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ABSTRACT: 

An anionic iridium complex [Cp*Ir(2,2’-bpyO)(OH)][Na] was found to be a general and 

highly efficient catalyst for transfer hydrogenation of ketones and imines with methanol under 

base-free conditions. Readily reducible or labile substituents, such as nitro, cyano and ester 
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groups, were tolerated under present reaction conditions. Notably, this study exhibited unique 

potential of anionic metal-ligand bifunctional iridium catalysts for transfer hydrogenation with 

methanol as a hydrogen source. 

■ INTRODUCTION 

The reduction of ketones and imines represents one of the most important transformations both 

in the laboratory and in industry. With increasing global environmental concerns, extensive 

effort has been devoted to transition metal-catalyzed transfer hydrogenation of ketones and 

imines using 2-isopropal, formic acid or its derivatives as hydrogen sources1 due to that it avoids 

the use of stoichiometric amount of reducing reagents such as LiAlH4 and NaBH4,
2 and 

hazardous molecular hydrogen and high-pressure equipment.3 Methanol, the simplest alcohol, 

can be from natural gas, coal and, carbon dioxide and renewable biomass. Although methanol 

has been utilized as a fuel, chemical feedstock and energy storage media,4 it was used as a 

hydrogen source for transition metal-catalyzed transfer hydrogenation remained less explored 

despite excellent hydrogen carrier ability (about 12.5 wt% hydrogen). Compared with higher 

alcohols, the dehydrogenation of methanol required relatively high energy.5 Recently, Garcia and 

co-workers reported Nickel-catalyzed transfer hydrogenation of α,β-unsaturated enones with 

methanol at 180 oC.6 Chen and co-worker described transfer hydrogenation of biomass-based 

furfural and 5-hydroxymethylfurfural with methanol over hydrotalcite-derived copper catalysts 

at > 200 oC.7 More recently, Xiao and co-workers demonstrated transfer hydrogenation of 

aromatic aldehydes with methanol at 90 oC catalyzed by a cyclometalated rhodium complex in 

the presence of 0.5 equiv of base.8 To the best of our knowledge, Crabtree and workers explored 

the only an example of transfer hydrogenation of ketones and imines with methanol catalyzed by 

a bis-NHC iridium complex bearing CO ligands to date.9 However, this procedure required high 
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catalytic loading (5 mol%), large amount of strong base (KOH, 1-5 equiv), high temperature 

(120 oC) and microwave irradiation, and still suffer from highly limited scope of substrates and 

low yields. Therefore, the development of a general and efficient organometallic catalyst for 

transfer hydrogenation of ketones and imines with methanol under environmentally more 

friendly conditions is still an extreme challenging subject. 

In recent years, Fujita and co-workers synthesized a range of iridium complexes bearing a 

bipyridine or a bipyridonate ligand, which were found to be highly efficient catalysts for 

acceptorless dehydrogenation of alcohols and N-heterocycles,10 and hydrogen production from a 

methanol-water solution under basic conditions.11 We reported also that these complexes are 

effective metal-ligand bifunctional catalysts for hydrogen auto-transfer process,12 acceptorless 

dehydrogenative cyclization13 and transfer hydrogenation of aldehydes with isopropal.14 As a 

continuing interest in developing environmentally friendly reaction,12-15 we herein wish to report 

transfer hydrogenation of ketones and imines with methanol under base-free conditions . 

 

■ RESULTS AND DISCUSSION 

Initially, the transfer hydrogenation of acetophenone (1a) with methanol was selected as a model 

to explore the feasibility of reaction. As shown in Scheme 1, a series of iridium complexes, such 

as [Cp*IrCl2]2 (Cp* = pentamethylcyclopentadienyl) (cat. 1), [Cp*Ir(H2O)3][OTf]2 (cat. 2), 

[Cp*Ir(NH3)3][Cl]2 (cat. 3), [Cp*Ir(bpy)Cl)][Cl] (cat. 4), [Cp*Ir(6,6’-(OMe)2-2,2’-

bpy)(H2O)][OTf]2 (cat. 5), [Cp*Ir(2-(OH)py)]Cl2 (cat. 6), [Cp*Ir(6,6’-(OH)2-2,2’-

bpy)(H2O)][OTf]2 (cat. 7), [Cp*Ir(2,2’-bpyO)(H2O)] (cat. 8) and [Cp*Ir(2,2’-bpyO)(OH)][Na] 

(cat. 9), were examined for their catalytic activity for this model reaction. In the presence of cat. 

1-7 (1 mol%), the reaction of 1a (1 mmol) with  methanol (2 mL) as both solvent and hydrogen 
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donor was carried out at 66 oC for 12 h, and none of product was detected. When Cp*Ir complex 

bearing a bipyridonate ligand [Cp*Ir(2,2’-bpyO) (cat. 8) was used as a catalyst, the reaction gabe 

product 2a in 16% yield. To our surprise, the product 2a was obtained in 93% yield when an 

anionic iridium complex [Cp*Ir(2,2’-bpyO)(OH)][Na] (cat. 9) was used as an alternative catalyst.  

Inspired by above promising result, the scope of reaction with a range of ketones  (1) under 

optimal conditions was investigated and these results are shown in Scheme 2. Reactions of 

acetophenones bearing an electron-donating substituent afforded desired products 2b-2e in 78-

84% yields. As acetophenones bearing one or two halogen were utilized as substrates, 

 

Scheme 1. Transfer Hydrogenation of Acetophenone with Methanol using a series of Iridium 

Catalysts.a,b 

 
aReactions conditions: 1a (1 mmol), MeOH (2 mL), catalyst (1 mol %), 66 oC, 12 h, under N2. 
bNMR Yield was determined based on the 1H NMR spectrum of the crude reaction. cIsolated

 yield.
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reactions proceeded to give corresponding products 2f-2m in 85-94% yields. Strong electron-

withdrawing substituents, such as trifluoromethyl, nitro, cyano and ester groups, were also 

tolerated and desired products 2n-2q could be obtained in 87-93% yields. Furthermore, 2-

acetylpyridine and 2-acetonaphthone were successfully converted to corresponding products 2r 

and 2s in 96% and 90% yields, respectively. This catalytic system was also proven to be 

effective to non-methyl ketones, such as propiophenone, butyrophenone and benzophenone, 

affording desired products 2t-2v in 87-93% yields. For aliphatic ketones, such as 2-dodecanone 

and cyclohexanone, corresponding products 2w and 2x were obtained in 78% and 80% yields, 

respectively. Interestingly, when unsaturated ketones, such as (E)-chalcone and (E)-4-Phenyl-3-

buten-2-one, were conducted, desired products 2y and 2z were obtained in 83% and 80% yields, 

respectively, indicating C=O and C=C bonds were simultaneously hydrogenated under present 

conditions. When benzylaldehyde as a substrate was examined, the product 2za was obtained in 

the 55% yield with mehyl benzoate as a by-product (33% yield).16 
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Scheme 2. Transfer Hydrogenation of a Variety of Ketones with Methanola,b 
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Ttransfer hydrogenation of a series of imines with methanol was then examined (Scheme 3). 
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The reaction of N-benzylideneaniline afforded the corresponding product 4a in 81% yield. 

Similarly, N-benzylideneanilines bearing an electron-donating group were converted to desired 

products 4b-4f in 75-83% yields. This system was also proven to be effective to N-

benzylideneanilines bearing one or two halogens, or a strong electron-withdrawing substituent, 

affording corresponding products 4g-4n in 71-88% yield. Furthermere, highly catalytic activities 

were found when (E)-N-benzylidenenaphthalen-1-amine, (E)-N-(pyridin-2-

ylmethylene)benzenamine, (E)-N-benzylidene(phenyl)methanamine and aliphatic benzylidene-

butylamine were used as substrates and corresponding products 4o-4r were obtained in 79%-

86% yields.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Transfer Hydrogenation of a Series of Imines with Methanola,b 
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A possible mechanism for this transfer hydrogenation of ketones and imines with methanol 

under base-free conditions was proposed (Scheme 4). Initially,  anionic methoxo species A were 

generated via the reaction of cat. 9 with methanol. With ß-hydrogen elimination of species A, 

iridium hydride species B were formed and formaldehyde was released. The protonation of 

bipyridonate ligand by methanol afforded neutral hydrido species C. Furthermore, simultaneous 

transfer of the proton on the hydroxy and the hydride on iridium to C=O or C=N bonds of 

ketones or imines took place, resulting in the liberation of alcohols or amines as products and the 

formation of unsaturated species D.17 Finally, catalytic species A were regenerated by the 

reaction of species D with methoxide anion. Ligand-promoted simultaneous delivery of proton 
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9 

and hydride to ketones or imides was also proposed for other metal-ligand bifunctional catalysts, 

such as Ru-TsDPEN systems18 and Shvo’s catalyst.19 

Scheme 4. Proposed Reaction Mechanism 
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To obtain further the information of reaction mechanism, kinetic studies were undertaken 

(Scheme 5). Under standard reaction conditions, two parallel reactions of 1v with CH3OH and 

CD3OD were proceeded and kinetic isotope effect (KIE) (KH/KD = 1.65) was found (Scheme 5). 

This result suggested that C-H bond cleavage of methanol may be involved in the rate-

determining step. 
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10 

 
Scheme 5. Kinetic Isotope Effect Studies  
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The practical potential of this methodology was explored. The gram-scale hydrogenation of 1a 

(20 mmol) was performed in the presence of cat. 9 (0.5 mol %) to give the corresponding 

product 2a in 85% yield (Scheme 6).  

 

Scheme 6. Large-Scale Hydrogenation of 1a with Methanol 
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MeOH, 66 oC, 12 h

1a (20 mmol) 2a, 85% yield

O OH

 

 

Furthermore, the synthesis of γ-valerolactone (GVL) via transfer hydrogenation of levulinate 

ester (LE),20 one of the important biomass-derived chemicals, with methanol was represented. In 

the presence of cat. 9 (1 mol %), the reaction of 6 was carried out at 130 °C for 12 h to give the 

desired product 7 in 70% yield (Scheme 7). 

 

Scheme 7. Synthesis of GVL via Transfer Hydrogenation of LE with Methanol 

 

O
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O
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MeOH, 130 oC, 12 h
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■ CONCLUSIONS 
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We have demonstrated that an anionic iridium complex [Cp*Ir(2,2’-bpyO)(OH)][Na] is a 

general and highly efficient catalyst for transfer hydrogenation of ketones and imines with 

methanol under base-free conditions. Readily reducible or labile substituents, such as nitro, 

cyano and ester groups, were tolerated under present reaction conditions. Furthermore, this 

catalytic system was also applied to the gram-scale reaction and the biomass conversion. Notably, 

this study exhibited unique potential of anionic metal-ligand bifunctional iridium catalysts for 

transfer hydrogenation with methanol as a hydrogen source. 

■ EXPERIMENTAL SECTION 

General Experimental Details. Melting points were measured on a X-6 micro-melting 

apparatus. 1H NMR spectra were recorded on a 500 spectrometer. Chemical shifts are reported in 

delta (δ) units, parts per million (ppm) downfield from tetramethylsilane or ppm relative to the 

center of the singlet at 7.26 ppm for CDCl3. Coupling constants J values are reported in Hertz 

(Hz), and the splitting patterns were designated as follows: s, singlet; d, doublet; t, triplet; m, 

multiplet; b, broad. 13C{1H} NMR spectra were recorded on a 125 MHz spectrophotometer with 

broadband 1H decoupling. Chemical shifts are reported in delta (δ) units, ppm relative to the 

center of the triplet at 77.0 ppm for CDCl3. All reactions were run under an atmosphere of 

nitrogen, unless otherwise indicated. Analytical thin-layer chromatography (TLC) was carried 

out using 0.2-mm commercial silica gel plates. 

[Cp*IrCl2]2 (Cp* = pentamethylcyclopentadienyl) (cat. 1),21 [Cp*Ir(H2O)3][OTf]2 (cat. 2),22 

[Cp*Ir(NH3)3][Cl]2 (cat. 3),23 [Cp*Ir(bpy)Cl)][Cl] (cat. 4),24 [Cp*Ir(6,6’-(OMe)2-2,2’-

bpy)(H2O)][OTf]2 (cat. 5),25 [Cp*Ir(2-(OH)py)]Cl2 (cat. 6),10a [Cp*Ir(6,6’-(OH)2-2,2’-

bpy)(H2O)][OTf]2 (cat. 7),10b [Cp*Ir(2,2’-bpyO)(H2O)] (cat. 8)10c and [Cp*Ir(2,2’-
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bpyO)(OH)][Na] (cat. 9)11 were synthesized according the previous reports. 

General procedure for transfer hydrogenation of ketones and imines catalyzed by 

[Cp*Ir(2,2’-bpyO)(H2O)][Na] (Schemes 1-3). In a 25-mL Schlenk tube, ketones or imines (1 

mmol), methnaol (2 mL), cat. 9 (5.7 mg, 1 mol %) were placed under an N2 atmosphere, and the 

reaction mixture was heated at 66 oC in an oil bath for 12 h. The mixture was then cooled to 

ambient temperature, concentrated in vacuo and purified by flash column chromatography 

(hexanes/ethyl acetate = 10/1, v/v) to afford the corresponding products. 

1-Phenylethanol (2a).26 Light yellow oil; 87% yield (106 mg); 1H NMR (500 MHz, CDCl3) δ 

7.37-7.33 (m, 4H), 7.28-7.25 (m, 1H), 4.89 (q, J = 6.3 Hz, 1H), 1.96 (br s, 1H), 1.49 (d, J = 6.5 

Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 145.8, 128.5, 127.4, 125.3, 70.4, 25.1. 

1-(m-Tolyl)ethanol (2b).26 Light yellow oil; 78% yield (106 mg); 1H NMR (500 MHz, CDCl3) δ 

7.24-7.22 (m, 1H), 7.17 (s, 1H), 7.15 (d, J = 7.7 Hz, 1H), 7.08 (d, J = 7.5 Hz, 1H), 4.84-4.81 (m, 

1H), 2.35 (s, 3H), 2.03 (br s, 1H), 1.47 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 

145.8, 138.1, 128.4, 128.1, 126.1,122.4, 70.3, 25.0, 21.4. 

1-(p-Tolyl)ethanol (2c).27 Light yellow oil; 84% yield (114 mg); 1H NMR (500 MHz, CDCl3) δ 

7.25 (d, J = 8.0 Hz, 2H), 7.15 (d, J = 7.8 Hz, 2H), 4.95-4.83 (m, 1H), 2.33 (s, 3H), 1.95 (br s, 

1H), 1.47 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 142.8, 137.1, 129.1, 125.3, 

70.2, 25.0, 21.0. 

1-(4-Ethylphenyl)ethanol (2d).26 Light yellow oil; 81% yield (121 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.30 (d, J = 8.0 Hz, 2H), 7.19 (d, J = 8.0 Hz, 2H), 4.88-4.86 (m, 1H), 2.65 (q, J = 7.6 

Hz, 2H), 1.79 (br s, 1H), 1.49 (d, J = 6.5 Hz, 3H), 1.23 (t, J = 7.6 Hz, 3H); 13C {1H} NMR (125 
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MHz, CDCl3) δ 143.6, 143.1, 128.0, 125.4, 70.3, 28.5, 25.0, 15.6. 

1-(3-Methoxyphenyl)ethanol (2e).26 Light yellow oil; 82% yield (125 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.28-7.25 (m, 1H), 6.94 (s, 1H), 6.82 (d, J = 8.1 Hz, 1H), 4.89-4.87 (m, 1H), 3.82 (s, 

3H), 1.86 (br s, 1H), 1.50 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 159.7, 147.6, 

129.4, 117.6, 112.8, 110.9, 70.2, 55.1, 25.1. 

1-(3-Fluorophenyl)ethanol (2f).26 Light yellow oil; 94% yield (132 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.32-7.28 (m, 1H), 7.13-7.08 (m, 2H), 6.95 (td, d, J = 8.4 and 2.3 Hz, 1H), 4.91-4.86 

(m, 1H), 2.02 (br s, 1H), 1.48 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 164.0 (d, 

JC-F = 244.5 Hz), 148.5 (d, J = 6.4 Hz), 130.0 (d, J = 8.1 Hz), 120.9, 114.3 (d, J = 21.1 Hz), 

112.4 (d, J = 21.7 Hz), 69.8, 25.2. 

1-(4-Fluorophenyl)ethanol (2g).26 Light yellow oil; 90% yield (126 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.33-7.31 (m, 2H), 7.03-7.00 (m, 2H), 4.87-4.86 (m, 1H), 2.09 (br s, 1H), 1.47 (d, J = 

6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 163.0 (d, JC-F = 243.8 Hz), 141.5, 127.0 (d, J 

C-F = 8.0 Hz), 115.3 (d, JC-F = 21.1 Hz), 69.7, 25.2. 

1-(4-Chlorophenyl)ethanol (2h).26 Light yellow oil; 92% yield (144 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.32-7.29 (m, 4H), 4.90-4.85 (m, 1H), 1.93 (br s, 1H), 1.47 (d, J = 6.4 Hz, 3H); 13C 

{1H} NMR (125 MHz, CDCl3) δ 144.2, 133.1, 128.6, 126.8, 68.7, 25.2. 

1-(2,4-Dichlorophenyl)ethanol (2i).27 Light yellow oil; 94% yield (179 mg); 1H NMR (500 

MHz, CDCl3) δ 7.54 (d, J = 8.4 Hz, 1H), 7.34 (d, J = 2.0 Hz, 1H), 7.28-7.26 (m, 1H), 5.24-5.22 

(m, 1H), 2.10 (br s, 1H), 1.46 (d, J = 6.4 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 141.7, 

133.4, 132.1,129.1, 127.5, 127.4, 66.6, 23.6. 
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1-(3-Bromophenyl)ethanol (2j).26 Light yellow oil; 88% yield (176 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.53 (s, 1H), 7.40 (d, J = 7.9 Hz, 1H), 7.29 (d, J = 7.7 Hz, 1H), 7.21 (t, J = 7.8 Hz, 1H), 

4.87-4.85 (m, 1H), 1.95 (br s, 1H), 1.48 (dd, J = 6.5 and 1.5 Hz, 3H); 13C {1H} NMR (125 MHz, 

CDCl3) δ 148.1, 130.5, 130.1, 128.6, 124.0, 122.6, 69.7, 25.2. 

1-(4-Bromophenyl)ethanol (2k).26 Light yellow oil; 92% yield (185 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.47 (d, J = 8.4 Hz, 2H), 7.24 (d, J = 8.3 Hz, 2H), 4.86-4.84 (m, 1H), 2.0 (br s, 1H), 

1.46 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 144.7, 131.5, 1127.1, 121.1, 69.7, 

25.2. 

1-(3-iodophenyl)ethanol (2l).28 Light yellow oil; 85% (211 mg); 1H NMR (500 MHz, CDCl3) 

7.7 (s, 1H), 7.58 (d, J = 7.85, 1H), 7.28 (d, J = 7.7 Hz, 1H), 7.06 (t, J = 7.78 Hz, 1H), 4.80 (q, J = 

6.95 Hz, 1H), 2.80 (s, 1H), 1.42 (d, J = 6.50 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 148.1, 

136.3, 134.4, 130.2, 124.6, 94.4, 69.4, 25.1. 

1-(4-Iodophenyl)ethanol (2m).29 Light yellow oil, 87% (216 mg); 1H NMR (500 MHz, CDCl3) 

δ 7.63-7.61 (d, J = 8.3 Hz, 2H), 7.05 (d, J = 8.0 Hz, 2H), 4.75 (m, J = 6.0 Hz, 1H), 2.22 (br s, 

1H), 1.43 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 145.3, 137.3, 127.3, 92.6, 

69.6 , 25.1. 

1-(4-(Trifluoromethyl)phenyl)ethanol (2n).30 Light yellow oil; 90% yield (171 mg); 1H NMR 

(500 MHz, CDCl3) δ 7.59 (d, J = 6.7 Hz, 2H), 7.45 (d, J = 8.2 Hz, 2H), 4.92 (q, J = 6.5 Hz, 1H), 

2.51 (br s, 1H), 1.47 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 149.7, 129.7 (q, 

JC-F = 32.2 Hz), 125.6, 125.4, 123.1 (q, JC-F = 270.3 Hz), 69.7, 25.2. 

1-(4-Nitrophenyl)ethanol (2o).30 Light yellow oil; 92% yield (154 mg); 1H NMR (500 MHz, 
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CDCl3) δ 8.21 (d, J = 8.6 Hz, 2H), 7.56 (d, J = 8.6 Hz, 2H), 5.04-5.02 (m. 1H), 2.08 (br s, 1H), 

1.53 (d, J = 6.6 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 153.0, 147.2, 126.1, 123.7, 69.5, 

25.5. 

4-(1-Hydroxyethyl)benzonitrile (2p).30 Light yellow oil; 93% yield (136 mg); 1H NMR (500 

MHz, CDCl3) δ 7.64 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 4.97-4.95 (m, 1H), 2.17 (br s, 

1H), 1.50 (d, J = 6.6 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 151.1, 132.3, 126.0, 118.8, 

111.0, 69.6, 25.4. 

Methyl 4-(1-hydroxyethyl)benzoate (2q).31 Pale yellow oil; 86% yield (157 mg); 1H NMR (500 

MHz,CDCl3) δ 7.95 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.2Hz, 2H), 4.90 (q, J = 5.9 Hz, 1H), 3.88 (s, 

3H), 2.91 (br s, 1H), 1.46 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 167.0, 151.0, 

129.7, 128.8, 125.2, 69.7, 52.0, 25.1. 

1-(Pyridin-2-yl)ethanol (2r).31 Light yellow oil; 96% yield (118 mg); 1H NMR (500 MHz, 

CDCl3) δ 8.51 (d, J = 4.1 Hz, 1H), 7.68 (td, J = 7.6 and 1.5 Hz, 1H), 7.32 (d, J = 8.1 Hz, 1H), 

7.19-7.16 (m, 1H), 4.92-4.87 (m, 1H), 4.63 (br s, 1H), 1.51 (d, J = 6.9 Hz, 3H); 13C {1H} NMR 

(125 MHz, CDCl3) δ 163.3, 148.0, 136.7, 122.1, 119.7, 68.9, 24.1. 

1-(Naphthalen-2-yl)ethanol (2s).26 White solid; 90% yield (154 mg); mp 76-77 °C; 1H NMR 

(500 MHz, CDCl3) δ 7.85-7.81 (m, 4H), 7.51-7.46 (m, 3H), 5.10-5.06 (m, 1H), 1.91 (br s, 1H), 

1.59 (d, J = 6.5 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 143.2, 133.3, 132.9, 128.3, 127.9, 

127.6, 126.1, 125.8, 123.78, 123.77, 70.5, 25.1. 

1-Phenylpropan-1-ol (2t).26 Light yellow oil; 88% yield (119 mg); 1H NMR (500 MHz, CDCl3) 

δ 7.35-7.34 (m, 4H), 7.29-7.26 (m, 1H), 4.61-4.68 (m, 1H), 1.90 (br s, 1H), 1.85-1.72 (m, 2H), 
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0.91 (t, J = 7.4 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 144.6, 128.4, 127.5, 125.9, 76.0, 

31.9, 10.1. 

1-Phenylbutan-1-ol (2u).32 Light yellow oil; 87% yield (131 mg); 1H NMR (500 MHz, CDCl3) δ 

7.34-7.33 (m, 4H), 7.28-7.25 (m, 1H), 4.67 (t, J = 6.7 Hz, 1H), 1.91 (br s, 1H), 1.82-1.75 (m, 1H), 

1.71-1.64 (m, 1H), 1.47-1.39 (m, 1H), 1.35-1.25 (m, 1H), 0.93 (t, J = 7.4 Hz, 3H); 13C {1H} 

NMR (125 MHz, CDCl3) δ 144.9, 128.4, 127.4, 125.9, 74.4, 41.2, 19.0, 13.9. 

Diphenylmethanol (2v).26 White solid; 93% yield (171 mg); mp 65-66 °C; 1H NMR (500 MHz, 

CDCl3) δ 7.38-7.31 (m, 8H), 7.27-7.24 (m, 2H), 5.83 (s, 1H), 2.24 (br s, 1H); 13C {1H} NMR 

(125 MHz, CDCl3) δ 143.8, 128.5, 127.6, 126.5, 76.3. 

Dodecan-2-ol (2w).33 Light yellow oil; 78% yield (145 mg); 1H NMR (500 MHz, CDCl3) δ 3.82-

3.76 (m, 1H), 1.46-1.40 (m, 4H), 1.31-1.26 (m, 15H), 1.19 (d, J = 6.2 Hz, 3H), 0.88 (t, J = 6.9 

Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 68.3, 39.4, 32.0, 29.8, 29.7 

(three peaks overlapping with each other), 29.5, 25.9, 23.5, 22.8. These spectroscopic datas 

correspond to reported datas. 

Cyclohexanol (2x).26 Colorless oil; 80% yield (80 mg); 1H NMR (500MHz, CDCl3) δ 3.57 (m, 

1H), 3.20 (br s, 1H), 1.89 (s, 2H), 1.72 (s, 2H), 1.54 (m, 1H), 1.24 (m, 4H), 1.16 (m, 1H); 13C 

{1H} NMR (125 MHz, CDCl3) δ 69.9, 35.2, 25.3, 24.0. 

1,3-Diphenylpropan-1-ol (2y).34 Light yellow oil; 83% yield (176 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.35-7.34 (m, 4H), 7.28-7.24 (m, 3H), 7.19-7.16 (m, 3H), 4.69-4.66 (m, 1H), 2.77-2.63 

(m, 2H), 2.16-2.00 (m, 2H), 1.92 (br s, 1H); 13C {1H} NMR (125 MHz, CDCl3) δ 144.6, 141.8, 

128.5, 128.4, 128.4, 127.6, 125.9, 125.8, 73.9, 40.5, 32.0. 
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4-Phenylbutan-2-ol (2z).35 Light yellow oil; 80% yield (120 mg); 1H NMR (500 MHz, CDCl3) δ 

7.29-7.26 (m, 2H), 7.20-7.16 (m, 3H), 3.85-3.79 (m, 1H), 2.78-2.63 (m, 2H), 1.81-1.71 (m, 2H), 

1.57 (br s, 1H), 1.23 (d, J = 6.2 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 142.0, 128.3 

(two peaks overlapping with each other), 125.8, 67.4, 40.8, 32.1, 23.5. 

These spectroscopic datas correspond to reported datas. 

Phenylmethanol (2xa).35 Light yellow oil; 55% yield (59 mg); 1H NMR (500 MHz, CDCl3) 

δ 7.35-7.30 (m, 4H), 7.27-7.25 (m, 1H), 4.60 (s, 2H), 2.47 (br s, 1H); 13C {1H} NMR (125 MHz, 

CDCl3) δ 140.4, 128.0, 127.0, 126.5, 64.3. 

N-Benzylaniline (4a).36 Light yellow oil; 81% yield (148 mg); 1H NMR (500 MHz, CDCl3) δ 

7.37-7.31 (m, 4H), 7.28-7.25 (m, 1H), 7.17 (d, J = 7.9 Hz, 2H), 6.71 (t, J = 7.3 Hz, 1H), 6.64-

6.62 (d, J = 7.9 Hz, 2H), 4.32 (s, 2H), 4.01 (br s, 1H); 13C {1H} NMR (125 MHz, CDCl3) δ 

148.1, 139.4, 129.2, 128.6, 127.5, 127.2, 117.5, 112.8, 48.3. 

N-(3-Methylbenzyl)aniline (4b).36 Light yellow oil; 75% yield (148 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.23 (d, J = 7.5 Hz, 1H), 7.19-7.16 (m, 4H), 7.10 (d, J = 7.5 Hz, 1H), 6.71 (t, J = 7.3 

Hz, 1H), 6.65 (d, J = 7.8 Hz, 2H), 4.28 (s, 2H), 3.99 (br s, 1H), 2.35 (s, 3H); 13C {1H} NMR 

(125 MHz, CDCl3) δ 148.2, 139.3, 138.3, 129.2, 128.5, 128.3, 128.0, 124.6, 117.5, 112.8, 48.3, 

21.4. 

N-Benzyl-4-methylaniline (4c).36 Light yellow oil; 76% yield (150 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.37-7.31 (m, 4H), 7.26-7.25 (m, 1H), 6.99-6.97 (m, 2H), 6.57-6.55 (m, 2H), 4.30 (s, 

2H), 3.89 (br s, 1H), 2.23 (s, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 145.9, 139.6, 129.7, 

128.6, 127.5, 127.1, 126.7, 113.0, 48.6, 20.4. 
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N-(4-Ethylbenzyl)aniline (4d).36 Light yellow oil; 75% yield (158 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.29-7.27 (m, 2H), 7.18-7.15 (m, 4H), 6.73-6.69 (m, 1H), 6.64-6.62 (m, 2H), 4.27 (m, 

2H), 3.96 (br s, 1H), 2.66-2.61 (m, 2H), 1.26-1.21 (m, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 

148.2, 143.3, 136.6, 129.2, 128.1, 127.6, 117.4, 112.8, 48.1, 28.5, 15.6. 

N-(4-Methoxybenzyl)aniline (4e).36 Light yellow solid; 80% yield (171 mg); mp 61-62 °C; 1H 

NMR (500 MHz, CDCl3) δ 7.30 (d, J = 8.6 Hz, 2H), 7.17 (t, J = 7.9 Hz, 2H), 6.89 (d, J = 8.6 Hz, 

2H), 6.71 (t, J = 7.3 Hz, 1H), 6.64 (d, J = 7.8 Hz, 2H), 4.25 (s, 2H), 3.94 (br s, 1H), 3.80 (s, 3H); 

13C {1H} NMR (125 MHz, CDCl3) δ 158.8, 148.2, 131.4, 129.2, 128.8, 117.5, 114.0, 112.8, 55.3, 

47.8. 

N-Benzyl-2-methoxyaniline (4f).36 Light yellow oil; 83% yield (177 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.38-7.31 (m, 4H), 7.26 (t, J = 6.6 Hz, 1H), 6.84-6.77 (m, 2H), 6.68-6.65 (m, 1H), 6.59 

(d, J = 7.5 Hz, 1H), 4.61 (br s, 1H), 4.34 (s, 2H), 3.83 (s, 3H); 13C {1H} NMR (125 MHz, CDCl3) 

δ 146.8, 139.6, 138.1, 128.5, 127.5, 127.1, 121.3, 116.6, 110.0, 109.4, 55.4, 48.0. 

N-(4-Fluorobenzyl)aniline (4g).36 Light yellow oil; 77% yield (155 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.31 (t, J = 6.8 Hz, 2H), 7.17 (t, J = 7.3 Hz, 2H), 7.01 (t, J = 8.6 Hz, 2H), 6.72 (t, J = 

6.8 Hz, 1H), 6.62 (d, J = 8.5 Hz, 2H), 4.28 (s, 2H), 3.99 (br s, 1H); 13C {1H} NMR (125 MHz, 

CDCl3) δ 163.0 (d, JC-F = 243.6 Hz), 147.9, 135.1, 129.2, 129.0 (d, JC-F = 7.9 Hz), 117.7, 115.5 

(d, JC-F = 21.2 Hz), 112.8, 47.5. 

N-Benzyl-4-fluoroaniline (4h).36 Light yellow oil; 72% yield (145 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.36-7.32 (m, 4H), 7.28-7.25 (m, 1H), 6.86 (t, J = 8.8 Hz, 2H), 6.55-6.53 (m, 2H), 4.27 

(s, 2H), 3.90 (br s, 1H); 13C {1H} NMR (125 MHz, CDCl3) δ 156.8 (d, JC-F = 237.5 Hz), 144.5, 

139.2, 128.6, 127.4, 127.3, 115.7 (d, JC-F = 22.2 Hz), 113.6 (d, JC-F = 7.3 Hz), 48.9. 
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N-(4-Chlorobenzyl)aniline (4i).36 Light yellow oil; 81% yield (176 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.31-7.27 (m, 4H), 7.16 (t, J = 7.9 Hz, 2H), 6.72 (t, J = 7.3 Hz, 1H), 6.60 (d, J = 7.7 Hz, 

2H), 4.29 (s, 2H), 4.04 (br s, 1H); 13C {1H} NMR (125 MHz, CDCl3) δ 147.8, 138.0, 132.8, 

129.3, 128.7, 128.7, 117.8, 112.8, 47.6. 

N-Benzyl-4-chloroaniline (4j).36 Light yellow oil; 80% yield (173 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.37-7.29 (m, 5H), 7.13-7.10 (m, 2H), 6.56-6.55 (m, 2H), 4.31 (s, 2H), 4.07 (br s, 1H); 

13C {1H} NMR (125 MHz, CDCl3) δ 146.7, 138.9, 129.1, 128.7, 127.41, 127.37, 122.1, 113.9, 

48.3. 

N-Benzyl-2,4-dichloroaniline (4k).37 Light yellow oil; 88% yield (221 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.36-7.32 (m, 4H), 7.29-7.25 (m, 2H), 7.03 (dd, J = 8.8 and 2.4 Hz, 1H), 6.52 (d, J = 

8.8 Hz, 1H), 4.71 (br s, 1H), 4.37 (d, J = 5.6 Hz, 2H); 13C {1H} NMR (125 MHz, CDCl3) δ 

142.5, 138.2, 128.8, 128.7, 127.7, 127.5, 127.1, 121.3, 119.3, 112.0, 47.8. 

N-(4-Bromobenzyl)aniline (4l).38 Light yellow solid; 81% yield (213 mg); mp 51-52 °C; 1H 

NMR (500 MHz, CDCl3) δ 7.46 (d, J = 8.4 Hz, 2H), 7.25-7.24 (m, 2H), 7.17 (t, J = 7.9 Hz, 2H), 

6.72 (t, J = 7.3 Hz, 1H), 6.61 (d, J = 7.8 Hz, 2H), 4.29 (s, 2H), 4.06 (br s, 1H); 13C {1H} NMR 

(125 MHz, CDCl3) δ 147.8, 138.5, 131.6, 129.3, 129.0, 120.9, 117.8, 112.8, 47.6. 

N-Benzyl-4-bromoaniline (4m).36 Light yellow oil; 71% yield (184 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.35 (d, J = 4.5 Hz, 4H), 7.30-7.23 (m, 3H), 6.51 (d, J = 8.8 Hz, 2H), 4.30 (s, 2H), 4.08 

(br s, 1H); 13C {1H} NMR (125 MHz, CDCl3) δ 147.0, 138.8, 131.9, 128.7, 127.4    

(two peaks overlapping with each other), 114.4, 109.1, 48.2. 

These spectroscopic datas correspond to reported datas. 
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N-Benzyl-4-(trifluoromethyl)aniline (4n).38 Light yellow solid; 87% yield (219 mg); mp 53-54 

°C; 1H NMR (500 MHz, CDCl3) δ 7.38-7.26 (m, 7H), 6.59 (d, JC-F = 8.6 Hz, 2H), 4.32 (s, 3H); 

13C {1H} NMR (125 MHz, CDCl3) δ 150.5, 138.4, 128.8, 127.5, 127.3 (q, JC-F = 3.4 Hz), 126.1 

(q, JC-F = 268.7 Hz), 119.1 (q, JC-F = 32.2 Hz), 119.9, 47.7.  

N-Benzylnaphthalen-1-amine (4o).36 Light yellow solid; 86% yield (199 mg); mp 69-70 °C; 1H 

NMR (500 MHz, CDCl3) δ 7.77-7.73 (m, 2H), 7.43-7.22 (m, 9H), 6.59 (d, J = 7.4 Hz, 1H), 4.62 

(br s, 1H), 4.42 (s, 2H); 13C {1H} NMR (125 MHz, CDCl3) δ 143.2, 139.0, 134.2, 128.7, 127.7, 

127.3, 126.6, 125.7, 124.7, 123.3, 119.9, 117.6, 104.7, 48.5. 

N-(Pyridin-2-ylmethyl)aniline (4p).39 Light yellow oil; 86% yield (159 mg); 1H NMR (500 

MHz, CDCl3) δ 8.57 (d, J = 4.6 Hz, 1H), 7.60 (t, J = 7.7 Hz, 1H), 7.31 (d, J = 7.8 Hz, 1H), 7.18-

7.14 (m, 3H), 6.71 (t, J = 7.3 Hz, 1H), 6.66 (d, J = 7.8 Hz, 2H), 4.78 (br s, 1H), 4.44 (s, 2H); 13C 

{1H} NMR (125 MHz, CDCl3) δ 158.5, 149.1, 147.8, 136.5, 129.2, 122.0, 121.5, 117.5, 112.9, 

49.2. 

N-(1-Phenylethyl)aniline (4q).40 Light yellow oil; 83% yield (163 mg); 1H NMR (500 MHz, 

CDCl3) δ 7.36 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.21 (t, J = 7.3 Hz, 1H), 7.08 (t, J = 

7.9 Hz, 2H), 6.63 (t, J = 7.3 Hz, 1H), 6.51 (d, J = 8.1 Hz, 2H), 4.48 (q, J = 6.7 Hz, 1H), 4.00 (br s, 

1H), 1.51 (d, J = 6.8 Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 147.2, 145.2, 129.1, 128.6, 

126.8, 125.8, 117.2, 113.2, 53.4, 25.0. 

Benzyl-butyl-amine (4r).41 Light yellow oil; 79% yield (130 mg); 1H NMR (500 MHz, CDCl3) 

δ 7.37-7.23 (m, 5 H), 3.80 (s, 2 H), 3.03 (s, 1H), 2.63 (t, J = 7.5 Hz, 2 H), 1.53 (q, J = 7.4 Hz, 2 

H), 1.34 (q, J = 7.3 Hz, 2 H), 0.90 (t, J = 7.5 Hz, 3 H). 13C {1H} NMR (125 MHz, CDCl3) δ 

139.3, 128.3, 128.2, 127.0, 53.6, 48.7, 31.6, 20.3, 13.9.   
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Kinetic Isotope Effect Studies (Scheme 5). Parallel reactions for the transfer hydrogenation of 

1v with CH3OH and CD3OD catalyzed by cat. 9 under standard conditions following the general 

procedure. And the progress of the reaction was analysed by 1H NMR. All the reactions were 

repeated twice and the average data were plotted as yield (%) vs time (h). 

Diphenylmethanol-d2 (5).42 White solid, 1H NMR (500 MHz, CDCl3) δ 7.37-7.31 (m, 8H), 

7.27-7.23 (m, 2H); 13C {1H} NMR (125 MHz, CDCl3) δ 143.6, 128.4, 127.5, 126.4, 75.7 (t, J = 

25 Hz).  

Procedure for large-scale transfer hydrogenation of acetophenone (1a) with methanol 

catalyzed by [Cp*Ir(2,2’-bpyO)(H2O)][Na] (Scheme 6). In a 250 mL Schlenk tube, 1a (2400 

mg, 20 mmol), methanol (30 mL), and cat. 9 (57 mg, 0.1 mmol, 0.5 mol %) were placed under 

an N2 atmosphere, and the reaction mixture was heated at 66 °C in an oil bath for 12 h. The 

mixture was then cooled to ambient temperature, concentrated in vacuo, and purified by flash 

column chromatography (hexanes/ethyl acetate = 10/1, v/v) to afford the corresponding product 

2a (2074 mg, 17 mmol, 85% yield). 

Procedure for the synthesis of γ-valerolactone (GVL) via transfer hydrogenation of 

levulinate ester (LE) with methanol catalyzed by [Cp*Ir(2,2’-bpyO)(H2O)][Na] (Scheme 7). 

In a 25 mL Schlenk tube, methyl levulate 6 (130 mg, 1 mmol), methanol (2 mL), and cat. 9 (5.7 

mg, 1 mol %) were placed under an N2 atmosphere, and the reaction mixture was heated at 130 

°C in an oil bath for 12 h. The mixture was then cooled to ambient temperature, concentrated in 

vacuo, and purified by flash column chromatography (hexanes/ethyl acetate = 10/1, v/v) to 

afford the corresponding product. 

Caution: This temperature is more than two times to boiling point of the methanol and a reaction 
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at this temperature in a low boiling solvent should be conducted in a sealable vessel rated for 

pressure (Teflon sealable flask, pressure tube etc.). 

γ-Valerolactone (7).43 Colorless oil; 70% yield (70 mg); 1H NMR (500 MHz, CDCl3) δ 4.65 (sxt, 

J = 6.6 Hz, 1H), 2.57-2.53 (m, 2H), 2.37 (sxt, J = 6.6Hz, 1H), 1.87-1.78 (m, 1H), 1.42 (d, J = 6.3 

Hz, 3H); 13C {1H} NMR (125 MHz, CDCl3) δ 176.9, 76.9, 29.3, 28.7, 20.6. 
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