phys. stat. sol. (a) <u>117</u>, K189 (1990) Subject classification: 61.70 and 78.30; S10.1 Department of Chemistry, Technical University of Dresden¹) <u>Identification of LiO Bands in the Infrared Spectra</u> of the Insertion Compound δ -LiV₂O₅ By E. PIGORSCH and W.E. STEGER

<u>Introduction</u> Vanadium pentoxide, V_2O_5 , is known for its ability to form $\text{Li}_xV_2O_5$ compounds by inserting Li^+ ions. This insertion process can be performed by chemical /1, 2/ or electrochemical /3/ techniques at room temperature.

According to X-ray studies /1, 2/ the three phases α -, ϵ -, and δ -Li_xV₂O₅ with composition (0 < x \leq 0.1), (0.35 \leq x \leq 0.5), and (0.9 \leq x \leq 1.0), respectively, were considered to contain the basic V₂O₅ structure nearly unaltered save for slight expansion. A study into δ -LiV₂O₅ proceeding by way of stepwise structure refinements by neutron and X-ray diffraction data /4/ has shown that an alternative shifting of V₂O₅ sheets occurs in order to accomodate the Li⁺ ions in rather regular tetraedric coordination.

Before these results were available, nothing about the Li⁺ positions in ambient temperature $\operatorname{Li}_{X}V_{2}O_{5}$ compounds was known positively, and some conclusions were drawn from the infrared spectra of α -, ε -, and δ -Li_XV₂O₅ /7/. The tetrahedral coordination of Li⁺ by two O atoms in V-O-V bridges and two atoms from V=O was proposed, just as it is established now. But this was deduced from changes in V-O vibrations only, since so far the Li-O vibrations had not been identified. To this end experiments with ⁶Li were done. It is known /9 to 11/ that Li-O vibration bands lie in the range of 500 to 350 cm⁻¹ for tetrahedral coordinated Li⁺ and lower at 300 cm⁻¹ for octahedral coordinated Li⁺. Therefore we prepared δ -LiV₂O₅ with natural lithium which is practically ⁷Li (92.6%) and with ⁶Li (90.6%) in order to compare their infrared spectra especially in the range of 450 to 200 cm⁻¹ to identify Li-O bands.

<u>Experimental</u> The &-LiV₂O₅ samples were obtained by reduction of solid V₂O₅ with lithium iodide in acetonitrile as described by Murphy et al. /1/. ⁶LiI was prepared by dissolving metallic ⁶Li (90.6%) in water and neutralizing with HI solution. The salt was dried in vacuo at 150 ^oC.

Electrochemical formation of δ -LiV_2O_5 was achieved in galvanic cells of the structure Li/PC, LiClO_4/V_2O_5.

Infrared spectra were obtained by means of a FTIR spectrometer IRF 180 in the range of 450 to 200 cm⁻¹ using TlBr pressed disks.

¹) Mommsenstr. 13, DDR-8027 Dresden, GDR.

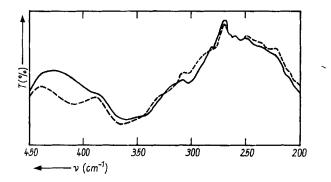


Fig. 1. Infrared spectra between 450 to 200 cm⁻¹ of $^{7}LiV_{9}O_{5}$ (--) and $^{6}LiV_{9}O_{5}$ (---)

<u>Results</u> Fig. 1 shows the infrared spectra of samples of chemically prepared ${}^{6}{}_{\rm LiV_2O_5}$ and ${}^{7}{}_{\rm LiV_2O_5}$ compounds. In comparison to V_2O_5 /12, 13/ the spectra exhibit one main band near 360 cm⁻¹ which does not show any significant difference in both compounds. Therefore it has to be assigned to new V-O vibrations resulting from changes in the V_2O_5 lattice in the course of lithium insertion /8/. At 390 cm⁻¹ there is a shoulder on the flank of the V-O band for ${}^{7}{}_{\rm LiV_2O_5}$. For ${}^{6}{}_{\rm LiV_2O_5}$ this shoulder is shifted to 408 cm⁻¹ and appears as a resolved band. We can assign this band to a Li-O vibration for a tetrahedral or more generally fourfold coordinated Li⁺ ion. The isotopic shift of about 18 cm⁻¹ agrees well with the value reported by Tarte /9/.

Spectra of $\text{Li}_x V_2 O_5$ samples with x = 0.8 and 0.9 also show the Li-O bands but with lower intensity.

Electrochemically prepared $\text{Li}_x V_2 O_5$ compounds give the same infrared spectra as chemically prepared samples.

The intensity of the Li-O band is rather low, because of the small polarity of the Li-O bonds. Apparently the change in electric dipole moment is much higher in V-O vibrations.

<u>Conclusion</u> From the isotopic shift of a band near 400 cm⁻¹ in the infrared spectra we may conclude that in the structure of δ -LiV₂O₅ the Li⁺ ions occupy fourfold coordinated sites. But without the results reported by Cava et al. /4/ infrared spectroscopy as an indirect method of structure elucidation could not arrive at the correct Li positions. The former assertion of an unchanged V₂O₅ lattice for δ -LiV₂O₅ /1, 2/ led to a not very probable structure with alternative twofold occupied and empty vacancies /7/.

We are confident that our further investigations of the $\text{Li}_x V_2 O_5$ (0 < x \leq 1) insertion compounds by infrared and NMR spectroscopy are better supported now. References

- /1/ D.W. MURPHY, P.A. CHRISTIAN, F.J. DI SALVO, and J.V. WASCZAK, Inorg. Chem. <u>18</u>, 2800 (1979).
- /2/ G.G. DICKENS, S.J. FRENCH, A.T. HIGHT, and M.F. PYE, Mater. Res. Bull. <u>14</u>, 1295 (1979).
- /3/ M.S. WITTINGHAM, J. Electrochem. Soc. 123, 315 (1976).
- /4/ R.J. CAVA, A. SANTORO, D.W. MURPHY, S.M. ZAHURAK,
 R.M. FLEMING, P. MARSH, and R.S. ROTH,
 J. Solid State Chem. 65, 63 (1986).
- /5/ K. WIESENER, K. SCHNEIDER, D. ILIC, E. STEGER, K.H. HALLMEIER, and E. BRACKMANN,
 - J. Power Sources 20, 157 (1987).
- /6/ S. EGGEBRECHT, Diploma Project, TU Dresden, 1987.
- (7) W.E. STEGER, Progress in Molecular Spectroscopy, Teubner-Texte zur Physik, Vol. 20, Leipzig 1988 (p. 164).
- /8/ E. PIGORSCH, unpublished.
- /9/ P. TARTE, Spectrochim. Acta 20, 238 (1964).
- /10/ Y. HASE, Spectrochim. Acta A 35, 377 (1979).
- /11/ L.N. KURILENKO, Izv. Akad. Nauk SSSR, Ser. khim. <u>5</u>, 966 (1988).
- /12/ P. CLAUWS, J. BROECKX, and J. VENNIK, phys. stat. sol. (b) 131, 459 (1985).
- /13/ L. ABELLO, E. HUSSON, Y. REPLIN, and G. LUCAZEAU, Spectrochim. Acta A <u>39</u>, 641 (1983).

(Received December 28, 1989)