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Abstract A concise and practical method was developed for the pro-
todeboronation of arylboronic acids under mild conditions in aqueous
NaClO at 100 °C. The strategy is low-cost, transition-metal-free, and
base-free.
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Arylboronic acids and their derivatives are valuable re-

agents that have been extensively used in cross-coupling

reactions to construct C–C, C–O, C–N and C–X bonds.1 In re-

cent decades many reports have appeared on transition-

metal-catalyzed Suzuki–Miyaura cross-coupling reactions

of arylboronic acids to form biaryls.2 In these reactions,

protodeboronation of the arylboronic acid is a common side

reaction, and was considered to be of no use in organic syn-

thesis; consequently, it attracted little attention. In recent

years, however, the deliberate removal of the –B(OH)2

group has attracted increasing attention, and remarkable

progress has been made. For example, Aggarwal and co-

workers reported enantioselective syntheses of natural or

nonnatural compounds through protodeboronation of allyl-

and/or alkylboronic esters,3,4 which markedly promoted the

application of protodeboronation.

Transition-metal-catalyzed transformation reactions

are widely used in organic synthesis,5 and there have been

several studies on transition-metal-catalyzed protodeboro-

nations of arylboronic acids. As early as in 1930, Ainley and

Challenger reported a protodeboronation with metallic

salts, including CuSO4, CrBr3, and ZnCl2, in organic solvents

at high temperatures.6 Subsequently, Klingensmith et al.

found that phenylboronic acids bearing electron-donating

substituents showed increased rates of protodeboronation

in concentrated acid.7 S.-T. Liu and co-workers reported that

palladium nanoparticles efficiently catalyzed the deborona-

tion of arylboronic acids in an alcoholic medium under ba-

sic conditions.8 C. Liu et al. developed an efficient protocol

for the copper- and silver-catalyzed protodeboronation of

arylboronic acids in ethanolic media.9,10 Although many re-

ported methods are available for the protodeboronation of

arylboronic acids through transition metal-catalyzed or

other means, most require harsh conditions, such as the use

of metallic salts as catalytic systems, bases, concentrated

acids, and high temperatures, or use environmentally dam-

aging solvents.6–11 There is therefore still a need to develop

efficient and green conditions for protodeboronation of ar-

ylboronic acids.

In previous work, when we performed Pd-catalyzed oxi-

dative homocouplings of arylboronic acids in aqueous NaClO,

we found that a few protodeboronated byproducts were

formed under these conditions.12 This indicated that aryl-

boronic acids can undergo protodeboronation in aqueous

NaClO, and that a metal catalytic system might be dispens-

able in this reaction. To the best of our knowledge, few re-

ports have appeared on transition-metal-free conditions for

this reaction.13 We therefore explored and developed an ef-

ficient, transition-metal-free and base-free method for the

protodeboronation of arylboronic acids in aqueous NaClO

under mild conditions (Scheme 1).

We chose (2,5-dimethoxyphenyl)boronic acid (1a) as a

model substrate to identify the optimal reaction conditions,

and we examined the effects of various transition-metal

catalysts (Cu sources) and of TBAB as an additive (Table 1).

To study the effect of various Cu sources on the protodebor-

onation of arylboronic acids, we performed the reaction in

10.5 wt% aqueous NaClO in the presence of various Cu salts

[CuSO4, CuBr2, Cu(OAc)2, and Cu(OTf)2]. Boronic acid 1a was

converted into 1,4-dimethoxybenzene (2a) in yields of 55,

51, and 56% in the presence of CuSO4, Cu(OAc)2, or Cu(OTf)2,
© 2020. Thieme. All rights reserved. Synlett 2020, 31, A–D
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respectively (Table 1, entries 1, 3, and 7); however, when

CuBr2 was used, only a trace of 2a was found (entry 5).

When TBAB (20 mol%) was added, the yields of 2a were sig-

nificantly improved (entries 2, 4, 6, and 8); in particular, a

yield of 87% was obtained in the presence of CuSO4 and

TBAB (entry 2). Next, we examined whether a transition-

metal catalyst was necessary. In the absence of both a tran-

sition-metal catalyst and TBAB, the reaction in aqueous

NaClO gave none of the required product (entry 9). Surprising-

ly however, when TBAB alone was added, the yield of 2a in-

creased to 88% (entry 10), which was higher than that ob-

tained under any of the other conditions. Therefore, it was

quite clear that the optimal conditions for protodeborona-

tion of arylboronic acids involve the use of TBAB (20 mol%)

in 10.5 wt% aqueous NaClO at 100 °C for 12 hours.

Table 1  Optimization of the Protodeboronation of (2,5-Dimethoxy-
phenyl)boronic acid (1a)a

With the optimal reaction conditions in hand, a series of

arylboronic acids were chosen to study the scope of the

protodeboronation. In addition, to study the effects of the

type of substituent group (electron-donating and electron-

withdrawing groups) and the position of substituents (or-

tho or para), the reactions of various arylboronic acids were

examined under the standard reaction conditions. To our

delight, all substituted arylboronic acids gave the corre-

sponding products in good yields in aqueous NaClO (Table

2). From these results, we inferred that the type of substitu-

ent group has little influence on the protodeboronation. For

example, 2,5-(dimethoxyphenyl)boronic acid (1a) and (2-

chlorophenyl)boronic acid (1f) were converted into the cor-

responding products 2a and 2d in yields of 88 and 82%, re-

spectively; (4-morpholin-4-ylphenyl)boronic acid (1h) af-

forded product 2e in 89% yield; and (2-nitrophenyl)boronic

acid (1k) and [2-(trifluoromethyl)phenyl]boronic acid (1l)

gave the corresponding products 2g and 2h in yields of 85

and 83%, respectively.

Table 2  Protodeboronation of Various Arylboronic Acidsa

Entry [M] Additive Yieldb (%)

1 CuSO4 – 55

2 CuSO4 TBAB 87

3 Cu(OAc)2 – 51

4 Cu(OAc)2 TBAB 82

5 CuBr2 – trace

6 CuBr2 TBAB 38

7 Cu(OTf)2 – 56

8 Cu(OTf)2 TBAB 79

9 – – 0

10 – TBAB 88

a Reaction conditions: 1a (1 mmol), [M] (0.1 mmol), additive (0.2 mmol), 
10.5 wt% aq NaClO (5 mL), 100 °C, 12 h.
b Isolated yield.

Scheme 1  Protodeboronations of arylboronic acids
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4
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5
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Table 2 (continued)

Although arylboronic acids bearing electron-donating

or electron-withdrawing groups were suitable for this reac-

tion system, the position of the substituents had an obvious

effect on protodeboronation. In general, greater steric hin-

drance of the arylboronic acid was beneficial to this reac-

tion. In particular, the yields of ortho-substituted arylbo-

ronic acids (e.g., 1b, 1d, 1f, 1k, and 1l) were higher than

those of their para-substituted counterparts (e.g., 1c, 1e, 1g,

1j, 1m) (Table 2, entries 2–13). Moreover, 2-anthrylboronic

acid (1n) and 9-anthrylboronic acid (1o) gave anthracene

(2i) in yields of 84 and 91%, respectively (entries 14 and 15).

Finally, heterocyclic boronic acids were investigated to

check their susceptibility to the reaction conditions. Pleas-

ingly, quinolin-3-ylboronic acid (1p) and dibenzo[b,d]fu-

9

1i 2f

90

10

1j 2g

73

11

1k
2g

85

12

1l
2h

83

13

1m 2h

74

14

1n 2i

84

15

1o
2i

91

16

1p 2j

87

17

1q 2k

90

a Reaction conditions 1 (1 mmol), TBAB (0.2 mmol), 10.5 wt% aq NaClO (5 
mL), 100 °C, 6–12 h.
b Isolated yield.
c Isolated without column chromatography.
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ran-4-ylboronic acid (1q) gave quinoline (2j) and diben-

zo[b,d]furan (2k) in yields of 87 and 90%, respectively (en-

tries 16 and 17). These results showed that our improved

protocol for protodeboronation of arylboronic acids in wa-

ter is both concise and broadly applicable.

Based on the results of our study, we propose the mech-

anism shown in Scheme 2 for the NaClO-promoted pro-

todeboronation of arylboronic acids. Initially, the arylbo-

ronic acid undergoes addition of H2O to form an intermedi-

ate arylboronate anion. This is oxidized by NaClO to give the

required product, together with boric acid. In this process,

TBAB acts as a promoter to accelerate the formation of the

arylboronate anion, which leads to the oxidative pro-

todeboronation.

Scheme 2  Proposed mechanism for protodeboronation of arylboronic 
acids

In conclusion, we have developed a concise and practi-

cal method for the protodeboronation of arylboronic acids

under mild conditions in aqueous NaClO.14 This strategy

tolerates a broad scope of arylboronic acids and is low-cost,

transition-metal-free, and base-free.
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