a nitrogen

atmosphere, was provided from Mitsubishi Metal Co. The composition is as follows: total U, 94.73%; nitrogen 5.53%; and oxygen, 0.01%; the N/U atom ratio is 1.00.

Procedure

Both the compounds were ground in a dry box filled with high-purity argon gas and were mixed at different mole ratios (UF₄: UN = 3:1, 1:1 and 1:3) and compacted at 3 ton/cm² into cylindrical pellets, 7 mm in diameter and 5 mm in height. The resulting pellets of about 2 gm, placed in a nickel crucible, were heated in a quartz tube. The reactions were carried out in a closed system of an atmosphere of nitrogen or of a vacuum. The volume of the reaction system, consisting of the quartz tube, a liquid nitrogen trap, an oil manometer and a mercury manometer, was about 400 ml. The temperature was raised at the rate of 3°C/min. Analysis

The fluorine was separated as hydrogen fluoride by pyrohydrolysis at 850°C for 20 min. Its content was determined photometrically using lanthanum-alizarine complexone[1]. The uranium content was determined as U_3O_8 from the residual oxide of pyrohydrolysis. The amount of nitrogen was determined photometrically with thymol[2].

RESULTS

The conditions of experiments and the results are given in Table 1.

Reactions in mole ratio $UF_4: UN = 3:1$

The reaction *in vacuo* was followed with the pressure change in nitrogen evolved with time. The reaction took place at about 700°C, became rapid at temperatures above 840°C, and terminated before the temperature attained 900°C. The nitrogen pressures at temperatures between 1103 and 1148K are given by the equation:

$$\log p_{\rm N_2}(\rm{atm}) = 39.57 - 4.695 \times 10^4/T.$$
(3)

X-ray diffraction pattern showed that the product was the single phase of UF₃. The pattern of UF₃ was consistent with that of the ASTM file[3]. The reaction therefore is expressed as Eqn (1).

On the inside surface of the quartz tube slightly above the crucible, grayish-brown film was formed. This compound was found to be UO_2 by chemical and X-ray analyses. It is probably produced by the reaction of the evaporated UF₄ with the quartz tube. The reaction product SiF₄(g) was trapped by the liquid nitrogen, so that the nitrogen pressure in the system was not affected by it.

When heated in 1 atm nitrogen to 950°C, the mixture was also converted to UF_3 . The formation of a UO_2 film was not observed.

Reaction in mole ratio $UF_4: UN = 1:1$

In the reaction in vacuo, nitrogen was not evolved by heating up to 950°C. Gray-brown film was deposited on

Experimental conditions				Products				
Mixing ratio (mole) UF₄: UN	p _{N²} (atm)	Max. temp.* (°C)	Retention time (min)	X-ray analysis	U	(wt%) N	Chemic: F	al analysis (atom ratio) U:N:F
3:1	0	900	20	UF ₁	80.70	0.10	20.32	1.00:0.02:3.15
3:1	1	950	10	UF ₃	80.11	0.04	20.20	1.00:0.01:3.16
1:1	0	900	30	UF ₃ , UNF	83.69	2.56	12.63	1 92:1 00:3.64
1:1	1	950	0	UF ₃ , UNF	83.76	2.66	11.83	1.85:1.00:3.28
1:3	0	950	0	UF ₃ , UNF, UN	86.87	3.86	9.20	1.33:1.00:1.76
1:3	1	950	20	UNF	86.86	4.73	5.87	1.08:1.00:0.92

Table 1. The reaction of UF4 with UN

*The heating rate was 3°C/min.

the inner wall of the quartz tube, similarily to the case of the reaction (UF₄: UN = 3:1) in vacuo. The product was a mixture of UF₃ and UNF. The compound UNF was identified by X-ray diffraction to have a tetragonal structure with lattice parameters of $a_0 = 5.61$ Å and $c_0 = 5.71$ Å; its pattern was consistent with that reported by Yoshihara *et al.*[4]. The reaction thus proceeds as

$$UF_4(s) + UN(s) \rightarrow UF_3(s) + UNF(s). \tag{4}$$

When heated in a nitrogen atmosphere, the product also consisted of UF_3 and UNF. There was no change in the nitrogen pressure before and after heating. The formation of UO_2 was hardly observed on the wall of the tube.

Reaction in mole ratio $UF_4: UN = 1:3$

In the reaction *in vacuo*, no evolution of nitrogen was observed. A gray-brown film of UO_2 was also found on the inner wall of the tube. X-ray diffraction showed the product to be a mixture of UF₃, UNF and UN. It is considered that the reaction occurs in equimolar ratio of UF₄ and UN as shown in Eqn (4), and UN remains as the unreacted starting material.

When heated in a nitrogen atmosphere, the reaction could be followed by the pressure change. The reaction occured above 740°C and was terminated at about 900°C. The product was only UNF; U_2N_3 was not formed. The reaction is given as Eqn (2). The gain in weight during the heating process is in agreement with Eqn (2). The formation of UO₂ on the inner wall of the quartz tube was not observed.

DISCUSSION

 UF_3 can not be prepared directly by the reaction of uranium with fluorine. The attempts to synthesize UF_3 have been reviewed by Katz and Rabinowitch[5]. Two successful methods are described:

(A) UF₄ is reduced with purified hydrogen at 1000°C. The reaction proceeds according to

$$UF_4(s) + \frac{1}{2}H_2(g) \rightarrow UF_3(s) + HF(g).$$
 (5)

(B) UF_4 is reduced with finely divided uranium metal at

1050°C:

$$3UF_4(s) + U(s) \rightarrow 4UF_3(s).$$
 (6)

Subsequently, another method was reported by Runnals [6]:

$$UF_4(s) + Al(l) \xrightarrow{\text{900°C}} UF_3(s) + AlF(g).$$
(7)

In these reactions, UF_4 is partially reduced by hydrogen, uranium or aluminium. The reaction (1), observed in the present work, is considered a modification of Eqn (6); UN acts as the reducing agent.

Uranium nitride-fluoride UNF was found by Yoshihara et al. [4] as an intermediate in the nitride formation from UF₄ using the reducing agent Si. Before that, Juza et al. [7-9] prepared the similar compounds UNX(X = CI,Br and I) by the reactions: $UX_4(s) + 3 UN(s) + \frac{1}{2}N_2(g) \rightarrow$ 4 UNX(s); and $UX_4(s) + NH_3(g) \rightarrow UNX(s) + 3HX(g)$. In the present experiments, however, UNF is readily formed in the reaction of UF₄ with UN at the UF₄/UN mole ratio smaller than three. When an equimolar mixture of UF₄ and UN is heated, the product is then the equimolar mixture of UF₃ and UNF, regardless of the presence of nitrogen. In the case of UF₄: UN = 1:3, UNF is obtained as the single phase. Therefore, the reaction of UF₄ with UN can be generally described as

$$x \operatorname{UF}_{4}(s) + y \operatorname{UN}(s) = \frac{3x - y}{2} \operatorname{UF}_{3}(s) + \frac{3y - x}{2} \operatorname{UNF}(s) + \frac{x - y}{4} \operatorname{N}_{2}(g).$$
(8)

By using the free energies for the formation of UF₃ and UF₄[10], it cannot be shown thermochemically that the reaction of UF₄ with UN yields UF₃ even at temperatures as high as 1000°C. Actually, however, the reaction takes place at temperatures above 700°C *in vacuo*, and proceeds at a sufficient velocity at temperatures between 800 and 900°C. Therefore, the thermochemical data for UF₃ and UF₄ should be reexamined.

The reaction (1) is composed of two equations (a) and (b):

$$UN \rightarrow U + \frac{1}{2}N_2, \qquad (a)$$

$$3 UF_4 + U \rightarrow 4 UF_3. \tag{b}$$

$$3 \text{ UF}_4 + \text{UN} \rightarrow 4 \text{ UF}_3 + \frac{1}{2} \text{N}_2.$$
 (1)

The nitrogen pressures in Eqn(1) around 1120K were already given as Eqn (3). Using this equation, the temperature where the nitrogen pressure becomes 1 atm is taken to be 913°C. This temperature agrees well with the result that the reaction in the mole ratio UF₄: UN = 3:1 yields only UF₃ at 950°C even at 1 atm nitrogen. Assuming that the reaction system is in equilibrium and the activities of UF₃ and UF₄ are unity, the Gibbs free energy change of the reaction (1) is shown as

$$\Delta G_T^{\circ} = 107.4 - 90.5(T/1000) \text{ (kcal/mole, 1100-1150K)},$$
(9)

and the value at 1100K becomes $\Delta G_{1100}^{\circ}(1) = 7.9$ kcal/mole. The reaction (a) is the decomposition of UN. Its free energy change at 1100K evaluated from the data in the literature is $\Delta G_{1100}^{\circ}(a) = 49.4$ kcal/mole[11]. The free energy change of the reaction (b), obtained from Eqn (1) and (a), is thus $\Delta G_{1100}^{\circ}(b) = -41.5$ kcal/mole. On the other hand, the free energies for the formation of UF₃ and UF₄ at 1100K estimated by Rand and Kubaschewski[10] are -285.0 and -376.1 kcal/mole, respectively, so that the free energy change in Eqn (b) is $\Delta G_{1100}^{\circ}(b) = -11.9 \text{ kcal/mole}$. The difference in $\Delta G_{1100}^{\circ}(b)$ values between the present result and Rand and Kubaschewski's result[10] is about 30 kcal/mole. If calculation is based on the free energy for the formation of UF₄, the value for UF₃, obtained from the present results, is $\Delta G_{1100}^{\circ} = -292.5 \text{ kcal/mole}$; which is in agreement with that determined by Long and Blankenship[12], $\Delta G_{1100}^{\circ} = -295 \pm 5 \text{ kcal/mole}$.

Acknowledgments—The author wishes to express his appreciation to Dr. H. Hashitani and Mr. H. Yoshida for chemical analysis and to Drs. T. Ishimori and K. Ueno for their encouragements.

REFERENCES

- 1. H. Hashitani and H. Yoshida, Bunseki Kagaku 16, 44 (1967).
- 2. H. Hashitani and H. Yoshida, Bunseki Kagaku 19, 1081 (1970).
- 3. ASTM card No. 9-339; see also E. Staritzky and R. M. Douglass, Analyt. Chem. 28, 1056 (1956).
- K. Yoshihara, M. Kanno and T. Mukaibo, J. inorg. nucl. Chem. 31, 985 (1969).
- 5. J. J. Katz and E. Rabinowitch, *The Chemistry of Uranium*, p. 349. McGraw-Hill, New York (1951).
- 6. O. J. C. Runnalls, Can. J. Chem. 31, 694 (1953).
- 7. R. Juza und R. Sievers, Naturwissenschaften 52, 538 (1965).
- 8. R. Juza und W. Meyer, Naturwissenschaften 53, 552 (1966).
- 9. R. Juza und W. Meyer, Z. anorg. allg. Chem. 366, 43 (1969).
- M. H. Rand and O. Kubaschewski, The Thermochemical Properties of Uranium Compounds, Oliver and Boyd, London (1963); see also AERE-R 3487 (1960).
- 11. H. Tagawa, J. nucl. Mater. 51, 78 (1974).
- 12. G. Long and F. F. Blankenship, ORNL-TM-2065, Part I, 1969.