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Abstract: A new family of phosphine-ligated dicyanoarylgold(III) 

complexes has been prepared and their reactivity towards reductive 

elimination has been studied in detail. Both, a highly positive entropy 

of activation and a primary 12/13C KIE suggest a late concerted 

transition state while Hammett analysis and DFT calculations indicate 

that the process is asynchronous. As a result, a distinct mechanism 

involving an asynchronous concerted reductive elimination for the 

overall C(sp2)-C(sp)N bond forming reaction is characterized here for 

the first time complementing previous studies reported for C(sp3)-

C(sp3), C(sp2)-C(sp2) and C(sp3)-C(sp2) bond formation processes 

taking place on gold(III) species.  

Introduction 

Gold-catalyzed cross-couplings have come to the forefront of 

synthetic methods to forge both C-C and C-X bonds in recent 

years.[1] An in-depth understanding of the reaction mechanisms 

as well as of the factors that affect the rate and selectivity of the 

elementary organometallic steps in these transformations has 

proven crucial to design more effective and selective 

processes.[2,3] Reductive elimination on gold(III) intermediates is 

a key step in these catalytic cycles as it precedes the formation of 

the new C-C or C-X bond towards the desired product and 

regenerates the gold(I) species that re-enter the catalytic cycle. 

Pioneering work from Kochi and Tobias on dialkylgold(III) 

complexes established a C(sp3)-C(sp3) reductive elimination via a 

high-energy T-shaped intermediate formed by ligand dissociation 

for both neutral [R3PAu(alkyl)3] and cationic [(R3P)2Au(alkyl)2]+ 

complexes.[4] An analogous mechanism was proposed by Komiya 

for gold(III) complexes yielding C(sp2)-C(sp3) bonds (Scheme 1, 

left).[5] Years later, Vicente reported the first examples of C(sp2)-

C(sp2) reductive elimination from diarylgold(III) complexes, a 

process that has been characterized in detail by Toste and co-

workers.[6,7] These seminal studies revealed a concerted 

mechanism from a tetracoordinated gold(III) center (Scheme 1, 

right). In contrast to the aforementioned extensive investigations 

on C(sp3)-C(sp3) and C(sp2)-C(sp2) bond forming reactions, no 

mechanistic study on the analogous C(sp2)-C(sp) reductive 

elimination has been reported yet despite the demonstrated 

efficiency of gold to trigger the formation of these type of bonds.[8] 

Among other factors, the scarce number of available methods to 

access [C(sp2),C(sp)-Au(III)] species has significantly limited the 

in depth mechanistic characterization of these transformations.[8a, 

8e, 9] To address this gap, and in line with on-going efforts in our 

group to understand the reactivity of gold(III) species relevant in 

synthetic contexts,[10] we report here the synthesis and 

characterization of a new family of [(Ph3P)Au(aryl)(CN)2] 

complexes together with a detailed mechanistic study towards 

C(sp2)-C(sp)N bond formation to produce the corresponding 

polyfluorinated benzonitriles. The experimental and 

computational data reveal a novel asynchronous concerted 

reductive elimination mechanism operating on these gold(III) 

species that contrasts with classical dissociative or synchronous 

concerted processes previously reported for C(sp3)-C(sp3) and 

C(sp2)-C(sp2) bond forming reactions (Scheme 1, bottom). 

 
Scheme 1. Summary of reductive elimination mechanisms characterized on 

gold(III) species. 
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Scheme 2. Synthesis of phosphine-ligated dicyanoarylgold(III) complexes; X-ray crystal structure shown as 50% ellipsoids. Hydrogens were omitted for clarity.  

 

Results and Discussion 

First, we set out to prepare and characterize stable phosphine-

ligated dicyanoarylgold(III) complexes (Scheme 2).[11] To this end, 

polyfluoroarylgold(I) species 1a-d were oxidized with PhI(OAc)2 

at 80 °C to obtain the corresponding trans-diacetatoarylgold(III) 

complexes 2a-d in moderate to good yields. The use of a 2,6-

difluoro substitution pattern on the aryl moiety is crucial to impart 

the required stability to the resulting gold(III) complexes. The 

presence of more electron-rich aryl ligands (p-F-C6H4, p-tBu-

C6H4) yielded a competitive C(sp2)-O bond formation process 

during the oxidation step, in line with the observations reported by 

Ribas et al. [12] (For additional information on these and related 

control experiments, see Supporting Information) [11]. Subsequent 

ligand exchange on complexes 2 with TMSCN at room 

temperature furnished two main products, cis- and trans-3a-d, 

which could be separated by column chromatography on silica gel 

and whose structures were unambiguously established by X-ray 

diffraction of single crystals of trans- and cis-3a (Scheme 2). In all 

cases, the trans- isomer, predicted to be thermodynamically more 

stable according to DFT calculations (ΔGtrans-cis ca. -1.0 kcal/mol 

at 25 ºC), is obtained as the major product in these 

transformations.[11]  

The thermal and bench-top stability of complexes 3a-d set the 

basis for the subsequent study on the reductive elimination to 

form C(sp2)-C(sp)N bonds.[13] At 100 ºC, quantitative conversion 

of trans-3a-d to the corresponding polyfluorinated benzonitriles 

4a-d alongside Ph3PAuCN (5) was successfully achieved (Table 

1). 

Table 1. Thermally-induced reductive elimination from phosphine-ligated 
dicyanoarylgold(III) complexes. 

 

Entry Compound Time (h) Product (%)a 

1 trans-3a 2 4a, 99 

2 trans-3b 3 4b, 98 

3 trans-3c 19 4c, 97 

4 trans-3d 30 4d, 95 

a Yield calculated by 19F NMR using 3,3’-difluorobenzophenone as internal 
standard 

Subsequent kinetic studies focused on the reductive elimination 

of trans-3a (25 mM) in 1,4-dioxane at 100 ºC. This system 

provided homogeneous reaction mixtures amenable to reaction 

monitoring via 19F NMR.[11] Temporal concentrations of both 

substrate (trans-3a) and product (4a) were calculated using 3,3'-

difluorobenzophenone as internal standard. The consumption of 

trans-3a followed a first-order irreversible decay {-d[trans-3a]/dt = 

k1[trans-3a]} up to conversions higher than 95 % with no 

intermediate species detected (< 2%). Thus, the average first-

order rate constant (k1) at 100 ºC was calculated to be 6.88 x 10-

4 s-1  2.34 x 10-5 s-1 over three separate experiments (Figure 1a). 
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First-order kinetics imply either a concerted mechanism where the 

Csp2-C(sp)N bond is formed at the rate-determining step or a 

dissociative mechanism in which a high-energy T-shaped 

intermediate is formed by ligand dissociation (PPh3 or CN-). 

Phosphine decoordination was ruled out since the addition of 

Ph3P (10 equiv) to a solution of trans-3a did not significantly 

influence the rate of formation of 4a.[11,14,15]  

 

 

Figure 1. a) Kinetics of reductive elimination of trans-3a at 100 °C 
(representative example shown).[10] Left: Evolution of concentrations 
of trans-3a and 4a over time. Right: Plot of ln{[trans-3a]t / [trans-3a]0} 
vs time indicating a first-order decay on trans-3a. The error bars 
represent the inherent error in quantifying 19F NMR signal intensity. b) 
Eyring analysis for reductive elimination in trans-3a (80, 90, 95 and 
100 °C). The error bars represent the standard deviation over three 
separate experiments.[11] 

This result is in striking contrast to observations made by Kochi 

and co-workers for the reductive elimination of trialkylgold(III) 

species, in which the presence of external phosphine inhibits the 

C(sp3)-C(sp3) reductive elimination[4] as well as with observations 

made by Toste and co-workers for the reductive elimination on 

diarylgold(III) species, where an excess of external phosphine 

accelerates the formation of the C(sp2)-C(sp2) bond by 

associative ligand exchange.[6b] Interestingly, the addition of one 

equivalent of anionic cyanide reagents (NBu4CN or KCN) to a 

solution of trans-3a at 25 °C leads to the displacement of the 

phosphine ligand, thus illustrating the affinity of cyanide ligands 

for gold and deeming unlikely their potential dissociation from the 

gold(III) complexes.[11,16,17,18] Additionally, an experiment at a 

lower initial concentration of trans-3a (5 mM) showed no effect on 

the rate of reductive elimination at 100 ºC (6.75 x 10-4 s-1), which 

seems to exclude a bimolecular process.[11] Interestingly, cis-3a 

undergoes reductive elimination under the same reaction 

conditions, yielding 4a and 5 at a similar rate (6.96 x 10-4 s-1) to 

that of trans-3a (see Figure 2a). This result is rather surprising in 

light of the strong trans effect associated with cyano ligands.[19] 

Thus, to further characterize the reductive elimination 

mechanism, activation parameters were determined from the first-

order rate constants obtained at different temperatures. A G‡ 

value of 27.4 kcal mol-1 at 100 °C was obtained together with a 

significant positive entropy of activation (S‡ = +27 cal K-1mol-1) 

(Figure 1b).[11] As a dissociative pathway was previously ruled out, 

we rationalize this value as a result of a late transition state in 

which at least one of the Au-C bonds is significantly weakened, 

thus increasing the degrees of freedom in the system. This 

observation contrasts with the early transition state characterized 

by Toste and co-workers for the concerted C(sp2)-C(sp2) 

reductive elimination (S‡ = +2.0 cal K-1mol-1).[6b] In order to verify 

our hypothesis experimentally, cis-3a-{13C2-CN} was synthesized 

to determine the 12/13C kinetic isotope effect (KIE).[20,21]  

 

Figure 2. Kinetics of reductive elimination of cis-3a. a) Plot of ln{[cis-

3a]/[cis-3a]0} vs time indicating a first-order decay at 100 °C. The error 

bars represent the inherent error in quantifying 19F NMR signal 

intensity. b) Intermolecular competition between cis-3a and cis-3a-

{13C2-CN} to determine 12/13C KIE. The 12/13C KIE was calculated to be 

1.032  0.005. The dotted line represents the simulated profile. 

The isotopic labelling synthesis was achieved using commercially 

available TMSCN-{13C-CN}.[11] Upon isolation, the 12/13C KIE was 

determined by an intermolecular competition experiment using an 

equimolar mixture of the isotopologues cis-3a and cis-3a-{13C2-CN} 

which was monitored by in-situ 31P{1H} NMR at 65 °C (Figure 2b). 

A value of 1.032  0.005 was obtained, which is indicative of a 

primary KIE for carbon and suggests that the cleavage of the Au-

C(sp)N bond occurs during the rate-limiting step. This value is 
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also in good agreement with the theoretically calculated one 

(1.042 via DFT).[11] To the best of our knowledge, no experimental 
12/13C KIE values have been reported on reductive elimination 

from late transition metals, which makes this study a precedent 

for further investigations in the field. 

Additional experiments were designed to verify whether a 

common mechanism operates across the different substrates. 

The effect of the aryl group on the kinetics of the reductive 

elimination for trans-3a-d complexes (25 mM) in 1,4-dioxane at 

100 ºC was therefore investigated. The first-order rate constants 

were analyzed by a linear free-energy relationship (LFER) using 

the standard Hammett -function,[22] affording a value of -1.9 

(Figure 3a). The observed trend is consistent with a conserved 

reaction mechanism across the different complexes. Additionally, 

it suggests that the cyano ligand acts as an electrophile and the 

nucleophilicity of the aryl ligand is decreased in presence of 

electron withdrawing substituents, thus reducing the rate of 

reductive elimination in electron deficient systems. 

 

Figure 3. a) Hammett plot of the rates of the reductive elimination 

from trans-3a-d at 100 °C in 1,4-dioxane. The error bars represent the 

standard deviation over three separate experiments.[10] b) Computed 

ground states (GS) and transition states (TS) for the reductive 

elimination of trans-3a and cis-3a and Gibbs Free Energy values 

(kcal/mol) were calculated at 100 °C with the B3LYP/ def2-QZVPP 

functional. Distances indicated in Å. 

Ground- and transition-state structures were computed for both 

trans- and cis-3a isomers using DFT calculations (Figure 3b).The 

G≠ values predicted computationally at 100 °C for both 

complexes are very similar, in line with the very close first-order 

rate constants determined experimentally. The analysis of bond 

distances showed the lengthening of the Au-C(sp2) bond in the 

TS for both trans-3a (from 2.08 to 2.20 Å) and cis-3a (from 2.07 

to 2.17 Å) compared to the minimized ground state geometries. 

Further, a significant shortening of the C(sp2)-C(sp)N distance is 

also observed in both compounds. Surprisingly, the Au-C(sp) 

bond remains almost unchanged between ground state and 

transition state. This is in sharp contrast with computed transition 

states for C(sp2)-C(sp2) reductive elimination where both Au-

C(sp2) bonds are synchronously elongated.[7a] Both structural 

features confirm the primary 12/13C KIE and the positive entropy of 

activation determined experimentally and support the vision of an 

asynchronous reductive elimination. To the best of our 

knowledge, such a scenario has not yet been reported for gold(III) 

species and thus confirms the mechanistic diversity underlying 

transformations mediated by this late transition metal. Further, 

these findings highlight the similarity with other d10 metals such as 

Pd, for which a “migratory” reductive elimination has been 

proposed on cyanide derivatives based on their similarity with CO 

insertion processes.[13b]  

Conclusion 

We report here the synthesis of stable phosphine-supported 

dicyanopolyfluoroarylgold(III) complexes, which under thermal 

conditions, deliver the corresponding polyfluorinated benzonitriles. 

This novel compound class gave us the opportunity to unravel the 

underlying mechanism of the C(sp2)-C(sp)N reductive elimination 

from gold(III), which occurs through an unprecedented 

asynchronous concerted pathway analogous to the “migratory” 

reductive elimination reported for Pd(II) complexes. Our results 

have the potential to streamline the development of new catalytic 

methods to access arylnitriles as well as to improve other gold-

catalyzed couplings involving C(sp)-hybridized groups. 
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