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A practical and simple one-pot multi-catalysis process for the
synthesis of highly substituted benzo[b]oxepines 5, (Z)-2-
(buta-1,3-dienyl)phenols 6 and 2-methyl-2H-chromenes 7
from simple starting materials was achieved for the first time
through ring-closing metathesis/base-induced ring opening/
[1,7]-sigmatropic hydrogen shift reactions. The synthesis of

Introduction

Functionalized 2-(buta-1,3-dienyl)phenols and 2-methyl-
2H-chromenes are of considerable importance in a variety
of industries. They are, for instance, versatile building
blocks for the synthesis of natural products.[1] As such, the
development of new and more general catalytic methods for
their preparation is of significant interest.[1] Recently Sher-
burn et al.[2a] discovered the phosphane-mediated reaction
of 2-hydroxybenzaldehyde with allyltriphenylphosphonium
bromide in the presence of strong base providing a 2-(buta-
1,3-dienyl)phenol in moderate yield.

Herein we describe a novel one-pot and multi-catalysis
technology for the synthesis of highly substituted (Z)-2-
(buta-1,3-dienyl)phenols and 2-methyl-2H-chromenes start-
ing from highly substituted dienes [Equation (1)]. A ruthe-
nium/base/silica-catalyzed one-pot ring-closing metathesis
(RCM) and ring-opening/[1,7]-sigmatropic hydrogen shift
reactions are crucial steps in the reaction sequence. Func-
tionalized 2-(buta-1,3-dienyl)phenols are useful materials as
additives for rubbers and plastics, antioxidants, antibacte-
rial agents, antibiotics and hair dyeing.[1] The base-induced

(1)

[a] School of Chemistry, University of Hyderabad,
Hyderabad 500046, India
Fax: +91-40-23012460
E-mail: ramsc@uohyd.ernet.in
Supporting information for this article is available on the
WWW under http://www.eurjoc.org or from the author.

Eur. J. Org. Chem. 2008, 3907–3911 © 2008 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 3907

privileged (Z)-2-(buta-1,3-dienyl)phenols 6 via base-induced
ring opening of highly functionalized benzo[b]oxepines 5 is
described

(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim,
Germany, 2008)

ring opening of highly substituted 2,5-dihydrobenzo[b]-
oxepines has not been reported before in the literature up
to now.

Results and Discussion

Based on our recent discovery of piperdine/K2CO3-cata-
lyzed cascade enamine amination/iso-aromatization/alky-
lation (EA/IA/A) reaction of Hagemann’s esters 1 with ni-
trosobenzene and allyl bromide leading to functionalized
olefins 2,[3] we reasoned that these olefins 2 might be a suit-
able starting material for the synthesis of highly function-
alized dienes 4 as precursors for RCM reaction [Equation
(2)]. Then we initiated our synthesis by the combination
of cascade EA/IA reaction, O- and C-allylations and diene
metathesis as key steps for the synthesis of highly substi-
tuted benzo[b]oxepines 5 starting from Hagemann’s ester 1a
and nitrosobenzene as shown in Equation (2). The piperi-
dine/K2CO3-catalyzed cascade EA/IA/A reaction of 1a, ni-
trosobenzene and allyl bromide furnished the monoene
amine 2a in 95% yield. Claisen rearrangement of 2a in
DMF at 190 °C for 18 h yielded the expected phenol 3a in
75% yield, which on O-allylation with allyl bromide and
K2CO3 gave the diene amine 4a in 80% yield. Six more
functionalized dienes 4 were synthesized in very good yields
using different Hagemann’s esters 1b–g. Interestingly,
Claisen rearrangement of tert-butyl 4-allyloxy-2-methyl-3-
(phenylamino)benzoate (2c) in DMF at 190 °C for 18 h fur-
nished the decarboxylated phenol 3c, which on O-allylation
with allyl bromide and K2CO3 furnished the diene amine
4c in 85% yield [see Equation (2) and also the Supporting
Information for more details]. Interestingly, RCM reaction
of free diene amine 4a using Grubbs’ first-generation cata-
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lyst [Cl2Ru=CHPh(PCy3)2] in CH2Cl2 at 25 °C for 2 h fur-
nished the benzo[b]oxepine 5a in 99% yield (Table 1). The
technical advantage of this RCM reaction is the ruthenium
catalysis applied to the free diene amine 4a without the need
of in situ salt formation.[4] Maybe the secondary amine
group (HNAr2) in 4a does not interact with the ruthenium
catalyst, because the nucleophilicity of the amine is de-
creased as a result of its direct interaction with two elec-
tron-deficient phenyl groups.

(2)

(a) Ph–N=O, piperidine (5 mol-%), DMF (0.6 ), 25 °C, 1 h;
K2CO3 (5 equiv.), H2C=CHCH2Br (3 equiv.), 25 °C, 24 h, 50–98%;
(b) DMF (1.0 ), 190 °C, 18 h, 73–80%; (c) K2CO3 (1.5 equiv.),
H2C=CHCH2Br (1.2 equiv.), EtOH (0.1 ) or DMF (0.5 ), 25 °C,
24 h, 80–95%.

Table 1. Reaction optimization.

[a] Yield refers to the column purified product. [b] Reaction per-
formed in both two steps and one-pot conditions.

Once the benzo[b]oxepine 5a was formed the base-
induced ring opening (BIRO) was initiated as shown in
Table 1. Interestingly�as we expected�treatment of
2 equiv. of NaH with 5a in N-methylpyrrolidin-2-one
(NMP) at 25 °C for 1 h furnished the ring-opened product
cis-6a as major single isomeric product with 96% yield and
�99% Z-selectivity (Table 1, entry 1). The ring-opening re-
action of benzo[b]oxepine 5a was further studied by using
other bases like NaOMe, tBuOK and Bu3P; among these
tBuOK gave the best results as shown in Table 1, entries 2–
5. The BIRO reaction in protic polar/aprotic polar solvents
like tBuOH, DMF and DMSO also furnished the product
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cis-6a with good yields (entries 6–8). Reaction in THF gave
the ring-opened product cis-6a with poor yield (entry 10).
The ruthenium-catalyzed RCM reaction of diene 4a and
tBuOK-induced ring opening of the resulting benzo[b]oxep-
ine 5a was conducted according to the one-pot technique
and furnished the expected product cis-6a in 97% yield with
�99% Z-selectivity (Table 1, entry 9). We envisioned the
optimized condition to be addition of 2 equiv. of tBuOK to
the mixture of in situ generated 5a in DMSO at 25 °C to
furnish the substituted (Z)-2-(buta-1,3-dienyl)phenol 6a in
97% yield with �99% Z-selectivity (Table 1, entry 9).

With the optimized reaction conditions in hand, the
scope of the ruthenium- and base-induced RCM/BIRO one-
pot reactions was investigated with variety of functionalized
dienes 4 as shown in Table 2. A series of 6-substituted Hag-
emann’s esters 1b–g were converted into diene amines 4b–g
in good yields as shown in Equation (2). RCM reaction of
free diene amines 4b–g using Grubbs’ first-generation cata-
lyst (2 mol-%) in CH2Cl2 at 25 °C for 2 h furnished the
benzo[b]oxepines 5b–g in 95–97% yield, which on treatment
with 2 equiv. of tBuOK at 25 °C for 0.5 h furnished the ex-
pected highly functionalized selective (Z)-2-(buta-1,3-di-
enyl)phenols 6b–g with good yields under both two-step
and one-pot conditions (Table 2, entries 1–5). Interestingly,
enyne metathesis followed by base-induced ring opening of
enyne 4h furnished the expected product cis-6h in 55% yield
(Table 2, entry 6). To demonstrate the scope of the rutheni-
um- and base-induced RCM/BIRO one-pot reactions, we
synthesized simple dienes 4i–n from corresponding phenols
1i–n through O-allylation/Claisen rearrangement/O-al-
lylation sequence (see Supporting Information for details)
and transformed them into the expected single isomeric
products cis-6i–n in very good yields via RCM/BIRO reac-
tions (Table 2, entries 7–11). Structure and regio-chemistry
of (Z)-2-(buta-1,3-dienyl)phenols 6 was confirmed by X-ray
structure analysis on cis-6a as shown in Figure 1.[5]

Figure 1. Crystal structure of ethyl (Z)-5-(buta-1,3-dienyl)-4-hy-
droxy-2-methyl-3-(phenylamino)benzoate (6a).

Some of the (Z)-2-(buta-1,3-dienyl)phenols 6 are un-
stable at 25 °C and slowly rearrange to the 2-methyl-2H-
chromenes 7 by [1,7]-sigmatropic hydrogen shift ([1,7]-SHS)
followed by rapid cyclization.[6] Compounds cis-6f and cis-
6h–k are unstable at 25 °C and are rapidly converted into
the functionalized 2-methyl-2H-chromenes 7f and 7h–k af-



One-Pot Multi-Catalysis Process

Table 2. Synthesis of the substituted (Z)-2-(buta-1,3-dienyl)phenols 6.[a]

[a] Yield refers to the column-purified product.
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ter aqueous workup. This reaction can be accelerated by
heat or addition of silica and CHCl3 to the crude phenols
6 (see Table 3). With synthetic and pharmaceutical applica-
tions in mind,[1] we extended the transformation of other
phenols 6 into functionalized 2-methyl-2H-chromenes 7 by
a novel thermal or silica-induced [1,7]-SHS reaction fol-
lowed by rapid cyclization. Reaction of cis-6a in DMF at
120–140 °C for 20 h furnished the expected 2-methyl-2H-
chromene 7a in 90% yield, but the same reaction (catalyzed
by SiO2/CHCl3 at 25 °C for 7 days) furnished 7a with only
50% conversion (Table 3, entry 1). Functionalized 2-

Table 3. Chemically diverse libraries of 2-methyl-2H-chromenes
7.[a]

[a] Yield refers to the column purified product.

(3)

Scheme 1. Proposed reaction mechanism.
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methyl-2H-chromenes 7 were generated in good yields with
high selectivity as shown in Table 3. This method will show
much impact on synthesis of highly substituted 2-methyl-
2H-chromenes 7 for medicinal applications.[1] As shown in
Table 3, Condition A (thermal activation) is the best
method for the conversion of different (Z)-2-(buta-1,3-di-
enyl)phenols 6 into 2-methyl-2H-chromenes 7.

In order to check the general applicability of the RCM/
BIRO/[1,7]-SHS reaction sequence, we tried to synthesize
the C2-symmetric 2,8-dimethyl-2,8-dihydro-1,7-dioxachry-
sene 7o�� [Equation (3)]. RCM reaction of 1,5-diallyl-2,6-
bis(allyloxy)naphthalene (4o) at 50 °C for 6 h in CH2Cl2
furnished the C2-symmetric benzo[b]oxepine 5o in 85%
yield, which on treatment with 1.5 equiv. of tBuOK fol-
lowed by treatment with SiO2/CHCl3 at 25 °C for 6–8 h fur-
nished the non-symmetric 2-methyl-2H-chromene 7o� in
70% yield [Equation (3)]. The same RCM reaction when
applied to 4o at 50 °C for 6 h in CH2Cl2 followed by reac-
tion with 5 equiv. of tBuOK at 25 °C for 3 h and then treat-
ment with SiO2/CHCl3 at 25 °C for 6–8 h furnished the C2-
symmetric chrysene 7o�� in 65% yield [Equation (3)].

A possible reaction mechanism for the BIRO/[1,7]-SHS
reaction sequence is given in Scheme 1. The first step could
be the base-catalyzed formation of a carbanion (the allylic/
benzylic hydrogen of 5 is acidic) that will rearrange accord-
ing to a concerted reaction pathway to give the ring-opened
product cis-6. A [1,7]-sigmatropic shift of the phenolic hy-
drogen in cis-6 would give rise to the ortho-quinone methide
8, which rapidly cyclizes to yield 7 with recovery of the
thermodynamic stability through oxa-6π electrocyclization
or [3,3]-rearrangement. Interestingly, we did not find the
formation of [1,2]-Wittig-rearrangement-type products via
alternative deprotonation in α-position to oxygen in the
benzo[b]oxepines 5.[7]
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Conclusions

In summary, we have found a selective, diversity-oriented
synthesis of highly functionalized benzo[b]oxepines 5, (Z)-
2-(buta-1,3-dienyl)phenols 6, and 2-methyl-2H-chromenes 7
from simple starting materials via EA/IA/A, RCM, BIRO
and [1,7]-SHS reactions under amine, ruthenium and base
catalysis. This chemistry (RCM/BIRO/[1,7]-SHS) per-
formed in one-pot with good yields and selectivity. Further
work is in progress to utilize novel combination of RCM,
BIRO and [1,7]-SHS reactions in synthetic chemistry.

Experimental Section
Experimental procedures, characterization data for new products,
and complete details about the syntheses are available in the Sup-
porting Information (see also the footnote on the first page of this
article).
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