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Abstract
The methylene group of various substituted 2- and 4-benzylpyridines, benzyldiazines and benzyl(iso)quinolines was successfully

oxidized to the corresponding benzylic ketones using a copper or iron catalyst and molecular oxygen as the stoichiometric oxidant.

Application of the protocol in API synthesis is exemplified by the alternative synthesis of a precursor to the antimalarial drug

Mefloquine. The oxidation method can also be used to prepare metabolites of APIs which is illustrated for the natural product papa-

verine. ICP–MS analysis of the purified reaction products revealed that the base metal impurity was well below the regulatory limit.
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Introduction
Direct oxidation of C(sp3)–H bonds is a useful and fast method

to convert fairly unreactive substrates to useful functional

groups for organic synthesis like alcohols, ketones, aldehydes

and carboxylic acids. Classical oxidation protocols rely on the

use of (super)stoichiometric quantities of oxyanions of toxic

metals like Mn(VII) and Cr(VI) [1,2]. The amount of waste

these oxidants produce and limitations on their use by new

legislation [3] has prompted scientists to search for more sus-

tainable oxidation methods. The use of transition metal- or

organocatalysis in combination with molecular oxygen has

received a great deal of attention from the scientific community

[4-7]. Molecular oxygen is considered to be the greenest

oxidant available and it is already widely employed by the

commodity chemical industry [8]. However, when looking at

the preparation of more complex molecules, typical for fine

chemicals, the use of aerobic oxidations is more the exception

than the norm [9]. This is partly due to the limited synthetic

scope and selectivity of the available oxidation methods.

Further research into selective and mild aerobic oxidations is

therefore of vital importance. Of special interest are the transi-

tion metal- and organocatalyzed oxidations of activated methyl-

enes such as in benzylic methylenes or their heteroaromatic an-
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alogues. Due to the activation, the formation of the correspond-

ing ketones and aldehydes becomes feasible under mild condi-

tions. Oxidations of this kind using Oxone® [10,11], NaOCl

[12] or especially peroxides [13-19] as the terminal oxidant are

quite numerous. However, transformations using molecular

oxygen are rare. Ishii showed that organocatalysts such as

N-hydroxyphthalimide (NHPI) in combination with molecular

oxygen can be used to perform benzylic oxidations [20]. The

aerobic copper-catalyzed α-oxygenation of 2-arylthioacet-

amides was reported by Moghaddam [21]. In this trans-

formation CuCl2 and K2CO3 in DMF were used to produce

α-ketoarylthioacetamides. The coupling of 2-arylacetaldehydes

with anilines resulting in the formation of 2-aryl-α-ketoacet-

amides was reported by Jiao [22] and a closely related intramo-

lecular variant leading to isatins has been published by

Ilangovan [23]. A remarkable Cu-catalyzed chemoselective oxi-

dative C–C bond cleavage of methyl ketones was reported by

the group of Liu and Bi [24]. This useful transformation makes

use of CuI/O2 in DMSO to convert methyl ketones into alde-

hydes in a sustainable manner.

Recently our group reported a synthetic protocol for the copper-

and iron-catalyzed aerobic oxidation of the methylene group of

aryl(di)azinylmethanes using acetic acid as a promotor [25].

The resulting ketones are very valuable as they are intermedi-

ates in the synthesis of a variety of pharmaceuticals such as the

antimalarial Mefloquine (Lariam®), the antihistamine Acrivas-

tine, the β2-adrenergic agonist Rimiterol and the anxiolytic

Bromazepam [26]. Furthermore, they can also be used to

synthesize the 1st and 2nd generation antihistamines Carbinox-

amine, Bepotastine and Triprolidine through an alternative syn-

thetic route. In addition to these synthetic examples it has been

shown by Kamijo that 4-benzoylpyridines can act as efficient

organocatalysts in the photoinduced oxidation of secondary

alcohols [27]. Very recently the group of Zhuo and Lei

disclosed an alteration to our reaction conditions to further

extend the substrate scope [28]. Ethyl chloroacetate was used as

the promotor instead of acetic acid, allowing the authors to ad-

ditionally oxidize less reactive alkyl-substituted pyridines. Gao

showed that NH4I can also be used as an organocatalyst in com-

bination with AcOH to facilitate the oxidation of benzyl-

pyridines to benzoylpyridines [29]. Satoh and Miura showed

that when replacing O2 for Na2S2O8 chemoselective methylena-

tion occurred over oxygenation of the methylene with DMA

acting as a one-carbon source [30]. An alternative method to

synthesize picolinic amides from picolines and ammonium

acetate or amines using a similar oxidation protocol was simul-

taneously proposed by the groups of Deng and Yin [31,32]. In

the current work we study the expansion of the scope of our

previously disclosed method and provide specific examples of

applications in organic synthesis.

Results and Discussion
Substrate scope
In our communication we provided a reaction scope of phenyl-

substituted 2-benzylpyridines and showed that both, electron-

withdrawing and donating groups are well tolerated. The results

additionally indicated that either Cu and Fe catalysts (CuI and

FeCl2·4H2O) worked equally well for this substrate class [25].

In the framework of this work a similar study was executed for

the regioisomeric 4-benzylpyridines using FeCl2·4H2O as the

catalyst. Under the standard conditions previously developed

for 2-benzylpyridines these substrates smoothly oxidized giving

the corresponding ketones in moderate to good yields (Table 1).

Also in this case electron-donating as well as electron-with-

drawing substituents on the phenyl ring are well tolerated and

their electronic properties have little influence on the yield of

the reaction. Even substituents that are sensitive to oxidation

such as NH2 (2b) and SMe (2c) appear to be no problem al-

though the reaction products were isolated in slightly lower

yields.

Table 1: Iron-catalyzed aerobic oxidation of phenyl-substituted
4-benzylpyridines (1).a

Entry Substrate R Product Yield (%)b

1 1a H 2a 70
2 1b NH2 2b 55
3 1c SMe 2c 56
4 1d OMe 2d 67
5 1e Me 2e 79
6 1f I 2f 77
7 1g Br 2g 85
8 1h Cl 2h 66
9 1i F 2i 76
10 1j CO2Et 2j 61
11 1k CN 2k 79
12 1l NO2 2l 60

aReactions were performed on a 0.5 mmol scale in 1 mL of solvent
using 1 atmosphere of O2 (balloon). bIsolated yields.

Next, pyridine rather than phenyl-substitution was studied. In

contrast to the phenyl-substituted compounds, substitution on

the pyridine ring exerted a large influence on the rate of the

reaction (Table 2). This is not surprising when considering the

mechanism of the reaction involving an initial acid catalyzed

imine–enamine tautomerization (the calculation of the equilib-

rium constants can be found in Supporting Information File 1,
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Table 2: Iron and copper-catalyzed aerobic oxidation of pyridine-substituted 2-benzylpyridines (3).a

Entry Catalyst Substrate R Product Yield 3 (%)b Yield 4 (%)b

1 FeCl2·4H2O 3a 5-CN 4a 19 67
2 CuI 3a 5-CN 4a 18 66
3 CuI 3a 5-CNc 4a 0 83
4 FeCl2·4H2O 3b 5-Me 4b 9 73
5 CuI 3b 5-Me 4b 9 82
6 CuI 3b 5-Mec 4b 0 72
7 FeCl2·4H2O 3c 5-OMe 4c 65 15
8 CuI 3c 5-OMe 4c 66 15
9 CuI 3c 5-OMed,e 4c 0 65
10 FeCl2·4H2O 3d 5-CO2Me 4d 0 69
11 CuI 3d 5-CO2Me 4d 0 62
12 FeCl2·4H2O 3e 5-NHCOMe 4e 0 64
13 CuI 3e 5-NHCOMe 4e 27 56
14 CuI 3e 5-NHCOMec 4e 0 91
15 FeCl2·4H2O 3f 4-Cl 4f 0 85
16 CuI 3f 4-Cl 4f 8 88
17 FeCl2·4H2O 3g 3-Cl 4g 73 23
18 CuI 3g 3-Cl 4g 71 22
19 CuI 3g 3-Cld,e 4g 0 87
20 FeCl2·4H2O 3h 5-Cl 4h 70 20
21 CuI 3h 5-Cl 4h 69 15
22 CuI 3h 5-Cld,e 4h 0 92
23 FeCl2·4H2O 3i 6-Cl 4i 90 0
24 CuI 3i 6-Cl 4i 91 0
25 CuI 3i 6-Cle, f 4i 0 59

aReactions were performed on a 0.5 mmol scale in 1 mL of solvent using 1 atmosphere of O2 (balloon). bIsolated yields. c48 h. dAcOH (3 equiv).
e130 °C. fTFA (3 equiv).

Table S1) [33]. As the substituent is now located in the ring

where the tautomerization will take place the electronic effect

and the position of this substituent is expected to have a large

effect on it. In general one expects the tautomerization to

proceed more efficiently when the pyridine nitrogen becomes

more basic and the methylene hydrogen becomes more acidic.

In Table 2 the results on pyridine-substituted 2-benzylpyridines

using both Fe and Cu catalysis are shown. Under the standard

conditions only a small number of substrates reached full

conversion after 24 hours. Based on our findings that placing

substituents on the phenyl ring, both in 2- and 4-benzyl-

pyridines and irrespective of their electronic nature, has little in-

fluence on the yield of the reaction the largest substituent effect

is expected to be on the basicity of the pyridine nitrogen and not

that much on the acidity of the methylene hydrogen.

While the thermodynamical equilibrium constant between the

imine and enamine tautomers predicts whether or not a sub-

strate can be oxidized (see Supporting Information File 1), it

does not provide an explanation for the incomplete conversion

that is seen in most cases of the pyridine-substituted 2-benzyl-

pyridines. We attribute the low conversions to the fact that the

pyridine nitrogen becomes less basic and therefore protonation

by AcOH becomes unfavored. This is supported by the fact that

the rate of deuterium incorporation in the benzylic position of

16 and 3h through acid-catalyzed imine–enamine tautomeriza-

tion is dependent on the strength of the acid used (Figure 1).

The rate of deuterium incorporation in 2-benzylpyridine (16,

pKa ≈ 5.2) is much faster when using TFA-d1 than with AcOH-

d4 [34,35]. With the less basic 2-benzyl-5-chloropyridine (3h,

pKa ≈ 3.0) the difference is even more pronounced: Almost no
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Figure 1: Hydrogen–deuterium exchange through acid-catalyzed imine–enamine tautomerization of 3h (0.5 M) and 16 (0.5 M) using AcOH-d4 (0.5 M)
or TFA-d1 (0.5 M). 1H NMR spectroscopy was used to quantify the monodeuterated species.
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Scheme 1: Benzylic oxygenation of benzoannulated azines and diazines (5).

deuterium incorporation could be detected using AcOH-d4

while the reaction ran smoothly using the stronger acid TFA-d1.

From this we conclude that when the pyridine nitrogen becomes

less basic and protonation by the acid thus becomes more diffi-

cult, using more equivalents of the acid or a stronger acid

is needed to reach full conversion. When we compare the

different pKa values of substituted pyridines we see that

2-benzylpyridine (16, pKa ≈ 5.2) is one of the most basic

pyridines [34,35]. Substituents in the 5-position generally give

poor conversion in accordance with their lower pKa values:

5-CN (pKa ≈ 1.3, Table 2, entries 1 and 2), 5-OMe (pKa ≈ 4.9,

Table 2, entries 7 and 8) and 5-Cl (pKa ≈ 3.0, Table 2, entries 20

and 21) with the exception of 5-CO2Me (pKa ≈ 3.1, Table 2,

entries 10 and 11). When investigating regioisomeric substrates

featuring chloro substituents in all possible positions of the

pyridine ring only the 4-Cl (pKa ≈ 3.8, Table 2, entries 15 and

16) substrate reaches full conversion under the standard condi-

tions. The 3-Cl and 5-Cl regioisomers have a similar pKa value

(pKa ≈ 2.98) and therefore show similar reactivity (Table 2,

entries 17 and 18 and entries 20 and 21) with only limited

conversion. A remarkable case is the 6-Cl-substituted substrate

(pKa ≈ 0.8, Table 2, entries 23 and 24), which did not react at all

under the standard conditions. The low basicity of the pyridine

nitrogen is the reason for this lack of reactivity. In addition the

enamine form of this compound is also highly unfavored (see

Supporting Information File 1).

To reach full conversion for all substrates we re-optimized the

reaction conditions. Although similar results for Fe and Cu ca-

talysis were obtained after 24 h, CuI was selected for this

purpose. The reasoning behind this is reflected in the chemose-

lectivity experiments (vide infra), where it was shown that CuI

is a slightly more potent catalyst than FeCl2·4H2O. Additional-

ly, comparison of the reaction rate for both catalysts on the

standard substrate 2-benzylpyridine (16) further supports this

(vi,Cu = 1.088 × 10−3 M min−1; vi,Fe = 1.013 × 10−3 M min−1,

see Supporting Information File 1, Figure S2). For substrates

that already gave reasonable conversions (>60%) using the stan-

dard conditions (Table 2, entries 3, 6 and 14) the reaction time

was doubled to 48 hours which was sufficient to achieve full

conversion. For substrates that are harder to oxidize (<60%

conversion) due to too low pKa a combination of a higher tem-

perature and the addition of more (three) equivalents of acetic

acid was needed (Table 2, entries 9, 19 and 22). Considering the

low basicity of compound 3i, 3 equivalents of the stronger acid

TFA were used (Table 2, entry 25).

Next, the effect of benzoannulation (quinoline) and C–H for N

substitution (diazines) in the pyridine ring was studied.

Scheme 1 provides an overview of the results for these more

challenging substrates. Interestingly, phenyl(quinolin-2-

yl)methanone (6a) and phenyl(quinolin-4-yl)methanone (6b)

were formed in moderate yields indicating that larger aromatic

systems are compatible with the reaction conditions. In the case

of 2-(4-chlorobenzyl)pyrimidine (5c) the standard conditions

allowed smooth oxidation providing the target compound

in an excellent yield. For the regioisomeric diazine, (4-chloro-

benzyl)pyrazine (5d), no oxidation was observed after 24 h at

100 °C. To our delight, by increasing the reaction temperature

to 130 °C, (4-chlorophenyl)(pyrazin-2-yl)methanone (6d) could
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Scheme 2: Classical (top) and new formal (bottom) synthesis of Mefloquine.

be obtained in 92% yield. In contrast to the two former cases,

4-(4-chlorobenzyl)pyrimidine (5e) could neither be oxidized at

100 °C nor at 130 °C. Competitive C–H activation of the 2 posi-

tion is presumed to be the reason for this observation. Blocking

this position by a methyl group (5f) delivered the correspond-

ing ketone 6f, albeit in a poor yield of 40%, thus supporting the

metalation hypothesis. The regioisomer of diazine 5f, 3-benzyl-

6-methylpyridazine (5g), could be smoothly oxidized to the cor-

responding ketone in 81% yield. It is worth mentioning that in

5f as well as 5g no additional oxidation of the methyl group was

seen [25].

Applications
An example of an important pharmaceutical which is industri-

ally prepared from an azinyl benzoazinyl ketone, namely (2,8-

bis(trifluoromethyl)quinolin-4-yl)(pyridin-2-yl)methanone (10),

is the antimalarial Mefloquine (13) [36]. This drug is listed on

the World Health Organization essential medicines list and

despite numerous side effects it remains one of the most effec-

tive antimalarial drugs on the market [37,38]. Its classical syn-

thesis (Scheme 2, top) is based on the lithiation of 4-bromo-2,8-

bis(trifluoromethyl)quinoline (7a) and quenching with CO2 re-

sulting in the formation of 2,8-bis(trifluoromethyl)quinoline-4-

carboxylic acid (8). Reaction of 8 with in situ generated

2-pyridyllithium (9) finally yields ketone 10 [39].

We considered a new approach based on 4-(pyridin-2-

ylmethyl)-2,8-bis(trifluoromethyl)quinoline (12) as the sub-

strate. This compound is structurally interesting as it is acti-

vated by both a pyridin-2-yl and a quinolin-4-yl moiety

(Scheme 2, bottom). The synthesis of substrate 12 was accom-

plished by a cross-coupling reaction of pyridine alcohol 11 with

commercial 4-chloro-2,8-bis(trifluoromethyl)quinoline (7b) ac-

cording to a procedure published by Oshima [40]. In this way,

12 was obtained in 63% yield and its subsequent Fe-catalyzed

oxidation provided 10 in 63% isolated yield. In principle sub-

strate 7a could also be used but the chloro analogue is cheaper.

The final reduction of 10 into Mefloquine has been described

earlier and can also be achieved in an enantioselective manner

[41].

Human metabolism can produce metabolites of pharmaceuti-

cals that possess completely different properties such as for

instance biological activity, toxicity and clearance rates. Rapid

identification and synthesis of potential drug metabolites is

therefore of great importance to facilitate the drug discovery

process [42]. For this purpose chemoselective oxidation proto-

cols are a valuable tool since they can provide us with metabo-

lites typically generated by cytochrome P450 enzymes. Bearing

this in mind we attempted to oxygenate the benzylic position of

the antispasmodic drug papaverine (14) applying our oxidation

protocol (Scheme 3). The resulting compound is known as

papaveraldine (15), a byproduct from the extraction of papa-

verine from Papaver somniferum. Papaverine is a challenging

substrate as besides the methylene part it also features two oxi-

dation sensitive veratrole units. Interestingly, a highly chemose-
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Scheme 3: Iron-catalyzed aerobic oxidation of papaverine (15).

Table 3: The influence of the purification method on the amount of Fe impurities in papaveraldine (15) after oxidation.

Entry Purification method Fe impurity in 15 (ppm)

1 Extractiona + column chromatographyb 54
2 Extractiona 1097
3 Extractiona + recrystallizationc 300

aWashing subsequently with sat. aq NaHCO3 and brine, extraction with dichloromethane. bSilica flash cartridge applying a heptane/ethyl acetate
gradient. cRecrystallization from a 2 M HCl solution.

lective oxidation was observed and compound 15 was isolated

in 60% yield.

Trace metal analysis
When using transition metal catalysis in the synthesis of com-

pounds designated for application (pharmaceuticals, agrochemi-

cals, materials) it is of vital importance to control and deter-

mine any metal impurity in the reaction product. In case the

selected purification methods proved insufficient to get the

metal contaminations below the maximum allowed threshold

value set for active ingredients (AIs), an extra treatment might

be required. This is especially true if the catalysis is performed

in a late stage of a synthesis thus making the method less attrac-

tive and sustainable. While class 1 metals such as Pd and Pt

have oral exposure limits of 10 ppm, Cu and Fe are respective-

ly class 2 and class 3 metals with oral exposure limits of

250 ppm and 1300 ppm [43]. The fact that Cu and Fe are more

abundant, cheaper and benign makes them an interesting choice

as transition metal catalysts. To determine the Cu and Fe

contents present in our samples ICP–MS analysis was per-

formed. Copper contents ranged from 5 to 21 ppm, all well

below the limit of 250 ppm. Iron contents were slightly higher

ranging from 29 to 57 ppm but again still well below the regula-

tory maximum value (see Supporting Information File 1, Figure

S1). It should be noted that these values pertain to the purified

compounds after column chromatography. The influence of the

work-up procedure on the remaining metal impurities was in-

vestigated for one of our applications, namely the papaveral-

dine (15) synthesis (Table 3). Applying the standard purifica-

tion resulted in 54 ppm of Fe remaining. Omitting the column

chromatography step and solely performing the aqueous extrac-

tion provided a much higher value, namely 1097 ppm. Howev-

er, if after the extraction a recrystallization step of the reaction

product is performed the Fe level can be lowered further to

300 ppm which is well below the legal limit for oral exposure

(see Supporting Information File 1).

Alternative solvents
A solvent screening was subsequently performed focusing

mainly on greener solvents than DMSO with a boiling point

above 100 °C in order to allow a direct comparison at the same

reaction temperature [44,45] (Table 4). All reactions were per-

formed in a round-bottomed flask equipped with a reflux

condenser under oxygen atmosphere at a 5 mmol scale to

be able to reliably quantify remaining starting material.

2-Benzylpyridine (16) was selected as the substrate for this

study. The reaction in anisole and n-BuOAc gave full conver-

sion after 24 hours with excellent yields. With 1,4-dioxane, tol-

uene, cyclopentyl methyl ether and n-BuOH as the solvent some

starting product was recovered, however, with a good mass

balance suggesting that the reaction is just slower in these sol-

vents than in DMSO. From this we can conclude that the reac-

tion is compatible with a variety of other solvents. In addition to

the above results, Kappe et al. successfully applied our protocol

in a flow process [46]. They intensified the process by working

at 200 °C which allowed them to lower the catalyst loading

(FeCl3) to 5 mol % and to omit acetic acid as the activator. As

DMSO degraded and produced repulsive odors at these high
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Table 5: Chemoselectivity obtained by selection of catalyst and solvent.a

Entry Substrate Catalyst Solvent Yield 19 (%)b Yield 20 (%)b

1 18a CuI DMSO 0 61
2 18a FeCl2·4H2O DMSO 57 0
3 18a CuI n-BuOAc 78c 0
4 18bd CuI DMSO 0 62
5 18bd FeCl2·4H2O DMSO 85 0
6 18b CuI n-BuOAc 64 0

aReactions were performed on a 0.5 mmol scale in 1 mL of solvent using 1 atmosphere of O2 (balloon). bIsolated yields. c48 h. dReported in our com-
munication, see [25].

temperatures the authors switched to propylene carbonate as the

solvent.

Table 4: An extended solvent screening for the base metal-catalyzed
aerobic oxidation reaction.a

Entry Solventb Yield 16 (%)c Yield 17 (%)c

1 DMSOd 0 87
2 anisolee 0 85
3 n-BuOAce 0 89
4 1,4-dioxanef 2 85
5 toluened 18 67
6 CPMEd 5 80
7 n-BuOHe 5 73

aReactions were performed on a 5 mmol scale in 10 mL of solvent
using 1 atmosphere of O2 (balloon). bClassification of solvents as pro-
vided in [44]. cIsolated yields. dProblematic. eRecommended.
fHazardous.

Chemoselectivity
When multiple activated methylene motifs are present the

chemoselective oxidation of one of these positions can be

achieved as we previously exemplified for 2-methyl-6-(4-

methylbenzyl)pyridine (18b, Table 5, entries 4 and 5). This

interesting selectivity was further expanded on 6-(4-methyl-

benzyl)-2-methylpyrazine (18a). Pyrazine 18a features three

possible positions for methylene oxidation: a benzyl,

benzhydryl and a 1,4-diazinylmethyl moiety. When 18a was

submitted to the Cu-catalyzed reaction conditions at 130 °C,

only the bis-oxidation product 6-(4-methylbenzoyl)pyrazine-2-

carbaldehyde (20a) was obtained in 61% (Table 5, entry 1).

Interestingly, when switching to FeCl2·4H2O as the catalyst

in the reaction, only mono-oxidation at the benzhydrylic

methylene occurred, providing (6-methylpyrazin-2-yl)(p-

tolyl)methanone (19a) in 57% yield (Table 5, entry 2). A simi-

lar chemoselectivity was observed for the oxidation of 18b

where Cu catalysis lead to bis-oxidation (20b, Table 5, entry 4)

while Fe catalysis resulted in mono-oxidation (19b, Table 5,

entry 5).

When the reaction with 18a using Cu catalysis is performed in

n-BuOAc as solvent instead of DMSO only compound 19a was

isolated after 48 hours of reaction (starting material was still

present after 24 hours, Table 5, entry 3). The same trend was

observed in the reaction of 18b. Here under Cu catalysis at

130 °C in n-BuOAc also only benzhydrylic oxidation occurred

and (6-methylpyridin-2-yl)(p-tolyl)methanone (19b) was isolat-

ed in 64% yield as the sole product. These results demonstrate

that the oxidation power of the catalytic system can be tuned by

careful selection of the solvent as well as the base metal.

Conclusion
This work shows that the oxidation protocol disclosed in 2012

by our group can be applied to a much broader substrate scope

than originally investigated. Furthermore we have shown that

when the nature of the substituents does not permit full conver-
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sion after 24 hours, the standard conditions can be easily

amended to increase the rate of the reaction. ICP–MS analysis

was performed on a representative set of molecules from the

scope disclosed to determine the Cu or Fe impurities remaining

after work-up of the reaction products. This revealed that only

low amounts remained, that are well below the regulatory

limits. In addition, for papaveraldine a comparison between dif-

ferent purification procedures was performed in order to deter-

mine their influence on the amount of metal impurity

remaining. While the reaction is compatible with a large num-

ber of solvents including sustainable ones, DMSO appears to

give the fastest reactions. This is also reflected in the chemose-

lectivity studies where DMSO is the only solvent in which oxi-

dation of a (di)azinylmethyl is possible.

Supporting Information
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Experimental procedures, compound characterization data

and copies of 1H and 13C NMR spectra of all new starting
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