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Iridium-Catalyzed Reductive Alkylations of Secondary Amides 

 Wei Ou,[a] Feng Han,[a] Xiu-Ning Hu,[a]† Hang Chen,[a]† and Pei-Qiang Huang*[a,b] 

Dedicated to Professor Guo-Qiang Lin on occasion of his 75th 

birthday 

Abstract: We report the first direct, iridium-catalyzed reductive 

functionalization of secondary amides to give functionalized amines 

and heterocycles. The method is shown to have exceptionally broad 

scope with respect to suitable nucleophiles, which cover both hard 

and soft C-nucleophiles as well as a P-nucleophile. The reaction 

exhibits good chemoselectivity and tolerates several sensitive 

functional groups. 

Carbon–carbon bond formation reactions constitute a core class 
of transformations in organic synthesis. In the field of total 
synthesis of alkaloids and N-containing medicinal agents, 
reductive alkylation of amides and lactams, namely, the 
transformations of amides into amines with C–C bond formation, 
has become one of the most important and fundamental 
transformations.[1,2] Indeed, from the selected classical synthesis 
of (perhydro)histrionicotoxin by Corey,[2a] Kishi,[2b] and Evans,[2c] 
respectively, (+)-pumiliotoxin C by Oppolzer,[2d] peduncularine by 
Speckamp,[2e] indolizomycin by Danishefsky,[2g] to the recent 
total synthesis of seven-membered-ring-containing lycopodium 
alkaloids by Shair (Figure 1, A),[2k] the reductive alkylation of 
amides has served as an indispensable transformation.[2] 
However, the high stability of amides means that it is necessary 
to pre-transform an amide into a more reactive intermediate 
before addition of a nucleophile and acid-mediated reduction. All 
these methods involve multiple-step transformations. 

In recent years, the direct reductive alkylation of amides has 
attracted considerable attention, leading to the development of 
several synthetically useful methods[3,4] (Figure 1, B1). In these 
reactions, a stoichiometric amount of an activating agent/base 
combination [triflic anhydride (Tf2O)/ 2-fluoropyridine (2-F-Pyr.)] 
or the Schwartz reagent [Cp2ZrHCl] is required. In view of the 
increasing importance of catalysis as a green technology in both 
academic research and in the pharmaceutical industry,[5] the 
development of catalytic reductive functionalization of amides is 
highly desirable. In this context, breakthroughs in the catalytic 
reductive functionalization of tertiary amides have recently been 
achieved by the groups of Dixon, Chida/ Sato, Huang, and 
Adolfsson, respectively (Figure 1, B2).[6] However, the catalytic 

reductive functionalization of secondary amides leading to -
substituted amines remains unknown. Nevertheless, such 
transformations with broad nucleophile diversity are in high 
demand given the easy availability[7] and widespread use of 
secondary amides in organic synthesis,[1,2,8] and the presence of 
-substituted secondary amine motifs in many medicinal 
agents[9a] and bioactive alkaloids.[9b] In this regard, medicinal 
agents such as fendiline (an anti-anginal agent in clinical use for 
the treatment of coronary heart disease) and tamsulosin (a 
selective 1-adrenergic antagonist), and alkaloid histrionicotoxin 
(Figure 1, A) are just some representatives among many others. 
Among them, four entered the list of top 200 brand-name drugs 
by total US prescriptions in 2012.[9a] More importantly, known 
methods for the reductive functionalization of amides are 
generally restricted to some special classes of nucleophiles such 
as allyltrimethylsilane or allyltributyltin. Very often, several steps 
are required for the elaboration of the introduced allyl groups 
into the desired functionalized alkyl groups. 

As part of our efforts to develop efficient C–C bond-forming 
reactions based on nucleophilic addition to amides,[4a,h-l,6a,h] 
herein, we report the [IrCl(COE)2]2-catalyzed reductive 
functionalization of secondary amides. 
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Figure 1. A) Representative alkaloids synthesized by employing multistep 
protocols for the reductive alkylation of amides. B) Recent methods for the 
direct reductive alkylation of amides. C) Our plan for the direct, Ir-catalyzed 
reductive alkylation of secondary amides. Nu = nucleophile, Cp = 
cyclopentadienyl, FG = functional group. 
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To develop an efficient method for the one-pot catalytic 
reductive functionalization of secondary amides, we needed a 
catalytic method for partial reduction of secondary amides. In 
2012, Brookhart reported a catalytic reduction of secondary 
amides to either secondary amines or imines using catalytic 
[IrCl(COE)2]2, which is a commercially available complex.[10] 
Inspired by this work and by our own work,[6a,h] we devised a 
catalytic reductive functionalization of secondary amides that 
proceeds through sequential Ir-catalyzed reduction and Lewis 
acid-promoted nucleophilic trapping of imines generated in situ. 
The reductive allylation of 1a using allyl magnesium bromide 
was chosen as a model reaction to identify optimal reaction 
conditions (Tables SI-1 and 2 in SI). The optimized conditions 
were found to involve treating amide 1a (1.0 equiv) with 0.1 mol% 
of [IrCl(COE)2]2, 2.0 equiv of Et2SiH2, 1.5 equiv of BF3·OEt2, and 
2.5 equiv of allyl magnesium bromide at room temperature for 3 
h. Under these conditions, the desired amine 2a was isolated in 
85% yield (Table 1, entry 1). 

With the optimized reaction conditions in hand, the scope of 
the reaction was investigated by varying the nucleophilic 
trapping reagent and the amide. Using N-benzylbenzamide (1a) 
as a prototype amide substrate, we examined the scope of the 
nucleophile (Table 1). Simple and functionalized Grignard 
reagents including primary (entry 2), secondary (entry 3), and 
alkene- (entry 4) or siloxy-containing substrates (entry 5), 
proceeded efficiently to produce the corresponding amines (2b–
e) in high yields (85–86%). Alkyl, heteroaryl, and alkynyl lithium 
reagents were also viable nucleophiles for the reductive 
functionalization reaction (2f–i, 66–85% yields; entries 6–9). 
Stabilized carbanions such as the lithium enolate of t-butyl 
acetate or the hindered lithium enolate derived from ethyl 
isobutyrate reacted to afford -amino esters 2j and 2k in 76% 
and 80% yield, respectively (entries 10 and 11). 
(Dimethoxyphosphoryl)methyl]lithium reacted similarly, to 
provide -amino phosphonate 2l in 79% yield (entry 12). 

Soft nucleophiles allyl tributyltin and TMSCN (TMS = 
trimethyl) participated in the reaction to give homoallylamine 2a 
and -aminonitrile 2m in 78% and 76% yield, respectively (Table 
1, entries 13 and 14). Moreover, dimethyl phosphonate reacted 
smoothly to yield -amino phosphonate 2n in 82% yield (entry 
15). 

We then investigated the scope of the reaction with respect 
to the amide. Benzamides bearing primary (1b–d, Table 2, A) 
and secondary (1e) alkyl N-substituents, as well as an N-phenyl 
group (1f) reacted smoothly with allyl magnesium bromide to 
yield the corresponding homoallylamines 2o–s in high yields 
(80–85%, Table 2, B). The R1 group of the amide could be more-
hindered o-tolyl (1g), heteroaryl groups such as 2-furanyl (1h), 
or primary (1i), secondary (1j and 1l), and tertiary (1k) alkyl 
groups. The reductive functionalization of 1g–l afforded the 
corresponding functionalized amines 2t–ad in 72–85% yields. In 
this manner, the anti-anginal agent fendiline (2q)[9a] was 
prepared in 82% yield. Notably, amide 1i is a product of C–H 
functionalization,[11] and amide 1l is a product of Fu’s method.[7b] 
Moreover, the smooth reductive allylation of N-phenylbenzamide 
(1f) to give amine 2s in high yield (80%) is significant in two 
respects: on the one hand, N-arylamides such as 1f are 
common substrates for C–H functionalization,[12] and, on the 

other hand, attempted reductive allylation of 1f using 
stoichiometric Tf2O proved unsuccessful.[4h] 

Table 1. Scope of the reaction with respect to the nucleophile used 
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The chiral induction deserves comments. Whereas the 

reductive allylation and alkynylation of chiral amide 1i (racemic 
substrate used), and the reductive cyanation of amide ()-1l 
yielded the corresponding products 2v, 2w, and 2ab in poor 
diastereoselectivities (dr = 1.1–1.2:1), the reductive allylation of 
chiral amide ()-1l produced the corresponding homoallylic 
amine 2ac in excellent diastereoselectivities with dr = 24:1 
(determined by HPLC, cf. SI; the relative stereochemistry 
undetermined). 

Finally, the chemoselectivity and functional group tolerance 
of the method were examined. To our delight, besides electron-
rich aroyl amides such as 1h, the reaction also tolerated 
benzamide derivatives bearing an electron-withdrawing group 
such as CF3 (1m) and ester (1n) groups, to give the desired 
products 2ae and 2af in 78% and 80% yield, respectively. In 
addition, amides bearing an OTBS group (1o) could survive the 
reaction using Grignard reagents as a nucleophile (2ag: 81%). 
Moreover, with the use of soft nucleophiles such as dimethyl 
phosphonate, the reaction took place chemoselectively at the 
amide group of 1n and 1p to give the corresponding -amino 
phosphonates 2af and 2ah, respectively, in high yields, leaving 
the more reactive acetate and ester groups intact. 
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Table 2. Scope of the reaction with respect to the amide used 
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Attempts to further expand the reaction scope to catalytic 

reductive trifluoromethylation, reductive Ugi reaction, reductive 
lactamization, and reductive imino-Diels–Alder reaction were 
unsuccessful. Thus, we focused our attention on defining 
specific reaction conditions for each of these reactions. In view 
of the importance of trifluoromethylated amines in biological and 
medicinal chemistry as well as in the agrochemical field,[13] 
catalytic reductive trifluoromethylation of amides was first 
examined. It was found that, after the Ir-catalyzed partial 
reduction of amide 1f in CH2Cl2, by switching the solvent to THF 
(form screening of solvent, see Table SI-3 in SI), and treating 
the imine intermediate with (trifluoromethyl)trimethylsilane 
(TMSCF3) and with a catalytic amount of tetrabutylammonium 
triphenyl-difluorosilicate (TBAT),[14] the desired 
trifluoromethylated amine 3a[4k] could be isolated in 72% yield 
(Scheme 1, a). Similarly, the Ir-catalyzed reductive 

trifluoromethylation of N-phenyl-p-fluorobenzamide (1q) 
produced tetrafluoroamine 3b[4k] in 70% yield (Scheme 1, b). 

Ugi multicomponent reactions[15] offer a powerful approach to 
the preparation of functionalized compounds. We were 
interested in exploring the possibility of merging the Ir-catalytic 
reductive transformation of amides with the Ugi reaction. 
Pleasingly, subjecting the imine, generated in situ by Ir-catalytic 
reduction of N-isopropylbenzamide 1r, to the modified Ugi 
reaction conditions (in the absence of BF3·OEt2, for optimization 
of reaction conditions, see Table SI-4 in SI) afforded the 
expected product 4a[4j] in 64% yield (Scheme 1, c). Similarly, the 
Ir-catalytic reductive transformation of aliphatic amide 1s 
provided 4b in 71% yield (Scheme 1, d). 
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Scheme 1. Catalytic reductive trifluoromethylation combined with the Ugi 
reaction. TBAT = tetrabutylammonium triphenyl-difluorosilicate. 

We then investigated the catalytic reductive annulation and 
reductive cycloaddition of amides. Organozinc reagents are a 
class of versatile and chemoselective organometallic reagents 
for C–C bond formation.[16] Villiéras and co-workers have 
reported the annulation of imines with functionalized allylic zinc 
reagent generated in situ from methyl 2-
(bromomethyl)acrylate.[17] Considering the important bioactivity 
and multiple functionality possessed by -methylene -
lactams,[18a] which are attractive for the total synthesis of 
structurally complex alkaloids,[18b] the direct transformation of 
amides into -methylene -lactams was investigated. By 
subjecting N-methylbenzamide 1t to the catalytic partial 
reduction followed by reaction with 
(methoxycarbonyl)allyl)zinc(II) bromide (1.1 equiv) at room 
temperature for 3 h, the expected -exo-methylene--lactam 5a 
was produced in 71% yield (Scheme 2, a). Remarkably, when 
ester-group-bearing benzamide derivative 1n was employed as 
a substrate, the tandem reaction proceeded chemoselectively at 
the amide group to yield ester-lactam 5b in 72% yield (Scheme 
2, b). 

Finally, the direct catalytic reductive cycloaddition of amides with 
Danishefsky’s diene (6)[19] was investigated. The established 
conditions consist of the Ir-catalyzed partial reduction of amide 
1t in CH2Cl2, switching the solvent to MeOH,[20] and treating the 
presumed imine intermediate with anhydrous ZnCl2 and 
Danishefsky’s diene (6). In this manner, the cycloadduct 7a[4l] 
was isolated in 70% yield (Scheme 2, c). Similarly, the reductive 
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cycloaddition of amide 1u produced 7b[4l] in 74% yield (Scheme 
2, d). 
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Scheme 2. Catalytic reductive annulation/cycloaddition 

In summary, a mild, versatile, and efficient method has been 
developed for the direct catalytic reductive functionalization of 
secondary amides. This method validates secondary amides as 
a class of stable and reliable building blocks that undergo direct 
and chemoselective transformation into a diverse variety of 
multiply functionalized amines. The successful relay 
transformation of the amides prepared by other synthetic 
methods demonstrated the potential of the current method as a 
strategy for late-stage transformation of amides in both natural 
product synthesis and medicinal chemistry. Work on this 
direction is ongoing in our laboratory. 
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