SYNTHESIS OF A DI-, TRI-, AND TETRA-SACCHARIDE UNIT OF THE GROUP B STREPTOCOCCAL COMMON ANTIGEN*[†]

VINCE POZSGAY AND HAROLD J. JENNINGS

Division of Biological Sciences, National Research Council of Canada, Ottawa, Ontario, KIA 0R6 (Canada)

(Received October 24th, 1987; accepted for publication, December 17th, 1987)

ABSTRACT

Condensation of methyl 2,3-O-isopropylidene- α -L-rhamnopyranoside with methyl 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-1-thio- β -D-glucopyranoside activated by nitrosyl tetrafluoroborate gave an excellent yield of the protected disaccharide 9, which was transformed into glycosyl acceptor 11. Methyl 2,3,4,6tetra-O-acetyl-1-thio- β -D-galactopyranoside, obtained from D-galactose pentaacetate and methyl trimethylsilyl sulfide, under catalysis by boron trifluoride etherate, was converted into glycosyl donor 25, which was condensed with 11 under halide-ion catalysis to give the trisaccharide derivative 26. Rhamnosylation with 28 of 27, obtained by selective deprotection of 26, gave the protected tetrasaccharide 29. Deprotection of 10, 26, and 29 gave di- (2), tri- (3) and tetra-saccharide (4) methyl glycosides which form part of the group-specific polysaccharide antigen of Group B Streptococci.

INTRODUCTION

Lancefield's serological studies¹ indicated that Group B Streptococci possess a common, group-specific polysaccharide antigen. Ongoing structural studies² in our laboratory provided proof for the structural identity of the Group B antigens obtained from the different serotypes and showed the presence of the octasaccharide **1** as one of the major structural units. The existence of the common polysaccharide could make it an ideal recognition marker for all members of the group and offers, in principle, the possibility of group-specific serodiagnosis of, and a single, synthetic human vaccine against, the different strains of Group B Streptococci.

In order to uncover the major, immunodominant region(s) of the common polysaccharide and thus provide haptens of well-defined structure to obtain totally synthetic antigens, we have started a synthesis program to obtain a series of oligo-

^{*}Dedicated to Professor Bengt Lindberg.

¹Synthetic Oligosaccharides Related to Group B Streptococcal Polysaccharides, Part 2. For Part 1, see ref. 3. Issued as N.R.C.C. 28816.

saccharides related to the common antigen. Recently, we reported³ the synthesis of the methyl glycoside of the rhamnotriose unit. We now report the synthesis of the di- (2), tri- (3), and tetra-saccharide (4) as their methyl glycosides.

$$\alpha - \iota - Rhap - (1 \rightarrow 2) - \alpha - \iota - Rhap - (1 \rightarrow 2) - \alpha - \iota - Rhap - (1 \rightarrow 1) - n - Glcol - (3 \leftarrow 1) - \alpha - \iota - Rhap - (1 \rightarrow 3) - \alpha - \iota - Rhap - (1 \rightarrow 3) - \beta - n - Glcp NAc$$

$$1$$

$$\beta - \iota - Glcp NAc - (1 \rightarrow 3) - \beta - n - Glcp NAc - (1 \rightarrow 4) - \alpha - \iota - Rhap - OMe$$

$$2$$

$$\alpha - \iota - Galp - (1 \rightarrow 3) - \beta - n - Glcp NAc - (1 \rightarrow 4) - \alpha - \iota - Rhap - OMe$$

$$3$$

$$\alpha - \iota - Rhap - (1 \rightarrow 3) - \alpha - \iota - Galp - (1 \rightarrow 3) - \beta - n - Glcp NAc - (1 \rightarrow 4) - \alpha - \iota - Rhap - OMe$$

$$4$$

RESULTS AND DISCUSSION

Compounds 2-4 were synthesized in a stepwise fashion, starting at the reducing end. Reaction of glycosyl donor 5^{4-6} with methyl 2,3-O-isopropylidene- α -Lrhamnopyranoside^{7,8} (8), using the procedure of Akiya and Osawa⁹, gave the protected disaccharide 9 in 73.5% yield. In this study, 5 was obtained by brominolysis¹⁰⁻¹² of 7^{13,14} in 96% yield. The structure of 5 was unambiguously established by its elemental analysis and by its 500-MHz ¹H-n.m.r. and 125-MHz ¹³C-n.m.r. spectra, which also supported evidence for the exclusive, 1,2-trans configuration of our preparation, the melting point (135-137°) of which agrees with that reported by Akiya and Osawa⁵, but differs substantially from that (122-123°) reported by Baker et al.⁴ and later by Lemieux et al.⁶. No correct elemental analytical data could be obtained for the former preparation whilst the latter one was not characterized by such data. In an alternative synthesis of 9, the thioglycoside $7^{13,14}$ was envisaged as the glycosyl donor; 7 was prepared¹⁴ from tetra-acetate 6^{4-6} by reaction with methyl trimethylsilyl sulfide under catalysis by boron trifluoride etherate, in 93.5% yield. Compound 7 was also obtained by reaction of 6 with MeSH under the conditions of Ferrier and Furneaux¹⁵ in 55% yield. Compound 7 was synthesized earlier by Ogawa et al.¹³ from 6 and methyl tributyltin sulfide. In the alternative route, glycosylation of acceptor 8 with thioglycoside 7 activated¹⁶ by nitrosyl tetrafluoroborate, in dichloromethane, gave disaccharide 9 in 89.7% yield. This glycosylation reaction is thought to proceed through the intermediacy of a sulfonium species generated by electrophilic attack of the nitrosyl cation on the anomeric sulfur atom. It is thus similar, in principle, to the methods suggested by Nicolaou et al.¹⁷, Lönn¹⁸, and Fügedi and Garegg¹⁹. The reaction is fast and high yielding, and the activator nitrosyl salt is a commercially available solid which can be stored

indefinitely at 4° under anhydrous conditions. The configuration of the new, interglycosidic linkage in 9 was shown to be β -D by ¹³C-n.m.r. spectroscopy: the $J_{C-1',H-1'}$ value for the C-1' resonance at 97.8 p.p.m. is 168 Hz, which is characteristic¹⁹ for this type of linkage.

Removal of the *N*-phthaloyl group with $BuNH_2$ according to Durette *et al.*²⁰ followed by *N*-acetylation afforded **10**, the hydrolysis of which in aqueous acetic acid gave **2**. Compound **10** was transformed into glycosyl acceptor **11** by reaction with 4-methoxybenzaldehyde dimethyl acetal²¹ in the presence of TsOH·H₂O in 91% yield.

As the glycosyl donor for reaction with acceptor 11, compound 25 was selected; 25 contains a strategically positioned, temporary protecting group at HO-3, *i.e.*, the site of further chain extension. As a precursor to 25, thioglycoside $13^{22,23}$ was used which allows a wide range of synthetic manipulations and can be converted into a glycosyl bromide under extremely mild conditions¹⁰⁻¹² after the desired transformations. Methyl 2,3,4,6-tetra-O-acetyl-1-thio- β -D-galactopyranos-ide^{22,23} (12) was obtained¹⁴ from 1,2,3,4,6-penta-O-acetyl- β -D-galactopyranose and methyl trimethylsilyl sulfide in 89% yield. Transesterification (Zemplén) of 12 gave 13, the melting point of which (181–182°) is in agreement with the value reported by Helferich *et al.*²² and is at variance with that (132–133°) given recently by Ogawa's group²³. Attempts to selectively allylate HO-3 in 13, by analogy²⁴ with the corresponding glycoside, were unsuccessful, which led us to resort to a multistep route to obtain intermediate 22.

Reaction of 13 with 2,2-dimethoxypropane under TsOH \cdot H₂O catalysis gave a mixture of compounds (14–17), the controlled hydrolysis of which afforded crystalline 16 in 91% yield without chromatography. Isomeric 17 could be obtained in 57% yield under reaction conditions²⁵ favouring kinetic control. Mixed acetal derivatives of galactopyranosides, similar to 15, have been synthesized and characterized^{26–28}. We were now able to isolate the extremely acid-labile, peracetalated derivative 14. Formation of this type of tris-acetalated derivative was hitherto observed²⁸ with α -D-, but not with β -D-galactopyranosides. Mixtures of isomeric acetals 16 and 17 have been prepared by Garegg and Oscarson²⁹ and by Ogawa's group²³, but the isomers were not separated before further functionalization. Compound 16 was transformed into 22 in four steps: (a) BnBr-NaH-HCONMe₂; (b) HBF₄-H₂O-MeOH²⁷; (c) Bu₂SnO-AllBr-C₆H₆³⁰; (d) BnBr-NaH-HCONMe₂. Deallylation (KO^tBu–Me₂SO³¹) of **22** followed by acetylation gave **24**, brominolysis^{10–12} of which afforded a quantitative yield of syrupy glycosyl donor **25** in which the α -D configuration was ascertained by the presence in its ¹H-n.m.r. spectrum of the signal for H-1 at 6.479 p.p.m. with $J_{1,2} = 3.7$ Hz.

Reaction of glycosyl donor **25** with the disaccharide acceptor **11** under conditions of halide-ion catalysed glycosidation³² gave the protected trisaccharide **26** in 34.8% yield. Removal of the blocking groups from **26** in three steps [(*a*) NaOMe– MeOH; (*b*) HBF₄–MeOH²⁷; (*c*) H₂–Pd/C–AcOH] gave the trisaccharide glycoside **3**. Transesterification (Zemplén) of **26** afforded acceptor **27**, which was glycosylated with rhamnosyl donor **28**³³ under Helferich conditions³⁴, followed by deacetylation (Zemplén) to give tetrasaccharide **29** in 67% yield. Deprotection of **29**. as described above, afforded the target tetrasaccharide glycoside **4**.

The structures of the di- (2), tri-(3), and tetra-saccharide (4) methyl glycosides are supported by their ¹H- and ¹³C-n.m.r. data (Tables I and II) obtained by combined application of one-dimensional measurements, and two-dimensional, homonuclear-correlated spectroscopy (COSY³⁵, RELAYED-COSY³⁶) for protons.

TABLE I

¹H-N.M.R. DATA^a FOR 2-4

Chemical shifts (p.p.m.)				Coupling constants ^b (Hz)			
H atom	Compound			J _{H-H} ^c	Compound		
	2	3	4	_	2	3	4
1 _A	4.663	4.674	4.676	$1_{A} - 2_{A}$	1.9	1.9	2.2
2 _A	3.857	3.868	3.870	$2_A - 3_A$	3.5	3.5	3.4
3 _A	3.776	3.785	3.795	$3_A - 4_A$	9.4	9.3	9.4
4 _A	3.584	3.606	3.610	$4_{A}-5_{A}$	9.4	9.3	9.4
5 _A	3.695	3.702	3.706	5 _A -6 _A	6.2	6.2	6.2
6 _A	1.330	1.338	1.340				
1 _B	4.760	4.814	4.822	$1_{B} - 2_{B}$	8.5	8.2	7.9
2_{B}^{\sim}	3.679	3.79	3.81	$2_{B}^{D} - 3_{B}^{D}$	10.4		
3 _B	3.540	3.75	3.78	$3_{B} - 4_{B}$	8.4		
4 _B	3.448	3.71	3.74	$4_{B} - 5_{B}$	8.2	9.7	9.8
5 _B	3.415	3.437	3.440	$5_{B} - 6_{B}$	5.0	5.4	5.3
6 _B	3.753	3.760	3.748	5 ₈ 6 ₆	2.1	2.3	2.6
6'B	3.908	3.910	3.886	$6_{B} - 6_{B}'$	12.4	12.4	12.5
1 _C		5.437	5.486	$1_{c} - 2_{c}$		3.4	4.0
2 _C		3.795	3.915	$2_{c}^{-3_{c}}$			9.9
3 _C		3.77	3.816	3-4		2.8	3.6
4 _C		3.984	4.052	$4_{\rm C} - 5_{\rm C}$		1.2	<1
5 _c		3.879	3.89	5-6		5.5	
6 _C ,6 _C		3.72	3.73	5 -6'C		6.8	
1 _D			5.008	$1_{\rm D} - 2_{\rm D}$			2.2
2 _D			4.062	$2_{\rm D}^{-3}$			3.3
3 _D			3.837	3_{D}^{-4}			9.5
4 _D			3.465	$4_{\rm D} - 5_{\rm D}$			9.5
5 _D			3.807	$5_{\rm D}^{-}-6_{\rm D}^{-}$			6.2
6 _D			1.281				
ĊH₃O	3.369	3.378	3.379				
CH ₃ CO	2.032	2.055	2.064				

^{*a*}At 500 MHz, in D₂O at 300 K. Other details are to be found in the Experimental. ^{*b*}Values obtained by first-order analysis. ^{*c*}Subscripts A–D refer to individual monosaccharide units, starting at the "reducing" end.

and CHORTLE³⁷ and two-dimensional, C–H heteronuclear-correlated spectroscopy³⁸ with a composite pulse sequence for carbons.

Serological experiments indicated that compounds 2-4 only poorly inhibit the reaction between the group-specific polysaccharide antigen and antibodies raised against it in mice. Details of this investigation will be published elsehwere³⁹.

EXPERIMENTAL

General methods. — See ref. 27. Optical rotations were measured on solutions in CHCl₃ at 20°, unless stated otherwise, with a Perkin–Elmer 243 automatic polarimeter. ¹H-N.m.r. spectra (500 MHz) and ¹³C-n.m.r. spectra (125 and 50

TABLE II

Carbon atoms	Compound						
	2 ^e	3/	4 ^f				
1,	101.37	101.40	101.41 (170.6, 4.7)				
2	70.97	70.98	71.00				
3 _A	71.18	71.298	71.26				
4 _A	80.92	80.93	80.97				
5	67.58	67.59	67.60				
6	17.78	17.81	17.81				
1	102.32	102.23	102.19 (163.9, 6.7)				
2 _B	56.68	55.22	55.19				
3 _B	74.73	80.32	79.95				
4 _n	70.61	71.45	71.79				
5 _B	76.44	76.12	76.16				
6 ₉	61.39	61.17	61.18				
lc		99.80	99.52 (175.1)				
2		69.25	68.53				
3		70.02^{g}	77.93				
40		69.77	70.89				
5		71.65	71.47				
6 6		61.33	61.28				
1			103.13 (171.0, 5.0)				
2 _D			69.67				
30			70.89				
4p			72.82				
50			69.93				
6			17.47				
CH ₂ O	55.57	55.54	55.57				
CH ₃ CO	23.08	23.19	23.22				
CH ₁ CO	175.46	175.24	175.27				

¹³C-N.M.R. CHEMICAL SHIFTS^{a,b} FOR **2–4** and HETERONUCLEAR COUPLING CONSTANTS^c FOR THE ANOMERIC CARBON ATOMS OF **4**

^aIn D₂O, at 300 K. ^bAssignments are based on one-dimensional, heteronuclear ¹³C-¹H correlation spectroscopy (CHORTLE³⁷), using ¹H-n.m.r. data as given in Table I. Other conditions are to be found in the Experimental. ^cThe one-bond ¹³C-¹H and three-bond, ¹³C-O-C-¹H coupling constants (in Hz) are given in parentheses. ^dSubscripts A–D refer to individual monosaccharide units, starting at the "reducing" end. ^eAt 50 MHz. ^fAt 125 MHz. ^gCarbons 3_A and 3_C in 3 could not be differentiated by CHORTLE; the assignments given are based on comparison with the spectra of 2 and 3.

MHz) were recorded with Bruker AM-500 and AM-200 instruments, respectively, for solutions in CDCl₃ at 300 K unless stated otherwise. Two-dimensional measurements were made using standard Bruker software DISNMR. Compounds 2-4 were lyophilized from 99.5% D₂O twice before n.m.r. measurements in 99.95% D₂O solutions. Spectra obtained for solutions in CD₃OD were referenced to internal Me₄Si ($\delta = 0$) for protons and to the central line of the CD₃ multiplet ($\delta = 49.9$) for carbons. ¹³C-N.m.r. assignments given in Table II and for compounds 5, 7, 12-17, 20-22, and 24 are definitive; others are tentative. Assignments with an asterisk may be interchanged. *MBn* stands for the 4-methoxybenzylidene group.

3,4,6-Tri-O-acetyl-2-deoxy-2-phthalimido- β -D-glucopyranosyl bromide (5). - A solution of compound 7^{13,14} (1.02 g, 2.2 mmol) in CH₂Cl₂ (12 mL) was cooled to 0°. Bromine (115 μ L, 2.2 mmol) was added, the cooling bath was removed, and the mixture was left standing for 15 min at 20°, then successively extracted with ice-cold, aqueous 2% NaHSO₃ (5 mL) and water (5 mL), dried (Na₂SO₄), and concentrated. Crystallization of the residue from diethyl ether gave colorless 5(1.05)g, 96%), m.p. 135–137°, $[\alpha]_{\rm D}$ +46° (c 1.3 or 3.7); lit.⁵ m.p. 136–137°, $[\alpha]_{\rm D}^{15}$ +27° (chloroform), lit.⁶ m.p. 122–123°, $[\alpha]_D^{24}$ +57.3° (chloroform); lit.⁴ m.p. 120–121°; ¹H-n.m.r.: δ7.89–7.88, 7.78–7.76 (2 m, each 2 H, aromatic protons), 6.412 (d, 1 H, $J_{1,2}$ 9.7 Hz, H-1), 5.769 (dd, 1 H, $J_{2,3}$ 10.5 Hz, H-3), 5.263 (dd, 1 H, $J_{3,4}$ 8.9, $J_{4,5}$ 10.4 Hz, H-4), 4.634 (t, 1 H, H-2), 4.330 (dd, 1 H, J_{5.6} 4.7, J_{6.6}, 12.5 Hz, H-6), 4.203 (dd, 1 H, J₅₆, 2.2 Hz, H-6'), 3.967 (ddd, 1 H, H-5), 2.139, 2.042, 1.872 (3 s, each 3 H, 3 CH₃CO); ¹³C-n.m.r.: δ 170.6, 169.9, 167.3 (3 COCH₃), 170.2 (2 C=O), 134.6 (aromatic carbons), 130.7 (aromatic quaternary carbons), 123.9 (aromatic carbons), 77.2 (C-1), 76.8 (C-5), 70.6 (C-3), 68.1 (C-4), 61.7 (C-6), 58.1 (C-2), 20.7, 20.6, 20.3 (3 CH₃CO).

Anal. Calc. for C₂₀H₂₀BrNO₉ (498.27): C, 48.21; H, 4.05; Br, 16.04; N, 2.81. Found: C, 47.98; H, 3.98; Br, 15.91; N, 2.71.

Methyl 3,4,6-*tri*-O-*acetyl*-2-*deoxy*-2-*phthalimido*-1-*thio*-β-D-glucopyranoside (7). — (a) A mixture of compound 6^{4-6} (430 mg), (CH₃)₃SiSCH₃ (500 µL), (CH₃)₃SiOSO₂CF₃ (200 µL), and CH₂Cl₂ (5 mL) was stirred for 2 days at 20°, then treated with *N*,*N*-diisopropylethylamine (0.5 mL), extracted with water, dried (Na₂SO₄), and concentrated. The resulting syrup crystallized on addition of ether, to give 7 (392 mg, 93.5%), m.p. 153–154°, $[\alpha]_D$ +47° (*c* 1.5); lit.¹³ m.p. 154–155°, $[\alpha]_D$ +50.9° (chloroform); ¹H-n.m.r. (200 MHz): δ 7.73–7.91 (m, 4 H, aromatic protons), 5.871 (dd, 1 H, *J*_{2,3} 10.3, *J*_{3,4} 9.1 Hz, H-3), 5.406 (d, 1 H, *J*_{1,2} 10.5 Hz, H-1), 5.195 (dd, 1 H, *J*_{4,5} 10.2 Hz, H-4), 4.441 (t, 1 H, H-2), 4.268 (dd, 1 H, *J*_{5,6} 4.7, *J*_{6,6'} 12.4 Hz, H-6), 4.196 (dd, 1 H, *J*_{5,6'} 2.3 Hz, H-6'), 3.946 (ddd, 1 H, H-5), 2.171 (s, 3 H, SCH₃), 2.111, 2.046, 1.873 (3 s, each 3 H, 3 CH₃CO); ¹³C-n.m.r.: δ 170.5, 169.9, 169.4 (COCH₃), 167.6, 167.1 (2 C=O), 134.34, 134.27 (aromatic carbons), 131.5, 131.0 (aromatic quaternary carbons), 123.6 (2×) (aromatic carbons), 80.5 (C-1, *J*_{C1,H-1} 155.4 Hz), 75.9 (C-5), 71.4 (C-3), 68.7 (C-4), 62.1 (C-6), 52.9 (C-2), 20.6, 20.5, 20.3 (3 CH₃CO), 11.3 (SCH₃, *J*_{CH,H-1} 5.5 Hz).

Anal. Calc. for C₂₁H₂₃NO₉S (465.45): C, 54.19; H, 4.98; N, 3.01; S, 6.89. Found: C, 54.38; H, 4.96; N, 2.96; S, 6.79.

(b) A solution of 6 (74 g, 0.21 mol), $BF_3 \cdot Et_2O$ (100 mL), and CH_2Cl_2 (300 mL) at 0° was treated with MeSH (25 g, 0.52 mol). The solution was allowed to reach 20° during 4 h, then neutralized by extraction with ice-cold, aqueous NaHCO₃, washed with water, and concentrated. Spontaneous crystallization was completed by addition of ethyl acetate and ether, to give 7 (26.6 g). Concentration of the mother liquor followed by chromatography of the residue in 2:1 ether-hexane gave more 7 (28 g; total yield, 54.6 g, 54.7%). This product was indistinguishable from the preparation obtained in (a).

Methyl 2,3-O-*isopropylidene-4*-O-(*3*,*4*,6-*tri*-O-*acetyl*-2-*deoxy*-2-*phthalimido*β-D-glucopyranosyl)-α-L-rhamnopyranoside (**9**). — (a) A mixture of **5** (4.8 g, 9.63 mmol), **8**^{7.8} (4.2 g, 19.25 mmol), powdered molecular sieves (4A, 3 g), and dichloromethane (20 mL) was stirred for 1 h at 20°, and then Ag₂CO₃ (2.5 g) was added. The mixture was stirred overnight at 20° and filtered, and the filtrate was concentrated. Chromatography of the residue in 2:1 hexane–ethyl acetate gave **9** (4.5 g, 73.5%) as a syrup which crystallized on standing; m.p. 147–148°, $[\alpha]_D$ +8.5° (*c* 1); ¹³C-n.m.r.: δ 170.6, 170.0, 169.5 (3 COCH₃), 167.8 (2×) (2 C=O), 133.8 (2×) (aromatic carbons), 123.3 (2×) (aromatic carbons), 109.1 [*C*(CH₃)₂], 99.4 (C-1, *J*_{C-1,H-1} 165 Hz), 97.7 (C-1', *J*_{C-1',H-1'} 168 Hz), 83.7 (C-4), 77.4 (C-5'), 75.7 (C-3), 71.5 (C-3'), 70.4 (C-2), 69.3 (C-4'), 63.9 (C-5), 62.3 (C-6'), 55.0 (CH₃O), 54.7 (C-2'), 27.6, 25.6 [(CH₃)₂C], 20.6 (2×), 20.4 (3 CH₃CO), 17.3 (C-6).

Anal. Calc. for C₃₀H₃₇NO₁₄ (635.5): C, 56.69; H, 5.87; N, 2.20. Found: C, 56.48; H, 5.79; N, 2.11.

(b) A mixture of **5** (490 mg, 0.98 mmol), **8** (220 mg, 1.01 mmol), and powdered molecular sieves (4A, 1.5 $_{\odot}$) in dichloromethane (5 mL) was stirred for 15 min at 20°. Nitrosyl tetrafluoroborate (120 mg, 1.03 mmol) was added and stirring was continued for 1.5 h. The mixture was filtered, the filtrate concentrated, and the residue chromatographed in 2:1 ether-hexane to give **9** (575 mg, 89.7%), identical to the product obtained in (*a*).

Methyl 4-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-2,3-O-isopropylideneα-L-rhamnopyranoside (**10**). — A solution of **9** (3.5 g, 5.5 mmol) in MeOH (60 mL) and BuNH₂ (10 mL) was boiled under reflux²⁰ for 3 h and then concentrated. BuNH₂ was removed by repeated addition and evaporation of MeOH. A solution of the residue in MeOH (50 mL) at 0° was treated with Ac₂O (10 mL) for 4 h. The solution was concentrated and the residue chromatographed in 8:1 ethyl acetatemethanol to give **10** (1.55 g, 66.8%) as an amorphous solid, $[\alpha]_D = -42^\circ$ (*c* 0.7); ¹³C-n.m.r.: δ 173.8 (C=O), 109.5 [*C*(CH₃)₂], 101.9 (C-1', *J*_{C-1',H-1'} 159 Hz), 97.7 (C-1, *J*_{C-1,H-1} 168 Hz), 82.2 (C-4), 78.0 (C-3), 76.0 (C-5'), 75.7 (C-3'), 75.5 (C-2), 70.4 (C-4'), 64.1 (C-5), 61.7 (C-6'), 56.8 (C-2'), 54.8 (OCH₃), 28.0, 26.2 [C(CH₃)₂], 23.1 (CH₃CO), 17.5 (C-6).

Methyl 4-O-[2-acetamido-2-deoxy-4,6-(4-O-methoxybenzylidene)-β-D-glucopyranosyl]-2,3-O-isopropylidene-α-L-rhamnopyranoside (**11**). — A solution of **10** (1.2 g, 2.85 mmol), TsOH · H₂O (50 mg), 4-methoxybenzaldehyde dimethyl acetal²¹ (5 mL), and *N*,*N*-dimethylformamide (10 mL) was stirred for 12 h at 20°. NaHCO₃ (~200 mg) was added and stirring was continued for 1 h. The solution was concentrated, and the residue was solidified by stirring with water, to give **11** (1.4 g, 91.1%), m.p. 256–257° (from ethyl acetate), $[\alpha]_D -72°$ (c 0.7); ¹³C-n.m.r.: δ 173.1 (C=O), 160.1 [C-4' (*MBn*)], 127.6 (2×) [C-2,6 (*MBn*)], 113.5 (2×) [C-3,5 (*MBn*)], 109.8 [*C*(CH₃)₂], 102.9 [C-7, (*MBn*)], 101.6 (C-1'), 97.7 (C-1), 83.8 (C-4), 81.3 (C-4'), 78.1 (C-3'), 76.2 (C-3), 73.6 (C-2), 68.4 (C-6'), 66.5 (C-5'), 64.0 (C-5), 59.3 (C-2'), 55.2, 54.9 (2 CH₃O), 28.1, 26.2 [(CH₃)₂C], 22.9 (CH₃CO), 17.2 (C-6).

Anal. Calc. for C₂₆H₃₇NO₁₁ (539.56): C, 59.54; H, 6.91; N, 2.59. Found: C, 58.80; H, 6.97; N, 2.59.

Methyl 2,3,4,6-tetra-O-acetyl-1-thio-B-D-galactopyranoside (12). — A mixture of 1,2,3,4,6-penta-O-acetyl- β -D-galactopyranose (2 g, 5.12 mmol), (CH₃)₃SiSCH₃ (2 mL, 19.6 mmol), and powdered molecular sieves (4A, 2.5 g) in CH₂Cl₂ (20 mL) was stirred for 2 h at 20°, and then cooled to 0–5°. BF₃·Et₂O (600 μ L) was added and the mixture was further stirred for 36 h at 0-5°. (CH₃)₃SiSCH₃ (1 mL, 9.8 mmol) and BF₃·Et₂O (400 μ L) were added, and stirring was continued for a further 12 h at 0–5°. The mixture was filtered, and the filtrate was extracted with ice-cold, aqueous 2% NaHCO₃ and H₂O, and then concentrated. The residue crystallized from 96% EtOH to give **12** (1.55 g, 79.9%), m.p. 110–112°, $[\alpha]_{\rm D}$ +2.4° (c 1.3); lit.²² m.p. 108°, $[\alpha]_{D}$ +2.9° (chloroform); lit.²³ m.p. 113–115°, $[\alpha]_{D}$ +2.0° (chloroform). The mother liquor was concentrated, and the residue was purified by chromatography in 1:1 EtOAc-hexane, to give additional 12 (0.18 g, 9.3%); total yield of **12**, 89.2%. The ¹H-n.m.r. data are identical with those given in ref. 23, except for the value of $J_{H,d,H,5}$ which was 1.1 Hz as compared with the reported²³ value of 0.3 Hz. 13 C-N.m.r.: δ 170.0, 169.8, 169.6, 169.2 (4 COCH₃), 82.9 (C-1, J_{C-LH-1} 153.5 Hz), 74.1 (C-5), 71.5 (C-3), 67.0 (C-4), 66.2 (C-2), 61.1 (C-6), 20.4, 20.3 (3×) (4 *C*H₃CO), 11.0 (SCH₃, *J*_{CH,H-1} 4.2 Hz).

Anal. Calc. for $C_{15}H_{22}O_9S$ (378.39): C, 47.61; H, 5.86; S, 8.47. Found: C, 47.40; H, 5.78; S, 8.19.

Methyl 1-thio-β-D-galactopyranoside (13). — To a stirred mixture of 12 (24 g) in MeOH (60 mL) was added a catalytic amount of NaOMe. The mixture was stirred for 10 min at 20° and was left standing for 12 h at 0–4°. Scratching of the wall induced rapid crystallization, to give 13 (11.0 g, 82%), m.p. 181–182°, $[\alpha]_D$ +10.7° (*c* 1.2, water), $[\alpha]_D$ –2.9° (*c* 0.58, methanol); lit.²² m.p. 174–175°, $[\alpha]_D$ +10.7° (water); lit.²³ m.p. 132–133°, $[\alpha]_D$ –5.1° (methanol). The ¹H-n.m.r. data are identical to those in ref. 23. ¹³C-N.m.r. (CD₃OD): δ 88.8 (C-1), 81.6 (C-5), 77.1 (C-3), 71.7 (C-2), 71.4 (C-4), 63.5 (C-6), 12.9 (SCH₃).

Anal. Calc. for C₇H₁₄O₅S (210.24): C, 39.99; H, 6.71; S, 15.25. Found: C, 39.76; H, 6.56; S, 15.11.

Methyl 3,4-O-isopropylidene-2,6-di-O-(1-methoxy-1-methylethyl)-1-thio-β-Dgalactopyranoside (14), methyl 3,4-O-isopropylidene-6-O-(1-methoxy-1-methylethyl)-1-thio-β-D-galactopyranoside (15), methyl 3,4-O-isopropylidene-1-thio-β-Dgalactopyranoside (16), and methyl 4,6-O-isopropylidene-1-thio-β-D-galactopyranoside (17). — (a) A mixture of 13 (2.55 g, 12.1 mmol), 2,2-dimethoxypropane (100 mL, 1.13 mol), and TsOH·H₂O (200 mg) was stirred for 8 h at 20°, then treated with Et₃N (2 mL), and concentrated. Chromatography of the residue in 1:1 hexane–ethyl acetate, containing 1% of Et₃N, gave, first, syrupy 14 (85 mg, 1.8%), $[\alpha]_D = -17.2^\circ$ (c 0.9); ¹H-n.m.r.: δ 4.522 (d, 1 H, $J_{1,2}$ 5.7 Hz, H-1), 4.252 (dd, 1 H, $J_{3,4}$ 6.6, $J_{4,5}$ 1.9 Hz, H-4), 4.221 (dd, 1 H, $J_{2,3}$ 4.3 Hz, H-3), 3.949 (dd, 1 H, H-2), 3.817 (ddd, 1 H, H-5), 3.651 (dd, 1 H, $J_{5,6}$ 6.5, $J_{6,6'}$ 9.9 Hz, H-6), 3.622 (dd, 1 H, $J_{5,6'}$ 5.8 Hz, H-6'), 3.27, 3.23 (2 s, each 3 H, 2 CH₃O), 2.209 (s, 3 H, CH₃S), 1.523, 1.417, 1.401, 1.358, 1.353, 1.329 [6 s, each 3 H, 2 (CH₃)₂C(OCH₃) and (CH₃)₂C]; ¹³C-n.m.r.: δ 109.5 [C(CH₃)₂], 101.4, 99.9 [2 C(CH₃)₂(OCH₃)], 85.8 (C-1), 77.3 (C-3), 74.7 (C-5), 73.0 (C-4), 70.7 (C-2), 60.3 (C-6), 49.5, 48.3, (2 CH₃O), 26.8 25.6, 25.4, 25.0, 24.3 (2×) [C(CH₃)₂ and 2 C(CH₃)₂(OCH₃)], 13.7 SCH₃.

Subsequent elution gave **15** (2.9 g, 74.2%), m.p. 58–60°, softens at 50–55°, $[\alpha]_D$ +20.6° (*c* 1.3); ¹H-n.m.r.: δ 4.226 (dd, 1 H, $J_{3,4}$ 5.4, $J_{4,5}$ 2.2 Hz, H-4), 4.185 (d, 1 H, $J_{1,2}$ 10.1 Hz, H-1), 4.070 (dd, 1 H, $J_{2,3}$ 7.0 Hz, H-3), 3.822 (ddd, 1 H, H-5), 3.702 (dd, 1 H, $J_{5,6}$ 6.3, $J_{6,6'}$ 9.8 Hz, H-6), 3.674 (dd, 1 H, $J_{5,6'}$ 6.0 Hz, H-6'), 3.582 (m, 1 H, H-2), 3.233 (s, 3 H, OCH₃), 2.204 (s, 3 H, SCH₃), 1.524, 1.365, 1.356, 1.348 [4 s, each 3 H, (CH₃)₂C and (CH₃)₂C(OCH₃)]; ¹³C-n.m.r.: δ 109.6 [C(CH₃)₂], 100.1 [C(CH₃)₂(OCH₃)], 84.9 (C-1), 79.1 (C-3), 75.8 (C-5), 73.7 (C-4), 71.4 (C-2), 60.3 (C-6), 48.4 (OCH₃), 28.1, 26.0, 24.2 [C(CH₃)₂ and C(CH₃)₂(OCH₃)], 11.4 (SCH₃).

Anal. Calc. for $C_{14}H_{26}O_6S$ (322.41): C, 52.15; H, 8.13; S, 9.94. Found: C, 52.01; H, 8.32; S, 10.01.

Further elution with ethyl acetate gave **16** (370 mg, 12.8%), m.p. 136–138° (from ether), $[\alpha]_D$ +44.8° (c 1); ¹H-n.m.r.: δ 4.243 (dd, 1 H, $J_{3,4}$ 5.4 Hz, $J_{4,5}$ 2.2 Hz, H-4), 4.220 (d, 1 H, $J_{1,2}$ 10.0 Hz, H-1), 4.006 (dd, 1 H, $J_{2,3}$ 7.8 Hz, H-3), 3.849 (ddd, 1 H, H-5), 3.773 (dd, 1 H, $J_{5,6}$ 7.2, $J_{6,6'}$ 11.5 Hz, H-6), 3.719 (dd, 1 H, $J_{5,6'}$ 5.0 Hz, H-6'), 3.469 (dd, 1 H, H-2), 2.184 (s, 3 H, SCH₃), 1.471, 1.329 [2 s, each 3 H, (CH₃)₂C]; ¹³C-n.m.r. (CD₃OD): δ 111.8 [*C*(CH₃)₂], 87.6 (C-1), 82.0 (C-3), 79.4 (C-5), 76.2 (C-4), 73.8 (C-2), 63.5 (C-6), 29.4, 27.4 [C(CH₃)₂], 12.6 (SCH₃).

Anal Calc. for C₁₀H₁₈O₅S (250.30): C, 47.98; H, 7.25; S, 12.81. Found: C, 48.02; H, 7.39; S, 12.59.

Finally, elution with 10:1 ethyl acetate-methanol gave **17** (85 mg, 2.9%), m.p. 108–110° (from ether-hexane), $[\alpha]_D -9.5^\circ$ (c 1.5); ¹H-n.m.r. (CD₃OD): δ 4.219 (d, 1 H, $J_{1,2}$ 9.5 Hz, H-1), 4.210 (dd, 1 H, $J_{3,4}$ 3.6, $J_{4,5}$ 1.2 Hz, H-4), 4.098 (dd, 1 H, $J_{5,6}$ 2.0 Hz, H-6), 3.821 (dd, 1 H, $J_{5,6'}$ 1.7, $J_{6,6'}$ 12.8 Hz, H-6'), 3.650 (t, 1 H, $J_{2,3}$ 9.4 Hz, H-2), 3.520 (dd, 1 H, H-3), 3.419 (ddd, 1 H, H-5), 2.186 (s, 3 H, SCH₃), 1.462, 1.381 [2 s, each 3 H, (CH₃)₂C]: ¹³C-n.m.r. (CD₃OD): δ 100.8 [C(CH₃)₂], 87.6 (C-1), 75.6 (C-3), 71.9 (C-5), 71.1 (C-4), 70.7 (C-2), 64.8 (C-6), 30.4, 19.7 [(CH₃)₂C], 12.4 (SCH₃).

Anal. Calc. for C₁₀H₁₈O₅S (250.30): C, 47.98; H, 7.25; S, 12.81. Found: C, 47.68; H, 7.38; S, 12.88.

(b) A mixture of **13** (15 g), TsOH \cdot H₂O (250 mg), and 2,2-dimethoxypropane (300 mL) was stirred for 12 h at 20°. Et₃N (1 mL) was added and the solution was concentrated. A solution of the residue in CH₂Cl₂ (150 mL) was stirred with aqueous 50% trifluoroacetic acid (2 mL) for 15 min at 20°, then treated with Et₃N (3 mL), and concentrated. Crystallization (ether) gave **16** (16.3 g, 91.2%). The product was identical to **16** obtained in (*a*).

(c) A mixture of 13 (500 mg, 2.38 mmol), N,N-dimethylformamide (5 mL), 2,2-dimethoxypropane (1 mL), and TsOH \cdot H₂O (85 mg) was stirred for 2 h at 0°. Et₃N (0.5 mL) was added and the mixture was concentrated. Chromatography of the residue in ethyl acetate gave 15 (10 mg, 1.3%), 16 (95 mg, 15.9%), and 17 (340 mg, 57.1%).

Methyl 2,6-*di*-O-*acetyl-3*,4-O-*isopropylidene-1-thio-β*-D-*galactopyranoside* (18). — A solution of 16 (100 mg) in pyridine (1 mL) and Ac₂O (1 mL) was kept for 14 h at 20°. Concentration followed by recrystallization from ether-hexane gave 18 (119 mg, 89.1%), m.p. 102–104°, $[\alpha]_D$ +74° (*c* 0.8); ¹H-n.m.r.: δ 5.031 (dd, 1 H, $J_{2,3}$ 6.8 Hz, H-2), 4.368 (dd, 1 H, $J_{5,6}$ 4.6, $J_{6,6'}$ 11.8 Hz, H-6), 4.327 (dd, 1 H, $J_{5,6'}$ 7.3 Hz, H-6'), 4.18–4.25 (m, 2 H, H-3,4), 4.016 (ddd, 1 H, $J_{4,5}$ 2 Hz, H-5), 2.164 (s, 3 H, SCH₃), 2.118, 2.098 (2 s, each 3 H, 2 CH₃CO), 1.556, 1.348 [2 s, each 3 H, (CH₃)₂C]; ¹³C-n.m.r.: δ 170.7, 169.6 (2 C=O), 110.6 [*C*(CH₃)₂], 82.0 (C-1), 77.0 (C-3*), 74.3 (C-5), 73.6 (C-4*), 70.5 (C-2), 63.5 (C-6), 27.6, 26.2 [(CH₃)₂C], 20.9, 20.8 (2 CH₃CO), 11.3 (SCH₃).

Anal. Calc. for C₁₄H₂₂O₇S (334.38): C, 50.28; H, 6.58; S, 9.59. Found: C, 50.53; H, 6.72; S, 9.40.

Methyl 2,6-di-O-benzyl-3,4-O-isopropylidene-1-thio-β-D-galactopyranoside (19). — NaH (8 g) was added in small portions to a solution of 16 (12 g, 47.9 mmol) in N,N-dimethylformamide (100 mL) under stirring and cooling with ice-water. After addition, the mixture was stirred for 30 min, then benzyl bromide (28 mL, 114.5 mmol) was added dropwise, and the mixture was stirred for 12 h at 20°. The excess of NaH was decomposed by dropwise addition of MeOH (10 mL) and then H₂O (10 mL). The mixture was diluted with CHCl₃ (200 mL), extracted with H₂O (3 × 100 mL), dried, and concentrated to give syrupy 19 (18.7 g, 90.6%). A portion of the syrup, further purified by chromatography in 3:1 hexane-ethyl acetate, had $[\alpha]_D = 5^\circ$ (c 0.6); lit.²³ $[\alpha]_D = -15.7^\circ$ (c 1, chloroform). For the ¹H-n.m.r. data, see ref. 23. ¹³C-N.m.r.: δ 137.9, 137.5 (aromatic quaternary carbons), 128.0, 127.4, 127.3 (aromatic carbons), 109.6 $[C(CH_3)_2]$, 84.1 (C-1), 79.2 (C-3*), 78.5 (C-2), 75.4 (C-5), 73.6 (C-4*), 73.2, 73.0 [2 CH₂ (Bn)], 69.3 (C-6), 27.6, 26.0 $[C(CH_3)_2]$, 12.5 (SCH₃).

Methyl 2,6-di-O-benzyl-1-thio- β -D-galactopyranoside (20). — A solution of 19 (18 g, 41.8 mmol) in MeOH (250 mL) and 50% aqueous HBF₄ (4 mL) was stirred²⁷ for 2 h at 20°, NaHCO₃ (5 g) was added, and the mixture was stirred for 1 h and then concentrated. The residue was partitioned between CH₂Cl₂ (200 mL) and H₂O (3 × 50 mL), and the organic phase was dried (Na₂SO₄) and concentrated, to give 19 (13.8 g, 84.6%), m.p. 90–91°, $[\alpha]_D$ +8.1° (*c* 0.7); lit.²³ m.p. 91–92°, $[\alpha]_D$ +6.3° (*c* 0.6, chloroform). The ¹H-n.m.r. data agreed with those published in ref. 23, except for the following: δ 4.032 (dd, 1 H, J_{3,4} 3.3, J_{4,5} 1.1 Hz, H-4), 3.617 (dd, 1 H, H-3). ¹³C-N.m.r.: δ 137.9, 137.6 (aromatic quaternary carbons), 128.3, 128.1, 127.8, 127.6 (aromatic carbons), 85.2 (C-1), 78.3 (C-2), 76.8 (C-5), 75.1 [CH₂ (Bn)], 74.7 (C-3), 73.5 [CH₂ (Bn)], 69.39 (C-4), 69.34 (C-6), 12.7 (SCH₃).

Anal. Calc. for $C_{21}H_{26}O_5S$ (390.48): C, 64.59; H, 6.71; S, 8.21. Found: C, 64.19; H, 6.52; S, 8.00.

Methyl 3-O-allyl-2,6-di-O-benzyl-1-thio- β -D-galactopyranoside (21). — A mixture of 20 (13.0 g, 33.3 mmol), Bu₂SnO (12.1 g, 34.9 mmol), and benzene (250 mL) was stirred under reflux, using a Dean–Stark trap, for 8 h. Benzene (150 mL) was then removed by distillation, and the reaction mixture was cooled to ~45°.

Bu₄NBr (6.5 g, 34.9 mmol) and allyl bromide (5 mL, 57.6 mmol) were added, and the mixture was stirred for 5 h at ~45° and then concentrated. The residue was partitioned between CH₂Cl₂ (200 mL) and H₂O (3 × 50 mL), and the CH₂Cl₂ layer was dried (Na₂SO₄) and concentrated. Chromatography of the residue in 1:1 etherhexane gave **21** (11.5 g, 80.3%) as a syrup, $[\alpha]_D - 21.5^\circ$ (*c* 2); ¹H-n.m.r.: δ 7.4-7.26 (m, 10 H, aromatic protons), 5.94 [m, 1 H, CH= (allyl)], 5.31, 5.20 [2 m, each 1 H, CH₂= (allyl)]. 4.83, 4.76 [2 d, each 1 H, CH₂ (Bn)], 4.75 [s, 2 H, CH₂ (Bn)], 4.319 (d, 1 H, *J*_{1.2} 9.7 Hz, H-1), 4.19 [m, 2 H, CH₂ (allyl)], 4.10 (m, 1 H, H-4), 3.791 (dd, 1 H, *J*_{5.6} 6.1, *J*_{6.6'} 10.0 Hz, H-6), 3.735 (dd, 1 H, H-6'), 3.649 (t, 1 H, H-2), 3.592 (dt, 1 H, *J*_{4.5} 1.0 Hz, H-5), 3.460 (dd, 1 H, *J*_{2.3} 9.0 Hz, H-3), 1.223 (s, 3 H, SCH₃); ¹³C-n.m.r.: δ 138.0, 137.8 (aromatic quaternary carbons), 134.4 [*C*H= (allyl)], 128.3, 127.7 (aromatic carbons), 117.4 [*C*H₂= (allyl)], 85.2 (C-1), 82.1 (C-3), 77.2 (C-2), 76.8 (C-5), 75.6, 73.6 [2 CH₂ (Bn)], 71.0 [CH₂ (allyl)], 69.2 (C-6), 66.9 (C-4), 12.5 (SCH₃).

Methyl 3-O-allyl-2,4,6-tri-O-benzyl-1-thio-β-D-galactopyranoside (22). — Compound 21 was benzylated as described for 19. Chromatography in 3:1 hexaneether gave 22 as a syrup (72%), $[\alpha]_D$ —7.8° (*c* 0.9); ¹H-n.m.r.: δ 7.45—7.24 (m, 15 H, aromatic protons), 5.95 [m, 1 H, CH= (allyl)], 5.33, 5.19 (2 m, each 1 H, CH₂ (allyl)], 4.95, 4.84, 4.80, 4.61, 4.47, 4.42 [6 d, each 1 H, 3 CH₂ (Bn)], 4.314 (d, 1 H, $J_{1,2}$ 9.6 Hz, H-1), 4.19 [m, 2 H, CH₂ (allyl)], 3.929 (dd, 1 H, $J_{3,4}$ 2.9, $J_{4,5}$ 0.8 Hz, H-4), 3.784 (t, 1 H, H-2), 3.95–3.55 (m, 3 H, H-5,6,6'), 3.464 (dd, 1 H, $J_{2,3}$ 9.3 Hz, H-3), 2.195 (s, 3 H, SCH₃); ¹³C-n.m.r.: δ 138.8, 138.3, 137.8 (aromatic quaternary carbons). 134.8 [CH= (allyl)], 128.4–127.4 (aromatic carbons), 116.7 [CH₂= (allyl)], 85.6 (C-1), 83.7 (C-3), 77.8 (C-2), 77.1 (C-5), 75.7, 74.3, 73.6 (3 CH₂ (Bn)], 73.4 (C-4), 71.4 [CH₂ (allyl)], 68.6 (C-6), 12.7 (SCH₃).

Methyl 2, 4,6-tri-O-benzyl-1-thio-β-D-galactopyranoside (23). — A solution of 22 (4.4 g, 8.4 mmol) in Me₂SO (40 mL) was treated with KO¹Bu (3 g, 26.7 mmol) for 20 min at 80°. The solution was cooled to 20°, diluted with H₂O (200 mL), and extracted with CHCl₃ (5 × 100 mL). The CHCl₃ solutions were combined, washed with H₂O (2 × 100 mL), and concentrated. Chromatography of the residue in 2:1 hexane–ether gave 23 (3.2 g, 78.8%) as an oil, $[\alpha]_D$ +7.2° (*c* 0.7); ¹H-n.m.r.: δ 7.2–7.4 (m, 15 H, aromatic protons), 4.911, 4.731, 4.688, 4.641, 4.498, 4.440 {6 d, 6 H, J_{gem} 11–12 Hz [3 CH₂ (Bn)]}, 4.292 (d, 1 H, J_{1,2} 9.4 Hz, H-1), 3.872 (d, 1 H, J_{3,4} 3.2 Hz, H-4), 3.6–3.7 (m, 4 H, H-3,5,6,6'), 3.565 (t, 1 H, J_{2,3} 9.3 Hz, H-2), 2.211 (s, 3 H, SCH₃); ¹³C-n.m.r.: δ 138.4, 138.0, 137.7 (quaternary aromatic carbons), 128.4–127.6 (aromatic carbons), 85.3 (C-1), 78.9 (C-2), 77.1 (C-5^{*}), 76.1 (C-4), 75.4 (C-3^{*}), 75.2, 74.9, 73.4 [3 CH₂ (Bn)], 68.4 (C-6), 12.8 (SCH₃).

Methyl 3-O-*acetyl*-2, 4,6-tri-O-*benzyl*-1-thio- β -D-galactopyranoside (24). — A solution of 23 (3.0 g, 6.2 mmol) in pyridine (10 mL) and Ac₂O (10 mL) was kept for 12 h at 20° and then concentrated. A solution of the residue in CHCl₃ (50 mL) was successively washed with aqueous 5% NaHCO₃, H₂O, aqueous HCl (5%), and H₂O, dried, and concentrated to give 24 (3.1 g, 95%) as a syrup, [α]_D +30.7° (c 0.7); ¹H-n.m.r.: 7.22–7.34 (m, 15 H, aromatic protons), 4.973 (dd, 1 H, J_{2,3} 9.7, J_{3,4}

3.1 Hz, H-3), 4.855, 4.618, 4.601, 4.517, 4.480, 4.405 [6 d, 6 H, $J \sim 11$ Hz, 3 CH₂ (Bn)], 4.378 (d, 1 H, $J_{1.2}$ 9.6 Hz, H-1), 4.016 (dd, 1 H, $J_{4,5}$ 0.9 Hz, H-4), 3.832 (t, 1 H, H-2), 3.702 (ddd, 1 H, $J_{5,6} \sim J_{5,6'}$ 5.6 Hz, H-5), 3.607 (dd, 1 H, H-6), 3.585 (dd, 1 H, $J_{6,6'}$ 7.8 Hz, H-6'), 2.203 (s, 3 H, SCH₃), 1.869 (s, 3 H, CH₃CO); ¹³C-n.m.r.: δ 170.1 (C=O), 138.2, 137.9, 137.7 (aromatic quaternary carbons), 128.2–127.7 (aromatic carbons), 85.5 (C-1, $J_{C-1,H-1}$ 155.6 Hz), 76.6 (C-3,5), 76.0 (C-2), 75.1, 74.7, 73.3 [3 CH₂ (Bn)], 74.5 (C-4), 67.9 (C-6), 20.7 (CH₃CO), 12.7 (SCH₃).

3-O-Acetyl-2, 4, 6-tri-O-benzyl-α-D-galactopyranosyl bromide (**25**). — A mixture of **24** (1.16 g, 2.22 mmol), CH₂Cl₂ (10 mL), and bromine (140 μL, 2.72 mmol) was stirred for 20 min at 0° and then concentrated. Toluene (3 × 5 mL) was evaporated from the residue to give syrupy **25** (1.25 g, quantitative); ¹H-n.m.r.: δ 7.1–7.4 (m, 15 H, aromatic protons), 6.479 (d, 1 H, $J_{1,2}$ 3.7 Hz, H-1), 5.267 (dd, 1 H, $J_{2,3}$ 10.2, $J_{3,4}$ 2.9 Hz, H-3), 4.7–4.4 [5 d, 6 H, J_{gem} 11–12 Hz, 3 CH₂(Bn)], 4.321 (dt, 1 H, H-5), 4.110 (dd, 1 H, $J_{4,5} \sim$ 1 Hz, H-4), 9.543 (dd, 1 H, H-2), 3.576 (d, 1 H, $J_{5,6}$ 7.1 Hz, H-6), 3.563 (d, 1 H, $J_{5,6'}$ 6.2 Hz, H-6'), 1.980 (s, 3 H, CH₃CO).

Methyl 4-O-[2-acetamido-3-O-(3-O-acetyl-2,4,6-tri-O-benzyl-α-D-galactopyranosyl)-2-deoxy-4,6-O-(4-methoxybenzylidene)-β-D-glucopyranosyl]-2,3-O-isopropylidene-α-L-rhamnopyranoside (**26**). — A mixture of **11** (600 mg, 1.1 mmol), bromide **25** (obtained from **24**; 1.16 g, 2.2 mmol), Et₄NBr (500 mg, 2.4 mmol), powdered molecular sieves (4A, 2 g), *N*,*N*-dimethylformamide (6 mL), and CH₂Cl₂ (10 mL) was stirred for 3 days at 20°. The mixture was filtered and the filtrate concentrated. The residue was partitioned between CHCl₃ (120 mL) and H₂O (2 × 30 mL), the organic layer was concentrated, and the residue was chromatographed in 1:1 ethyl acetate-hexane to give **26** (392 mg, 34.8%) as an amorphous solid, [*α*]_D +21° (*c* 0.3); ¹³C-n.m.r.: δ 170.2, 169.8 (2 C=O), 160.0 [C-4 (*MBn*)], 137.7 (2×), 137.4 (aromatic quaternary carbons), 129.4–126.8 (aromatic carbons), 113.4 (2×) [C-3,5 (*MBn*)], 108.8 [*C*(CH₃)₂], 101.3 [C-7 (*MBn*)], 101.0 (C-1', *J*_{C-1',H-1'} 162 Hz), 97.5 (C-1, *J*_{C-1,H-1} 170 Hz), 96.2 (C-1", *J*_{C-1",H-1"} 173 Hz), 82.4 (C-4), 74.7, 73.4, 70.1 [CH₂ (Bn)], 69.0 (C-6"), 68.4 (C-6'), 54.9, 54.3 (2 CH₃O), 27.6, 26.0 [(CH₃)₂C], 22.9 (CH₃CON), 20.6 (CH₃COO), 17.3 (C-6).

Anal. Calc. for C₅₅H₆₇NO₁₇ (1014.09): C, 65.14; H, 6.66; N, 1.38. Found: C, 64.88; H, 6.50; N, 1.23.

Methyl 4-O-[2-acetamido-2-deoxy-4,6-O-(4-methoxybenzylidene)-3-O-(2,4,6tri-O-benzyl-α-D-galactopyranosyl)-β-D-glucopyranosyl]-2,3-O-isopropylidene-α-Lrhamnopyranoside (27). — A solution of 26 (345 mg, 0.35 mmol) in MeOH (15 mL) was treated with a catalytic amount of NaOMe and left standing for 12 h at 20°. Neutralization [Dowex 50W (H⁺) resin] followed by removal of solvent left 27 (318 mg, 96.1%) as an amorphous solid, $[\alpha]_D$ +11° (*c* 0.8); ¹³C-n.m.r.: δ 170.3 (C=O), 160.2 [C-4 (*MBn*)], 138.3, 137.9, 137.5 (aromatic quaternary carbons), 129.4–127.1 (aromatic carbons), 113.5 (2×) [C-3,5 (*MBn*)], 109.1 [C(CH₃)₂], 101.8 [C-7 (*MBn*)], 101.7 (C-1'), 97.7 (C-1), 96.3 (C-1"), 82.3 (C-4), 74.7, 73.9, 70.6 [3 CH₂ (Bn)], 70.4 (C-6"), 68.7 (C-6'), 55.2 (C-2'), 54.6, 54.5 (2 CH₃O), 27.9, 26.3 [(CH₃)₂C], 23.1 (CH₃CO), 17.4 (C-6). *Anal.* Calc. for C₅₃H₆₅NO₁₆ (972.08): C, 65.48; H, 6.74; N, 1.44. Found: C, 65.20; H, 6.56; N, 1.34.

Methyl 4-O-{2-acetamido-2-deoxy-4,6-O-(4-methoxybenzylidene)-3-O-[2,4,6tri-O-benzyl-3-O-(α -L-rhamnopyranosyl)- α -D-galactopyranosyl]- β -D-glucopyranosyl}-2,3-O-isopropylidene- α -L-rhamnopyranoside (29). — A mixture of 27 (240 mg, 0.25 mmol), 28 (250 mg, 0.71 mmol), Hg(CN)₂ (200 mg, 0.79 mmol), powdered molecular sieves (4A, 1.5 g), CH₃NO₂ (5 mL), and CH₂Cl₂ (5 mL) was stirred for 12 h at 20°. Compound 28 (300 mg, 0.85 mmol) was then added and stirring was continued for 24 h at 20°. The mixture was filtered, and the solution was extracted with aqueous 5% KI and then H_2O , dried (Na_2SO_4), and concentrated. A solution of the residue in MeOH (10 mL) was O-deacetylated as described for 26. Chromatography of the residue in ethyl acetate gave 29 as an amorphous solid (185 mg, 67.0%), $[\alpha]_{D}$ -12.0° (c 0.2); ¹³C-n.m.r.: δ 171.0 (C=O), 160.2 [C-4 (*MBn*)], 138.1, 137.7, 137.4 (aromatic quaternary carbons), 129.4–127.2 (aromatic carbons), 113.6 (2 ×) [C-3,5 (MBn)], 109.1 [C(CH₃)₂], 101.7 [C-7 (MBn)], 101.5 (2×) (C-1',1"'), 97.7 (C-1), 96.4 (C-1"), 82.1 (C-4), 74.6, 73.9, 70.3 [3 CH₂ (Bn)], 70.3 (C-6"), 68.5 (C-6'), 55.2 (C-2'), 54.7 (2×) (2 CH₃O), 27.8, 26.3 [(CH₃)₂C], 23.1 (CH₃CO), 17.6, 17.3 (C-6,6").

Methyl 4-O-(2-acetamido-2-deoxy- β -D-glucopyranosyl)- α -L-rhamnopyranoside (2). — A solution of 10 (28 mg) in aqueous 70% CH₃COOH (5 mL) was stirred for 4 h at 70°. Concentration followed by gel filtration on Sephadex G-10 (H₂O) gave 2 as an amorphous solid (21 mg, 83%) after freeze-drying; [α]_D = 42.5° (c 0.8, water). For ¹H- and ¹³C-n.m.r. data, see Tables I and II, respectively.

Anal. Calc. for C₁₅H₂₇NO₁₀ (381.37): C, 47.24; H, 7.13; N, 3.67. Found: C, 46.97; H, 6.92; N, 3.49.

Methyl 4-O-[2-acetamido-2-deoxy-3-O-(α -D-galactopyranosyl)- β -D-glucopyranosyl]- α -L-rhamnopyranoside (3). A solution of 26 (250 mg, 0.25 mmol) in MeOH (40 mL) was treated with a catalytic amount of NaOMe and left standing for 12 h at 20°, aqueous 50% HBF₄ (8 mL) was added, and the solution was kept for 8 h at 20° and then its pH was adjusted to ~7 by addition of solid NaHCO₃. MeOH was removed by distillation, and the residue was partitioned between CHCl₃ (50 mL) and H₂O (20 mL). The CHCl₃ layer was concentrated and the residue was hydrogenated in 1:1 ethanol-acetic acid (10 mL) over 10% Pd/C (200 mg) under atmospheric pressure for 12 h at 20°. Purification of the product on a column of Sephadex G-15 with H₂O gave amorphous 3 (72 mg, 51.7%), after freeze-drying; [α]_D +34.3° (*c* 0.7, water). For ¹H- and ¹³C-n.m.r. data, see Tables I and II, respectively.

Anal. Calc. for C₂₁H₃₅NO₁₅ (541.49): C, 46.58; H, 6.52; N, 2.58. Found: C, 46.29; H, 6.46; N, 2.29.

Methyl 4-O-{2-acetamido-2-deoxy-3-O-[3-O-(α -L-rhamnopyranosyl)- α -D-galactopyranosyl]- β -D-glucopyranosyl}- α -L-rhamnopyranoside (4). — Compound 29 (85 mg) was deprotected, essentially as described for 26, to give, after purification through a column of Sephadex G-15 (H₂O), amorphous 4 (22 mg, 44.4%), [α]_D +14° (c 0.5, water). For ¹H- and ¹³C-n.m.r. data, see Tables I and II, respectively.

ACKNOWLEDGMENT

We thank Mr. H. Seguin for the elemental analyses.

REFERENCES

- 1 R. C. LANCEFIELD, J. Exp. Med., 67 (1938) 25-40.
- 2 F. MICHON, E. KATZENELLENBOGEN, D. L. KASPER, AND H. J. JENNINGS, Biochemistry, 26 (1987) 476-486.
- 3 V. POZSGAY AND H. J. JENNINGS, Can. J. Chem., 65 (1987) 2764-2769.
- 4 R. B. BAKER, J. P. JOSEPH, R. E. SCHRAUB, AND J. H. WILLIAMS, J. Org. Chem., 19 (1954) 1786-1792.
- 5 S. AKIYA AND T. OSAWA, Yakugaku Zasshi, 77 (1957) 726-730; Chem. Abstr., 51 (1957) 17763g.
- 6 R. U. LEMIEUX, T. TAKEDA, AND B. Y. CHUNG, ACS Symp. Ser., 39 (1976) 90-115.
- 7 P. A. LEVENE AND I. E. MUSKAT, J. Biol. Chem., 105 (1934) 431-442.
- 8 A. LIPTÁK, J. IMRE, AND P. NÁNÁSI, Carbohydr. Res., 92 (1981) 154-156.
- 9 S. AKIYA AND T. OSAWA, Chem. Pharm. Bull., 8 (1960) 583-587.
- 10 P. J. GAREGG AND S. OSCARSON, Carbohydr. Res., 136 (1985) 207-213.
- 11 F. WEYGAND AND H. ZIEMANN, Justus Liebigs Ann. Chem., 657 (1962) 179-198.
- 12 M. L. WOLFROM AND W. GROEBKE, J. Org. Chem., 28 (1963) 2986-2988.
- 13 T. OGAWA, S. NAKABAYASHI, AND K. SASAJIMA, Carbohydr. Res., 95 (1981) 308-312.
- 14 V. POZSGAY AND H. J. JENNINGS, Tetrahedron Lett., 28 (1987) 1375-1376.
- 15 R. J. FERRIER AND R. H. FURNEAUX, Methods Carbohydr. Chem., 8 (1980) 251-253.
- 16 V. POZSGAY AND H. J. JENNINGS, J. Org. Chem., 52 (1987) 4635-4637.
- 17 K. C. NICOLAOU, S. P. SEITZ, AND D. P. PAPAHATJIS, J. Am. Chem. Soc., 105 (1983) 2430-2434.
- 18 H. LÖNN, Carbohydr. Res., 139 (1985) 105-113.
- 19 P. FÜGEDI AND P. J. GAREGG, Carbohydr. Res., 149 (1986) C9-C12.
- 20 P. L. DURETTE, E. P. MEITZNER, AND T. Y. SHEN, Tetrahedron Lett., 20 (1979) 4013-4016; Carbohydr. Res., 77 (1979) C1-C4.
- 21 M. KLOOSTERMAN, T. SLAGHEK, J. P. G. HERMANS, AND J. H. VAN BOOM, Recl. Trav. Chim. Pays-Bas, 103 (1984) 335-341.
- 22 B. HELFERICH, H. GRÜNEWALD, AND F. LANGENHOFF, Chem. Ber., 86 (1953) 873-875.
- 23 K. KOIKE, M. SUGIMOTO, S. SATO, Y. ITO, Y. NAKAHARA, AND T. OGAWA, *Carbohydr. Res.*, 163 (1987) 189–208.
- 24 K. KOHATA, S. A. ABBAS, AND K. L. MATTA, Carbohydr. Res., 132 (1984) 127-135.
- 25 H. PAULSEN AND M. PAAL, Carbohydr. Res., 135 (1984) 53-69.
- 26 A. LIPTÁK, P. FÜGEDI, J. KERÉKGYÁRTÓ, AND P. NÁNÁSI, Carbohydr. Res., 113 (1983) 225-231.
- 27 V. POZSGAY, H. J. JENNINGS, AND D. L. KASPER, J. Carbohydr. Chem., 6 (1987) 41-55.
- 28 P. L. BARILI, G. BERTI, G. CATELANI, F. COLONNA, AND A. MARRA, Tetrahedron Lett., 27 (1986) 2307-2310.
- 29 P. J. GAREGG AND S. OSCARSON, Carbohydr. Res., 136 (1985) 207-213.
- 30 S. DAVID, A. THIEFFRY, AND A. VEYRIÈRES, J. Chem. Soc., Perkin Trans. 1, (1981) 1796-1801.
- 31 P. A. MANTHORPE AND R. GIGG, Methods Carbohydr. Chem., 8 (1980) 305-311.
- 32 R. U. LEMIEUX, K. B. HENDRIKS, R. V. STICK, AND K. JAMES, J. Am. Chem. Soc., 97 (1975) 4056-4062.
- 33 E. FISCHER, M. BERGMANN, AND H. RABE, Ber., 53 (1920) 2362-2388.
- 34 B. HELFERICH AND K.-F. WEDEMEYER, Justus Liebigs Ann. Chem., 563 (1949) 139-145.
- 35 W. P. AUE, E. BARTHOLDI, AND R. R. ERNST, J. Chem. Phys., 64 (1976) 2229-2246.
- 36 G. EICH, G. BODENHAUSEN, AND R. R. ERNST, J. Am. Chem. Soc., 104 (1982) 3731-3732.
- 37 G. A. PEARSON, J. Magn. Reson., 64 (1985) 487-500.
- 38 F. A. WILDE AND P. H. BOLTON, J. Magn. Reson., 59 (1984) 343-346.
- 39 F. MICHON, A. GAMIAN, V. POZSGAY, AND H. J. JENNINGS, unpublished data.