Design, synthesis, and pharmacological evaluation of novel tetrahydroprotoberberine derivatives: Selective inhibitors of dopamine D_{1} receptor

Wangke Qian ${ }^{\text {a,b, } \dagger}$, Weijian Lu ${ }^{\text {b, } \uparrow}$, Haifeng Sun ${ }^{\text {b }}$, Zeng Li ${ }^{\text {b }}$, Liyuan Zhu ${ }^{\text {b }}$, Rui Zhao ${ }^{\text {c }}$, Lei Zhang ${ }^{\text {b }}$, Shengbin Zhou ${ }^{\text {b }}$, Yu Zhou ${ }^{\text {b }}$, Hualiang Jiang ${ }^{\text {b }}$, Xuechu Zhen ${ }^{\text {b,c, }, * \text {, Hong Liu }}{ }^{\text {b,* }}$
${ }^{\text {a S School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, People's Republic of China }}$
${ }^{\mathrm{b}}$ State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, People's Republic of China
${ }^{\text {c }}$ Department of Pharmacology, Soochow University College of Pharmaceutical Sciences, Suzhou 215123, People's Republic of China

A R TICLE I N F O

Article history:

Received 25 April 2012
Revised 23 May 2012
Accepted 24 May 2012
Available online 5 June 2012

Keywords:

Tetrahydroprotoberberine
Dopamine receptor
Anti-substance abuse
Antagonist

Abstract

A series of new tetrahydroprotoberberine (THPB) derivatives were designed, synthesized, and tested for their binding affinity towards dopamine $\left(\mathrm{D}_{1}\right.$ and D_{2}) and serotonin ($5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 A}$) receptors. Many of the THPB compounds exhibited high binding affinity and activity at the dopamine D_{1} receptor, as well as high selectivity for the D_{1} receptor over the $\mathrm{D}_{2}, 5-\mathrm{HT}_{1 \mathrm{~A}}$, and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors. Among these, compound 19c exhibited a promising D_{1} receptor binding affinity ($K_{i}=2.53 \mathrm{nM}$) and remarkable selectivity versus $\mathrm{D}_{2} \mathrm{R}$ (inhibition $=81.87 \%$), $5-\mathrm{HT}_{1 \mathrm{~A}} \mathrm{R}$ (inhibition $=61.70 \%$), and $5-\mathrm{HT}_{2 \mathrm{~A}} \mathrm{R}$ (inhibition $=24.96 \%$). Compared with l-(S)-stepholidine (l-SPD) ($\mathrm{D}_{1} K_{\mathrm{i}}=6.23 \mathrm{nM}, \mathrm{D}_{2} K_{\mathrm{i}}=56.17 \mathrm{nM}$), compound 19 c showed better binding affinity for the D_{1} receptor (2.5-fold higher) and excellent D_{2} / D_{1} selectivity. Functional assays found compounds $\mathbf{1 8 j}, \mathbf{1 8 k}$, and $\mathbf{1 9 c}$ are pure D_{1} receptor antagonists. These results indicate that removing the C 10 hydroxy group and introducing a methoxy group at C11 of the pharmacophore of l-SPD can reverse the function of THPB compounds at the D_{1} receptor. These results are in accord with molecular docking studies.

Crown Copyright © 2012 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Abnormal dopamine (DA) transmission is associated with several neuro- and psycho-disorders, including schizophrenia, ${ }^{1}$ depression, ${ }^{2}$ Parkinson's disease, ${ }^{3}$ and substance abuse, etc. ${ }^{4}$ Five subtypes of DA receptors have been cloned, which are divided into two subfamilies: D_{1}-like $\left(D_{1}, D_{5}\right)$ and D_{2}-like $\left(D_{2}, D_{3}\right.$ and $\left.D_{4}\right)$. ${ }^{5}$

The D_{1} receptor is the most abundant $D A$ receptor subtype in the areas of mammalian forebrain, such as the corpus striatum, substantia nigra, nucleus accumbens, hypothalamus, thalamus, frontal cortex, and olfactory bulb. ${ }^{6}$ In addition to the importance of D_{1} receptor in psychiatric disorders such as schizophrenia, ${ }^{7}$ recent information indicates that modulation of D_{1} receptor merged as potential target for drug discovery in anti-substance abuse. ${ }^{8}$ In addition, the discovery of the high-affinity and selective D_{1} receptor antagonists 1 (SCH23390) ${ }^{9}$ and 1a (SCH83566) ${ }^{6,10}$ along with

[^0]the partial agonist $2(\text { SKF38393 })^{11}$ were major breakthroughs in the pharmacology of dopamine receptors. SCH23390 and SKF38393 have been widely used as standard pharmacological tools. These specific D_{1} receptor ligands have radically changed our understanding on the functional roles of dopamine receptors. Recently, a series of phenyltetrahydrobenzazepine derivatives have been discovered to be D_{1} receptor antagonists, including 3 (NNC112), ${ }^{12} 4$ (SCH39166), ${ }^{13} 5$ (BTS73947), ${ }^{14}$ and 6 (BW737C89) ${ }^{15}$ shown in Figure 1. After that, a chemically novel structure 7 (LE300, Fig. 1) ${ }^{16}$ was found to exhibit excellent binding affinity for both D_{1} and D_{2} receptors. However, most of those D_{1} receptor antagonists suffer from weak selectivity or poor pharmacokinetic profiles.l-(S)-Stepholidine (l-SPD, 8, Fig. 1), a tetrahydroprotoberberine alkaloid isolated from the Chinese herb Stephanie intermedi, ${ }^{17}$ has attracted a great deal of attention because its unique pharmacological profile as dual dopamine/serotonin receptor ligand. ${ }^{18,19}$ So far, animal studies and clinical trials have confirmed that $l-$ SPD is a potential candidate for the treatment of schizophrenia and drug abuse. ${ }^{20,21}$

In the present study, we designed and synthesized a series of novel tetrahydroprotoberberine compounds by introducing various substituents (such as methyl, methoxy, benzyloxy, and

1. $X=C l$, SCH23390 1a. $X=B r, S C H 83566$

2. BTS73947

3. SKF38393

4. BW737C89

5. NNC112

6. LE300

7. SCH39166

8. I-SPD

Figure 1. Representative D_{1} receptor antagonists 1-7 and l-SPD.
methylenedioxy groups) at different positions on the pharmacophore of l-SPD. We found a few potent D_{1} receptor antagonists with promising selectivity.

2. Design

With regard to the chemical structure of l-SPD, we presumed that its shortcomings (poor physicochemical properties and low oral bioavailability) resulted from the two phenolic hydroxy
groups on the A- and D-rings. Based on this assumption, compounds 18 and 19 were designed and synthesized. To improve the pharmacokinetic properties and potency of the pharmacophore, the C2 and C10 hydroxy groups were replaced with other substituents, such as methoxy, benzyloxy, hydroxymethyl, and methylenedioxy groups, providing compounds 18a-h. Compounds $\mathbf{1 8 i} \mathbf{- p}$ with substituents at C 1 and C 4 of the A-ring were designed to enhance potency and selectivity for the dopamine D_{1} receptor. To evaluate the influence of the configuration of C14 on the binding

18a: $\mathbf{R}_{1}, R_{4}, R_{5}, R_{7}, R_{8}=\mathbf{H} ; \mathbf{R}_{2}=\mathbf{O B n} ; \mathbf{R}_{3}, \mathbf{R}_{6}=\mathrm{OCH}_{3}$
18b: $\mathbf{R}_{1}, \mathbf{R}_{5}, \mathrm{R}_{7}=\mathrm{H} ; \mathrm{R}_{2}, \mathrm{R}_{3}=\mathrm{OCH}_{2} \mathrm{O} ; \mathrm{R}_{4}, \mathrm{R}_{6}=\mathrm{OCH}_{3} ; \mathrm{R}_{8}=\mathrm{CH}_{2} \mathrm{OH}$
18c: $\mathbf{R}_{1}, \mathbf{R}_{5}, R_{7}, R_{8}=\mathbf{H} ; \mathbf{R}_{2}=\mathbf{O B n} ; \mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{OCH}_{3}$
18d: $\mathbf{R}_{1}, \mathbf{R}_{4}, R_{5}, R_{7}, R_{8}=\mathbf{H} ; \mathbf{R}_{2}, R_{3}, R_{6}=\mathrm{OCH}_{3}$
18e: $\mathbf{R}_{1}, \mathbf{R}_{4}, \mathbf{R}_{5}, \mathbf{R}_{7}, \mathbf{R}_{\mathbf{8}}=\mathrm{H} ; \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}=\mathrm{OCH}_{2} \mathbf{O} ; \mathbf{R}_{6}=\mathrm{OCH}_{3}$
18f: $\mathbf{R}_{1}, \mathbf{R}_{5}, \mathbf{R}_{\mathbf{7}}, \mathbf{R}_{8}=\mathrm{H} ; \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{OCH}_{3}$
18g: $\mathbf{R}_{1}, \mathbf{R}_{5}, \mathbf{R}_{7}=\mathbf{H} ; \mathbf{R}_{2}, \mathbf{R}_{3}, \mathrm{R}_{4}, \mathrm{R}_{6}=\mathrm{OCH}_{3} ; \mathbf{R}_{8}=\mathrm{CH}_{2} \mathbf{O H}$
18h: $\mathbf{R}_{1}, \mathbf{R}_{5}, \mathrm{R}_{7}, \mathbf{R}_{8}=\mathrm{H} ; \mathrm{R}_{2}, \mathbf{R}_{3}=\mathrm{OCH}_{2} \mathrm{O} ; \mathrm{R}_{4}, \mathrm{R}_{6}=\mathrm{OCH}_{3}$
18i: $\mathbf{R}_{1}, \mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{OCH}_{3} ; \mathrm{R}_{2}=\mathbf{O B n} ; \mathbf{R}_{5}, \mathrm{R}_{7}, \mathrm{R}_{8}=\mathrm{H}$
18j: $\mathbf{R}_{1}, \mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{OCH}_{3} ; \mathbf{R}_{2}, \mathbf{R}_{5}, \mathbf{R}_{7}, \mathbf{R}_{8}=\mathbf{H}$
18k: $\mathbf{R}_{1}, \mathbf{R}_{2}, R_{3}, R_{4}, R_{6}=\mathrm{OCH}_{3} ; \mathbf{R}_{5}, R_{7}, \mathbf{R}_{8}=\mathbf{H}$
181: $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{OCH}_{3} ; \mathbf{R}_{5}, \mathbf{R}_{7}=\mathrm{H} ; \mathbf{R}_{8}=\mathrm{CH}_{2} \mathrm{OH}$
18m: $\mathbf{R}_{1}, \mathbf{R}_{2}, \mathbf{R}_{3}=\mathrm{OCH}_{3} ; \mathbf{R}_{4}, \mathbf{R}_{7}, \mathbf{R}_{8}=\mathbf{H} ; \mathbf{R}_{5}, \mathbf{R}_{6}=\mathrm{OCH}_{2} \mathrm{O}$
18n: $\mathbf{R}_{1}, \mathbf{R}_{3}=\mathrm{OCH}_{3} ; \mathbf{R}_{2}, \mathrm{R}_{\mathbf{4}}, \mathrm{R}_{8}=\mathrm{H} ; \mathrm{R}_{5}, \mathrm{R}_{6}=\mathrm{OCH}_{2} \mathrm{O} ; \mathrm{R}_{7}=\mathrm{CH}_{2} \mathrm{OH}$
180: $\mathbf{R}_{1}, \mathbf{R}_{3}, \mathbf{R}_{6}=\mathrm{OCH}_{3} ; \mathbf{R}_{2}, \mathbf{R}_{4}, \mathbf{R}_{5}, \mathbf{R}_{8}=\mathrm{H} ; \mathbf{R}_{7}=\mathrm{CH}_{2} \mathrm{OH}$

18p: $\mathbf{R}_{1}, \mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{8}=\mathrm{OCH}_{3} ; \mathbf{R}_{\mathbf{2}}, \mathbf{R}_{5}, \mathbf{R}_{6}=\mathrm{H} ; \mathbf{R}_{\mathbf{7}}=\mathrm{CH}_{2} \mathrm{OH}$
19

18q: $\mathbf{R}_{1}, \mathbf{R}_{5}, R_{7}, R_{8}=\mathrm{H} ; \mathbf{R}_{\mathbf{2}}, \mathrm{R}_{3}=\mathrm{OCH}_{3} ; \mathrm{R}_{4}, \mathrm{R}_{6}=\mathrm{CH}_{3}$

19a: $\mathbf{R}_{1}, R_{4}, R_{5}, R_{7}, R_{8}=H ; R_{3}, R_{6}=\mathbf{O C H}_{3}$ 19b: $\mathbf{R}_{1}, \mathbf{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{OCH}_{3} ; \mathbf{R}_{5}, \mathbf{R}_{7}, \mathbf{R}_{8}=\mathbf{H}$ 19c: $\mathbf{R}_{1}, R_{5}, R_{7}, R_{8}=\mathbf{H} ; \mathbf{R}_{3}, R_{4}, R_{6}=\mathrm{OCH}_{3}$ 19d: $\mathbf{R}_{1}, \mathbf{R}_{5}, \mathbf{R}_{7}=\mathrm{H} ; \mathrm{R}_{3}, \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{OCH}_{3} ; \mathrm{R}_{8}=\mathrm{CH}_{2} \mathrm{OH}$ 19e: $\mathbf{R}_{1}, \mathbf{R}_{5}, \mathbf{R}_{\mathbf{7}}, \mathbf{R}_{\mathbf{8}}=\mathrm{H} ; \mathbf{R}_{\mathbf{3}}=\mathrm{OCH}_{3} ; \mathbf{R}_{4}, \mathbf{R}_{6}=\mathrm{CH}_{3}$

Scheme 1. Synthesis of (-)-THPB compounds. Reagents and conditions: (a) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, acetone, reflux, 2 h ; (b) $\mathrm{CH}_{3} \mathrm{NO}_{2}, \mathrm{CH}_{3} \mathrm{COONH}_{4}, \mathrm{CH}_{3} \mathrm{COOH}, 90{ }^{\circ} \mathrm{C}, 4 \mathrm{~h}$; (c) $\mathrm{LiAlH} 4, \mathrm{THF}$, reflux, 2 h ; (d) $\mathrm{EDCI}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 8 \mathrm{~h}$; (e) $\mathrm{POCl}_{3}, \mathrm{CH}_{3} \mathrm{CN}$, reflux, 0.5 h ; (f) (R, R)-Noyori's catalyst, $\mathrm{HCOOH} / \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMF}$, rt, 10 h ; (g) $\mathrm{HCOOH}, 40 \% \mathrm{HCHO}, 25-90{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (h) 37% $\mathrm{HCl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, reflux, 2 h .
affinity, C14-S-configured compound $\mathbf{1 8 q}$ and its racemate $\mathbf{1 8 r}$ were examined. To improve the potency at the D_{1} receptor, the C2 hydroxy group and conformation of l-SPD were maintained while introducing various groups, such as methyl, methoxy, methylenedioxy, and hydroxymethyl groups, at different positions on the D-ring, leading to compounds 19a-e.

3. Chemistry

The designed compounds were synthesized via the routes shown in Schemes 1 and 2. The key intermediates $\mathbf{1 3}$ were prepared by protection, Knoevenagel condensation, and reduction

Scheme 2. Synthesis of compound 18r. Reagents and conditions: (i) NaBH_{4}, methanol, rt, 1 h ; (g) HCOOH, 40\% HCHO, 25-90 ${ }^{\circ} \mathrm{C}$, 2 h .
from aldehydes 9 and 11. Condensation of intermediates 13 with commercially available 2-phenylacetic acids $\mathbf{1 4}$ generated amides 15 in good yields. Using the Bischler-Napieralski reaction, treatment of the amides $\mathbf{1 5}$ with phosphoryl trichloride $\left(\mathrm{POCl}_{3}\right)$ gave access to imines 16 in excellent yields. Asymmetric hydrogenation of 16 catalyzed by a chiral Ru-(II) complex (Noyori's catalyst) ${ }^{18}$ afforded chiral amines 17. Cyclization of amines 17 via the PictectSpengler reaction provided products 18a-q in good isolated yields and excellent enantiomeric excess. Products 19a-e were obtained by deprotection of compounds 18 .

Additionally, non-chiral compound $\mathbf{1 8 r}$ was prepared according to the procedure outlined in Scheme 2. Reduction of imine $\mathbf{1 6 r}$ with sodium borohydride followed by cyclization, gave $\mathbf{1 8 r}$ in an excellent yield.

4. Results and discussion

4.1. Binding assay

All the synthesized THPB new compounds were subjected to competitive binding assays for the dopamine (D_{1} and D_{2}) and serotonin ($5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$) receptors, using membrane preparation obtained from HEK293 cells stable transfected respective receptor. $\left[{ }^{3} \mathrm{H}\right]$ SCH23390 $\left(\mathrm{D}_{1}\right),\left[{ }^{3} \mathrm{H}\right]$-Spiperone $\left(\mathrm{D}_{2}\right),\left[{ }^{3} \mathrm{H}\right] 8-\mathrm{OH}-$ DPAT $\left(5-\mathrm{HT}_{1 \mathrm{~A}}\right)$, and $\left[{ }^{3} \mathrm{H}\right]$-Ketanserin $\left(5-\mathrm{HT}_{2 \mathrm{~A}}\right)$ were used as standard radioligands. The inhibition, K_{i} and IC_{50} values of these original THPB compounds are reported in Table 1.

4.1.1. Structure-activity relationship: $\mathbf{D}_{\mathbf{1}}$ receptor affinity

Many of the synthesized THPB compounds exhibited a mild to high affinity for the dopamine D_{1} receptor, especially compounds $\mathbf{1 8 j}\left(K_{\mathrm{i}}=7.97 \mathrm{nM}\right)$ and 19c ($\left.K_{\mathrm{i}}=2.53 \mathrm{nM}\right)$.

Table 1
Binding affinity of THPB compounds for $\mathrm{D}_{1}, \mathrm{D}_{2}, 5-\mathrm{HT}_{1 \mathrm{~A}}$, and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors

Compound	D1		D2		$\begin{aligned} & \text { 5-HT1A } \\ & \text { Inhibition (\%) or } K_{\mathrm{i}}(\pm \text { SEM, } \\ & \mathrm{nM}) \end{aligned}$	$\begin{aligned} & \text { 5-HT2A } \\ & \text { Inhibition (\%) or } K_{\mathrm{i}}(\pm \text { SEM, } \\ & \mathrm{nM}) \end{aligned}$
	Inhibition (\%) or $K_{\mathrm{i}}(\pm$ SEM, $\mathrm{nM})^{\mathrm{c}}$	$\mathrm{IC}_{50}{ }^{\text {a }}$ (nM$)$	$\begin{aligned} & \text { Inhibition (\%) or } K_{\mathrm{i}}(\pm \text { SEM, } \\ & \mathrm{nM}) \end{aligned}$	$\mathrm{IC}_{50}{ }^{\text {b }}(\mathrm{nM})$		
18a	86.01\%		35.99\%		37.34\%	13.54\%
18b	182.41 ± 10.88	323.79 ± 19.30	41.75\%		599.89 ± 147.71	56.23\%
18d	81.88\%		10.21\%		57.37\%	33.54\%
18e	83.23\%		22.71\%		5.48\%	20.79\%
18 f	106.45 ± 10.62	188.96 ± 18.84	3.48\%		66.91\%	17.17\%
18g	64.12 ± 4.43	113.81 ± 7.86	39.50\%		730.02 ± 141.78	24.07\%
18h	74.51 ± 3.85	141.58 ± 7.33	1.02\%		57.57\%	31.26\%
18i	59.30\%		54.22\%		43.73\%	69.13\%
18j	7.97 ± 1.29	14.29 ± 2.12	81.87\%		61.70\%	24.96\%
18k	$\mathbf{2 3 . 7 6} \pm 2.09$	45.45 ± 3.98	51.68\%		66.93\%	48.81\%
181	7.37\%		47.18\%		67.38\%	59.74\%
18m	43.40\%		70.71\%		70.27\%	72.68\%
18n	17.40\%		-24.74\%		-18.28\%	16.93\%
180	55.98\%		-12.59\%		1.34\%	21.44\%
18p	48.81\%		-18.17\%		33.12\%	25.34\%
18q	337.7 ± 71.74	684.0 ± 145.2	223.61 ± 26.50	1155.3 ± 136.9	54.83\%	36.54\%
$18 \mathrm{r}^{\text {d }}$	1440.62 ± 96.87	2917.2 ± 196.2	77.4\%		28.42\%	19.90\%
19a	35.79 ± 2.60	68.89 ± 5.01	346.76 ± 30.54	873.14 ± 63.72	65.61\%	68.69\%
19b	52.34 ± 1.66	98.13 ± 3.11	58.82\%		44.94\%	51.56\%
19c	2.53 ± 0.16	4.86 ± 0.31	83.31\%		56.87\%	32.39\%
19d	17.29 ± 0.54	30.70 ± 0.97	146.99 ± 10.21	514.46 ± 35.74	80.92\%	18.37\%
19e	28.91 ± 2.73	56.37 ± 5.33	160.99 ± 21.18	456.13 ± 60.01	74.55\%	27.05\%
l-SPD	6.23 ± 0.51	12.29 ± 6.54	56.17 ± 4.78	105.41 ± 7.48	89.31\%	45.60\%
SCH23390	1.24 ± 0.37	2.52 ± 0.74				
Spiprone 5-HT			0.28 ± 0.02	1.27 ± 0.08		2.24 ± 0.56
5-HT					0.62 ± 0.04	

[^1]Introducing different substituents, such as methoxy, benzyloxy groups, on the C2 of A-ring of l-SPD, the order of efficacy ($\mathrm{OH}>\mathrm{OMe}>\mathrm{OBn}$) was maintained in the whole set of molecules. For example, the $2-\mathrm{OH}$ derivative 19c was 42 -fold higher in terms of D_{1} receptor binding affinity than the 2-OMe derivative $\mathbf{1 8 f}\left(K_{\mathrm{i}}=106.45 \mathrm{nM}\right)$. Besides, these two compounds were both more potent than 2-OBn derivative $\mathbf{1 8 i}$ (inhibition $=59.30 \%$. Similarly, the $2-\mathrm{OH}$ derivative 19a ($K_{\mathrm{i}}=35.79 \mathrm{nM}$) was found to be more potent in binding than the corresponding 2-OMe derivative 18d (inhibition $=81.88 \%$), $2-\mathrm{OBn}$ derivative 18a (Inhibition $=86.01 \%$), and $2,3-\mathrm{OCH}_{2} \mathrm{O}$ derivative 18e (inhibition $=83.23 \%$) at the D_{1} receptor. Compounds $\mathbf{1 8 b}$ and $\mathbf{1 8 h}$ were roughly 11 - and 29 -fold weaker than the corresponding 2-OH-3-OMe substituted compounds 19d and 19c, respectively. These suggest that the $2,3-\mathrm{OCH}_{2} \mathrm{O}$ group is detrimental to D_{1} receptor binding compared with 2-OH-3OMe substituent. Compounds 18j and $\mathbf{1 8 k}$ were about 13and 4 -fold more potent than compound 18f, which indicates that introducing a methoxy group at C1 enhances binding affinity to the D_{1} receptor. The binding affinity of compounds $\mathbf{1 8 n}$, 180, and 18p were dramatically decreased, suggesting that introducing a hydroxymethyl group at C4 impaired the binding affinity to the D_{1} receptor. The highlight of the series was compound 18j, in which two phenolic hydroxy groups on the Aand D-rings of l-SPD were removed. Compound $\mathbf{1 8 j}$ ($K_{\mathrm{i}}=7.97 \mathrm{nM}$) exhibited excellent D_{1} receptor binding affinity.

Compared to the C14-S-configured compound 18q, its racemate $\mathbf{1 8 r}$ showed a weaker binding affinity for all tested receptors (D_{1}, $\mathrm{D}_{2}, 5-\mathrm{HT}_{1 \mathrm{~A}}$, and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors). This indicates that the $\mathrm{C} 14-\mathrm{S}$ configuration in THPB compounds is important for the binding affinity to those receptors.

Maintaining the 2-OH-3-OMe group on the A-ring of the pharmacophore, we obtained compounds 19a-d by introducing different kinds of substituents on the D-ring. The 9,11-dimethyl substituted compound $19 e$ exhibited a slightly decreased D_{1} receptor affinity as the lead compound $\mathbf{8}$. This suggests that the hydroxy group at C10 may not be crucial for binding to the D_{1} receptor. Compound 19c with methoxy groups at C9 and C11 was found to be 2.5 -fold more potent than the lead compound 8 , indicating that replacing the $10-\mathrm{OH}$ by $11-\mathrm{OMe}$ can enhance D_{1} receptor binding affinity. With the methoxy group at C9 removed, compound 19a exhibited 14 -fold less potent than the corresponding 9,11-dimethoxy substituted THPB derivative 19c. This suggests that the $9-\mathrm{OMe}$ substituent is involved in binding to the D_{1} receptor. Introducing a hydroxymethyl group at C12 has slightly impact on the D_{1} receptor binding, as depicted in compound 19d, which showed a weaker affinity at the D_{1} receptor as compared to the corresponding C12 unsubstituted derivative 19c. Taken together, we conclude that introducing methoxy groups at C9 and C11 boosts binding to the dopamine D_{1} receptor. Among them, 19c, has the highest affinity $\left(K_{i}=2.53 \mathrm{nM}\right)$ for the D_{1} receptor, which is 2.5 -fold more potent than the parent compound 8.

4.1.2. Selectivity for $D_{1} R$ versus $D_{2} R, 5-\mathbf{H T}_{1 A} R$, and $\mathbf{5 - H T} T_{2 A} R$

Very high level of $D_{1} R$ versus $D_{2} R$ selectivity was obtained with many of the synthesized THPB compounds. Among these, compounds $\mathbf{1 8 j}\left(\mathrm{D}_{1} K_{\mathrm{i}}=7.97 \mathrm{nM}, \mathrm{D}_{2}\right.$ inhibition $\left.=81.87 \%\right)$ and $\mathbf{1 9 c}\left(\mathrm{D}_{1}\right.$ $K_{\mathrm{i}}=2.53 \mathrm{nM}, \mathrm{D}_{2}$ inhibition $=83.31 \%$) displayed much higher selectivity toward D_{1} receptor than the lead compound $8\left(D_{2} / D_{1}=9\right)$. Comparing the D_{2} / D_{1} selectivity of all the tested compounds, we found that substituents on the D-ring of the pharmacophore are important for the determination of D_{2} / D_{1} selectivity. Introducing methyl group at C9 and C11 such as compounds $\mathbf{1 8 q}$ and $\mathbf{1 9 e}$ resulted in a decreasing in the D_{1} receptor selectivity. Whereas introducing methoxy group at C9 and C11 significantly enhanced the D_{1} receptor selectivity (such as compounds 18j, 18k, and 19c). Com-

Table 2
${ }^{35} \mathrm{~S}$] GTP γ S binding assays of compounds $\mathbf{1 8 j}$, 18k, 19c, and SCH23390 for the D_{1} receptor

Compound	Potency (nM) and intrinsic activity at cloned D_{1} receptor			
	$\mathrm{EC}_{50}(\mu \mathrm{M})$	$E_{\text {max }}(\%)$	$\mathrm{IC}_{50}(\mu \mathrm{M})$	$I_{\text {max }}(\%)$
18j	$-{ }^{\text {a }}$	-	23.28 ± 1.00	94.22 ± 6.87
18k	-	-	11.84 ± 0.82	82.55 ± 8.33
19c	-	-	1.38 ± 0.24	94.27 ± 1.50
SCH23390	-	-	0.52 ± 0.04	80.05 ± 6.87
l-SPD	$41.1 \pm 8.6^{\text {b }}$	-	-	-
SKF38393	0.17 ± 0.007	100	-	-

pounds $\mathbf{1 8 j}, \mathbf{1 8 k}$, and $\mathbf{1 9}$ c showed excellent selectivity for the D_{1} receptor ($K_{\mathrm{i}}=7.97,23.76$, and 2.53 nM , respectively) over the D_{2} receptor (inhibition $=81.87 \%, 51.68 \%$, and 83.31%, respectively). These results suggest that substituents at C9 and C11 are critical for the selectivity towards dopamine D_{1} receptor. Besides, compared to compound 19c, compound 19d with a hydroxymethyl group at C 12 decreased the D_{1} receptor selectivity significantly.

We also tested the binging affinity of all new compounds at the $5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors, only compounds $\mathbf{1 8 b}$ and $\mathbf{1 8 g}$ with substituent at C12 exhibited weak binding affinity.

From the above results, compounds 18j, 18k, and 19c exhibit excellent D_{1} receptor affinity and remarkable selectivity over D_{2}, $5-\mathrm{HT}_{1 \mathrm{~A}}$, and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors. These three compounds were thus selected for further bioassay.

4.2. $\left[{ }^{35} \mathrm{~S}\right] \mathrm{GTP} \gamma \mathrm{S}$ binding assays for compounds $18 \mathrm{j}, 18 \mathrm{k}$, and 19 c

Stably transfected D_{1} cell membrane fraction was prepared. $\left[{ }^{35} \mathrm{~S}\right]$ GTP $\gamma \mathrm{S}$ binding assays were performed as previously described. ${ }^{22}$ Compounds $\mathbf{1 8 j}, \mathbf{1 8 k}$, and $\mathbf{1 9 c}$ were diluted to different concentrations and added to the reaction tubes, respectively. The D_{1} receptor selective agonist SKF38393 and antagonist SCH23390 were used for comparison.

From the results in Table 2, all three tested compounds produced antagonistic activity at D1 receptor. Among them, compound $\mathbf{1 9 c}\left(\mathbf{I C}_{50}=1.38 \mu \mathrm{M}\right)$ appears to be the most potent. To the best of our knowledge, this is the first discovery of a THPB scaffold that acts as a pure D1 receptor selective antagonist.

4.3. Molecular modeling

To evaluate the impact of introducing different substituents at different positions of the THPB scaffold on the D_{1} receptor binding affinity and function, molecular docking studies of $l-S P D, 18 i, 18 k$, and 19c in a human dopamine D_{1} receptor model were carried out. ${ }^{24}$ The docking was performed using the Glide ${ }^{25}$ program from the Schrödinger Suite. ${ }^{26}$ The results are shown in Fig. 2.

Compounds l-SPD, 19c, 18k, and 18i were found to bind with the dopamine D_{1} receptor in a same pocket, providing complexes $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D , respectively. In complex A, the oxygen atoms of the 2-hydroxy-3-methoxy group, 10-hydroxy group, and the nitrogen atom in l-SPD formed hydrogen bonds with LYS81, SER198, and SER188, respectively. However, in complex B, the whole THPB scaffold was reversed. The oxygen atoms of the 2-hydroxy group and 11-methoxy group in compound 19c formed two hydrogen bonds with ASN929 and LYS81, respectively. This different binding mode to that of l-SPD confirmed that replacing the 10 -hydroxy group by 11-methoxy group reverses D_{1} receptor function and enhances D_{1} receptor affinity.

Compound 18k demonstrated the same binding mode as 19c as in complex C . This could explain that introducing a methoxy group at $C 1$ enhanced D_{1} receptor binding affinity. However, when the 2-

Figure 2. Docked structures of l-SPD, 19c, 18k, and $\mathbf{1 8 i}$ (C, N, and O atoms in green, blue, and red, respectively) in a human dopamine D_{1} receptor model built by homology modeling (complex A, B, C, and D, respectively).
hydroxy group was replaced by a more hindered 2-benzyloxy group, as compound $\mathbf{1 8 i}$, the binding affinity for the D_{1} receptor was lost. This result confirmed that the order of efficacy of the function groups at C 2 is $\mathrm{OH}>\mathrm{OMe}>\mathrm{OBn}$.

5. Conclusions

In the present study, we designed a series of THPB compounds, with varieties of substituents at different positions. Binding assays revealed the position- and substituent-dependent effect for compounds 18 and 19. Compound 19c showed the most promising binding and selectivity profile, displaying marked low-nanomolar $\mathrm{D}_{1} \mathrm{R}$ binding affinity ($K_{\mathrm{i}}=2.53 \mathrm{nM}$) and remarkable selectivity versus $\mathrm{D}_{2} \mathrm{R}$ (inhibition $=83.31 \%$), $5-\mathrm{HT}_{1 \mathrm{~A}} \mathrm{R}$ (inhibition $=56.87 \%$), and $5-\mathrm{HT}_{2 \mathrm{~A}} \mathrm{R}$ (inhibition $=32.39 \%$). Compared with $l-(S)$-stepholidine (l-SPD) ($\mathrm{D}_{1} K_{\mathrm{i}}=6.23 \mathrm{nM}, \mathrm{D}_{2} K_{\mathrm{i}}=56.17 \mathrm{nM}$), compound 19 c showed a mild improved binding affinity for the D_{1} receptor (2.5 -fold higher) and excellent D_{2} / D_{1} selectivity. Compound $\mathbf{1 8 j}$, in which two phenolic hydroxy groups on the A- and D-rings were removed, exhibited excellent D_{1} receptor binding affinity ($K_{i}=7.97 \mathrm{nM}$) and selectivity. Functional assays revealed that compounds $\mathbf{1 8 j}$, $\mathbf{1 8 k}$, and $\mathbf{1 9}$ c were full D_{1} receptor antagonists. This is the first report discovering a full D_{1} receptor antagonist from THPB scaffold derivatives. We further conducted the docking studies with dopamine D_{1} receptor. Compounds $\mathbf{1 8 i}, \mathbf{1 8 k}$, and $\mathbf{1 9 c}$ bound to the D_{1} receptor in a same pocket as l-SPD, however, the three new compounds reversed the molecular skeleton in binding with D_{1} receptor compared with l-SPD. The different binding modes compared with that of l-SPD are in accord with the binding property and the opposite function. The novel D_{1} receptor antagonists herein described are remarkable for their original structure and excellent
selectivity. Given the fact that D_{1} receptor blockage is promising therapeutic target in drug abuse, potential application of these new THPB compounds in drug abuse therapeutics is under investigation.

6. Experimental section

Chemicals and solvents were purchased and used without further purification. All target products were characterized by ${ }^{1} \mathrm{H}$ NMR and LC-MS (ESI), and some products were also characterized by ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Brucker AMX 300 or 400 MHz instrument (TMS as IS). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Brucker AMX 100 MHz instrument (TMS as IS). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m), and broad (br). High performance liquid chromatography (HPLC) analysis was performed on chiralpak OD column ($0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ $5 \mu \mathrm{~m})$. Melting points are uncorrected and were measured in open capillary tubes, using a SGW X-4 melting point apparatus.

6.1. General procedures for the synthesis of compounds $\mathbf{1 0}$ are described as those for 10a

6.1.1. 4-(Benzyloxy)-3-methoxybenzaldehyde (10a)

To a solution of commercial available compound 3-methoxy-4hydroxybenzaldehyde $9 \mathrm{aa}(6.08 \mathrm{~g}, 40 \mathrm{mmol})$ in dry acetone $(100 \mathrm{~mL})$ was added $\mathrm{BnBr}(7.18 \mathrm{~g}, 42 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(11.04 \mathrm{~g}$, $80 \mathrm{mmol})$. The mixture was stirred for 2 h in reflux. Then the reaction solution was filtered after cooled to room temperature. The filtrate was concentrated, and purified by column chromatography
($\mathrm{PE} / \mathrm{EA}=4 / 1$) to give $\mathbf{1 0 a}(9 \mathrm{~g}, 93 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 7 \mathrm{H}), 6.99(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H})$. ESI-MS m/z $243[\mathrm{M}+\mathrm{H}]^{+}$.

6.1.2. 4-(Benzyloxy)-3,5-dimethoxybenzaldehyde (10b)

Yield 91%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 7.48-7.45$ (m, 2H), 7.37-7.29 (m, 3H), 7.11 (s, 2H), 5.13 (s, 2H), $3.90(\mathrm{~s}, 6 \mathrm{H})$; ESI-MS m/z $273[\mathrm{M}+\mathrm{H}]^{+}$.

6.2. General procedures for the synthesis of compounds $\mathbf{1 2}$ are described as those for 12a

6.2.1. 1-(Benzyloxy)-2-methoxy-4-(2-nitroethenyl)benzene (12a)

To a solution of $\mathbf{1 0 a}(8.5 \mathrm{~g}, 35 \mathrm{mmol})$ in glacial acetic acid $(30 \mathrm{~mL})$ was added $\mathrm{CH}_{3} \mathrm{NO}_{2}(6.4 \mathrm{~g}, 105 \mathrm{mmol})$ and ammonium acetate $(2.70 \mathrm{~g}, 35 \mathrm{mmol})$, the mixture was heated to $90^{\circ} \mathrm{C}$ for 4 h , then cooled to room temperature and poured to water (200 mL) to favor the precipitation as a solid, which was subsequently filtered and washed with cold water and methanol. The crude product was purified by column chromatography (PE/ $\mathrm{EA}=6 / 1$) to yield $\mathbf{1 2 a}(8.58 \mathrm{~g}, 86 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.94(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=13.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{dd}, J=8.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02$ (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS m/z 284 [M-H].

6.2.2. 1,2-Dimethoxy-4-(2-nitroethenyl)benzene (12b)

Yield 83%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.96(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H}), 6.92$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS m/z $208[\mathrm{M}-\mathrm{H}]^{-}$.

6.2.3. 1,3-Dimethoxy-5-(2-nitroethenyl)benzene (12c)

Yield 87%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.92(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.59-6.57(\mathrm{~m}, 1 \mathrm{H})$, 3.83 (s, 6H); ESI-MS m/z 208 [M-H] .

6.2.4. 1,2,3-Trimethoxy-5-(2-nitroethenyl)benzene (12d)

Yield 91%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.94(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.53 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 6 \mathrm{H})$; ESIMS m/z $238[\mathrm{M}-\mathrm{H}]^{-}$.

6.2.5. 2-(Benzyloxy)-1,3-dimethoxy-5-(2-nitroethenyl)benzene

 (12e)Yield 78%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.92(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52(\mathrm{~d}, \mathrm{~J}=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.74$ (s, 2H), $5.09(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H})$; ESI-MS m/z 314 [M-H] .
6.3. General procedures for the synthesis of compounds $\mathbf{1 3}$ are described as those for 13a

6.3.1. 2-(4-(Benzyloxy)-3-methoxyphenyl)ethan-1-amine hydrochloride (13a)

A suspension of $\mathrm{LiAlH}_{4}(3.42 \mathrm{~g}, 90 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$ was cooled in an ice-water bath, and compound 12a (8.55 g , 30 mmol) was added by portion. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h , then heated to reflux and stirred for another 2 h . After the mixture was cooled to $0^{\circ} \mathrm{C}$, water (6 mL) was added to decompose the rest LiAlH_{4}. The mixture was diluted with THF (50 mL) and filtrated. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to give yellow oil. Then, $\mathrm{HCl}-\mathrm{Et}_{2} \mathrm{O}$ solution was added to the yellow oil to yield 13a ($6.59 \mathrm{~g}, 75 \%$) as a white solid. ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 7.66(\mathrm{br}, 2 \mathrm{H}), 7.44-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.96$ (d, $J=8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{dd}, J=8,2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05$ ($\mathrm{s}, 2 \mathrm{H}$), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.01-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.77(\mathrm{~m}, 2 \mathrm{H})$; ESIMS m/z $258[\mathrm{M}+\mathrm{H}]^{+}$.
6.3.2. 2-(3,4-Dimethoxyphenyl)ethan-1-amine (13b)

Yield 78%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.60-6.51(\mathrm{~m}, 3 \mathrm{H}), 3.65$ ($\mathrm{s}, 3 \mathrm{H}$) , $3.62(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$, $1.20(\mathrm{~s}, 2 \mathrm{H}) ;$ ESI-MS m/z $182[\mathrm{M}+\mathrm{H}]^{+}$.

6.3.3. 2-(3,5-Dimethoxyphenyl)ethan-1-amine hydrocloride (13c)

Yield 69\%; ${ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right) \delta 8.03$ (br, 2H), 6.43 (s, $1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.03-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.83-$ $2.79(\mathrm{~m}, 2 \mathrm{H})$; ESI-MS $m / z 182[\mathrm{M}+\mathrm{H}]^{+}$.

6.3.4. 2-(3,4,5-Trimethoxyphenyl)ethan-1-amine (13d)

Yield 71%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.38(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 2.94-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 2 \mathrm{H})$; ESI-MS m/z $212[\mathrm{M}+\mathrm{H}]^{+}$.

6.3.5. 2-(4-(Benzyloxy)-3,5-dimethoxyphenyl)ethan-1-amine

 hydrocloride (13e)Yield 76\%; ${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 300 \mathrm{MHz}\right) \delta 7.95$ (br, 2H), 7.47$7.44(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}$, $6 \mathrm{H}), 3.06-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.79(\mathrm{~m}, 2 \mathrm{H})$; ESI-MS m/z 288 $[\mathrm{M}+\mathrm{H}]^{+}$.

6.4. General procedures for the synthesis of compounds 15 are described as those for 15 c

6.4.1. $\quad N$-(2-(4-(Benzyloxy)-3-methoxyphenyl)ethyl)-2-(3,5dimethoxyphenyl)acetamide (15c)

To a solution of 3,5-dimethoxyphenylacetic acid $\mathbf{1 4 a}(0.98 \mathrm{~g}$, $5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, EDCI (N-ethyl- N^{\prime}-(3-dimethylaminopropyl)carbodiimidehydrochloride) $(1.15 \mathrm{~g}, 6 \mathrm{mmol})$ was added. The mixture was stirred at room temperature for 0.5 h , and 2-(4-(benzyloxy)-3-methoxyphenyl)ethan-1-amine hydrochloride 13a $(1.47 \mathrm{~g}, 5 \mathrm{mmol})$ was added. The mixture was stirred for another 8 h , washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The residue was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=80 / 1\right)$ to afford $\mathbf{1 5 c}(1.76 \mathrm{~g}, 81 \%)$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.45-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.74$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{dd}, J=8.1,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.37-6.35(\mathrm{~m}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 2 \mathrm{H}), 5.46(\mathrm{br}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 2H); ESI-MS m/z $436[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.2. N-(2-(4-(Benzyloxy)-3-methoxyphenyl)ethyl)-2-(3-methoxyphenyl)acetamide (15a)

Yield 87%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.45-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.18$ ($\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.80-6.71(\mathrm{~m}, 4 \mathrm{H}), 6.63(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.48-$ $6.45(\mathrm{~m}, 1 \mathrm{H}), 5.45(\mathrm{br}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 3.49-3.39 (m, 4H), 2.66 (t, J=6.9 Hz, 2H); ESI-MS m/z 406 $[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.3. N-(2-(3,4-Dimethoxyphenyl)ethyl)-2-(3-methoxyphenyl)acetamide (15d)

Yield 90%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.82-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.75-6.70(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.53(\mathrm{dd}, J=8.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{br}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}$, $3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.46-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESI-MS $m / z 330[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.4. N -(2-(2H-1,3-Benzodioxol-5-yl)ethyl)-2-(3-methoxyphenyl)acetamide (15e)

Yield 83%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.52(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.45-6.42(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.37(\mathrm{br}$, $1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}$, $J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESI-MS m/z $314[\mathrm{M}+\mathrm{H}]^{+}$.
6.4.5. N-(2-(3,4-Dimethoxyphenyl)ethyl)-2-(3,5-dimethoxyphenyl)acetamide (15f)

Yield 86%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.72(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.61 (d, $J=1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (dd, $J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.37-6.36 ($\mathrm{m}, 1 \mathrm{H}$), $6.30(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.45(\mathrm{br}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.82$ (s, 3H), 3.75 (s, 6H), 3.47-3.40 (m, 4H), $2.67(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESI-MS m/z $360[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.6. N -(2-(2H-1,3-Benzodioxol-5-yl)ethyl)-2-(3,5-dimethoxyphenyl)acetamide (15h)

Yield 76\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.54(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.43(\mathrm{~m}, 1 \mathrm{H}), 6.37(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.32(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 5.44(\mathrm{br}, 1 \mathrm{H}), 3.76$ (s, 6H), $3.46(\mathrm{~s}, 2 \mathrm{H}), 3.43-3.36(\mathrm{~m}, 2 \mathrm{H}), 2.63(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESI-MS m/ z $344[\mathrm{M}+\mathrm{H}]^{+}$.
6.4.7. N-(2-(4-(Benzyloxy)-3,5-dimethoxyphenyl)ethyl)-2-(3,5dimethoxyphenyl)acetamide (15i)

Yield 84\%; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) ~ \delta 7.50-7.47$ (m, 2H), 7.377.28 (m, 3H), 6.36-6.30 (m, 5H), 5.52 (br, 1H), 4.96 (s, 2H), 3.77 (s, $6 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.48-3.44(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESI-MS $\mathrm{m} / \mathrm{z} 466[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.8. N-(2-(3,4,5-Trimethoxyphenyl)ethyl)-2-(3,5-dimethoxyphenyl)acetamide (15k)

Yield 81\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.37-6.35(\mathrm{~m}, 1 \mathrm{H}), 6.32-$ $6.31(\mathrm{~m}, 4 \mathrm{H}), 5.50(\mathrm{br}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H})$, $3.50-3.43(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESI-MS $\mathrm{m} / \mathrm{z} 390[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.9. 2-(2H-1,3-Benzodioxol-5-yl)-N-(2-(3,4,5-trimethoxyphenyl)ethyl)acetamide (15m)

Yield 76%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 6.64-6.59 (m, 2H), 6.30 (s, 2H), 5.95 (s, 2H), 5.43 (br, 1H), 3.81 (s, $9 \mathrm{H}), 3.50-3.44(\mathrm{~m}, 4 \mathrm{H}), 2.69(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESI-MS $m / z 374$ $[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.10. 2-(2H-1,3-Benzodioxol-5-yl)-N-(2-(3,5-dimethoxyphenyl)ethyl)acetamide (15n)

Yield 82%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.72(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.64(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.60(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.31-6.23(\mathrm{~m}$, $1 \mathrm{H}), 6.23(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{br}, 1 \mathrm{H}), 3.76(\mathrm{~s}$, 6 H), 3.49-3.43 (m, 4H), 2.68 (t, J=6.9 Hz, 2H); ESI-MS m/z 344 $[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.11. N-(2-(3,5-Dimethoxyphenyl)ethyl)-2-(3-methoxyphe-

 nyl)acetamide (150)Yield 88\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.80-$ $6.71(\mathrm{~m}, 3 \mathrm{H}), 6.29-6.28(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 2 \mathrm{H}), 5.57$ (br, 1H), 3.76 (s , 3 H), 3.73 ($\mathrm{s}, 6 \mathrm{H}$), $3.48(\mathrm{~s}, 2 \mathrm{H}), 3.45-3.40(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}$, 2 H); ESI-MS m/z $330[\mathrm{M}+\mathrm{H}]^{+}$.

6.4.12. N-(2-(3,5-Dimethoxyphenyl)ethyl)-2-(2,5-dimethoxyphenyl)acetamide (15p)

Yield 82\%; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 2 \mathrm{H})$, $6.31-6.29(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.87$ (br, 1H), 3.74 (s, 9 H), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 3.49-3.42 (m, 4H), $2.67(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$; ESIMS $m / z 360[\mathrm{M}+\mathrm{H}]^{+}$.

6.5. General procedures for the synthesis of compounds 16 are described as those for 7-(benzyloxy)-1-((3,5-dimethoxyphenyl)-methyl)-6-methoxy-3,4-dihydroisoquinoline (16c)

To a solution of the amide $\mathbf{1 5 c}(1.74 \mathrm{~g}, 4 \mathrm{mmol})$ in dry acetonitrile (20 mL) was added $\mathrm{POCl}_{3}(3.06 \mathrm{~g}, 20 \mathrm{mmol})$, then the mixture was refluxed for 0.5 h . The reaction mixture was cooled to room temperature and concentrated under vacuum. The residue was
dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with saturated NaHCO_{3} and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated to yield $\mathbf{1 6 c}(1.63 \mathrm{~g}, 98 \%)$ as a yellow solid. It was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.35-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{~s}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 6.29(\mathrm{t}, J=2 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 3.92(\mathrm{~s}$, 2 H), $3.88(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 8 \mathrm{H}), 2.67(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 166.30,160.91$ (2C), 152.14, 146.36, $139.73,136.63,132.48,128.54$ (2C), 127.96, 127.55, 127.24 (2C), $112.94,110.64,106.73$ (2C), $98.39,71.37,56.00,55.24$ (2C), 46.29, 42.89, 25.73; ESI-MS m/z $418[\mathrm{M}+\mathrm{H}]^{+}$.

6.6. General procedures for the synthesis of compounds 17

6.6.1. General procedures for the synthesis of compounds $17 \mathrm{a}-\mathrm{q}$ are described as those for (S)-7-(benzyloxy)-1-((3,5-
dimethoxyphenyl)methyl)-6-methoxy-1,2,3,4tetrahydroisoquinoline (17c)

A freshly prepared imine $\mathbf{1 6 c}(1.63 \mathrm{~g}, 3.9 \mathrm{mmol})$ was dissolved in anhydrous DMF (6 mL), $\operatorname{RuCl}[(R, R)-\operatorname{TsDPEN}(\mathrm{P}-$ cymene $)]$ (27 mg , $39 \mu \mathrm{~mol}$) was added followed by formic acid/triethylamine ($\mathrm{v} /$ $v=5 / 2,1.2 \mathrm{~mL}$), and the reaction mixture was stirred at room temperature for 10 h . Then, the pH of reaction mixture was adjusted to 8 with saturated $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$, and extracted by ethyl acetate. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield $\mathbf{1 7 c}(1.65 \mathrm{~g}, 101 \%)$ as a brown oil. It was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.44-7.29(\mathrm{~m}, 5 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}$, $1 \mathrm{H}), 6.38(\mathrm{~s}, 2 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.08(\mathrm{~s}, 2 \mathrm{H}), 4.11-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.86$ ($\mathrm{s}, 3 \mathrm{H}$), 3.77 (s, 6H), 3.20-3.18 (m, 1H), 3.04 (d, $J=10 \mathrm{~Hz}, 1 \mathrm{H}$), 2.94$2.89(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.69(\mathrm{~m}, 3 \mathrm{H}), 2.20(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 160.79(2 \mathrm{C}), 148.14,145.94,141.22,137.16,129.99$, 128.40 (2C), 127.87, 127.71, 127.31 (2C), 112.53, 112.17, 107.19 (2C), 98.30, 71.27, 56.51, 55.86, 55.20 (2C), 42.74, 40.66, 29.27. ESI-MS $m / z 420[M+H]^{+}$.
6.6.2. Procedures for the synthesis of compound (RS)-1-((3,5-dimethylphenyl)methyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline (17r)

A solution of compound $\mathbf{1 6 r}(0.5 \mathrm{~g}, 1.6 \mathrm{mmol})$ in methanol $(10 \mathrm{~mL})$ was cooled in an ice-water bath, and $\mathrm{NaBH}_{4}(0.12 \mathrm{~g}$, 3.2 mmol) was added by portion. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 0.5 h , then warmed to room temperature and stirred for another 1 h . After the mixture was cooled to $0^{\circ} \mathrm{C}$, saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution $(5 \mathrm{~mL})$ was added to decompose the rest NaBH_{4}. The mixture was diluted with water (50 mL) and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 2)$, washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to yield $\mathbf{1 7 r}(0.49 \mathrm{~g}, 97 \%)$ as a white solid. It was used in the next step without further purification. ESI-MS $m / z 420[\mathrm{M}+\mathrm{H}]^{+}$.

6.7. General procedures for the synthesis of compounds 18 are described as those for 18c

6.7.1. (S)-2-(Benzyloxy)-3,9,11-trimethoxytetrahydroprotoberberine (18c)

Compound 17c ($0.42 \mathrm{~g}, 1 \mathrm{mmol}$) was dissolved in $\mathrm{HCOOH} / 40 \%$ HCHO ($\mathrm{v} / \mathrm{v}=1.4 / 1,10 \mathrm{ml}$) mixture solution, the reaction was stirred at $50^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was cooled to room temperature, and alkalified pH to 9 by $\mathrm{K}_{2} \mathrm{CO}_{3}$. The solution was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($50 \mathrm{~mL} \times 2$), washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated. The crude product was purified by column chromatography to yield $\mathbf{1 8 c}(0.4 \mathrm{~g}, 92 \%$, chiral HPLC: hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=0.6 \mathrm{ml} / \mathrm{mim}, \lambda=214 \mathrm{~nm}, 99 \%$ ee) as a light yellow solid: $\mathrm{mp} 84-86^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 7.47-7.46(\mathrm{~m}, 5 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}$, $1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 2 \mathrm{H}), 4.15-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.80(\mathrm{~s}, 6 \mathrm{H}), 3.54-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.65(\mathrm{~m}$,

3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 158.87,156.78,148.19,146.37$, 137.25 (2C), 136.13, 129.53, 128.49 (2C), 127.78, 127.44 (2C), 115.78, 111.91, 111.74, 103.84, 95.93, 71.52, 58.89, 55.91, 55.29, 53.29, 51.38, 37.12, 29.02; ESI-MS m/z $432[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.2. (S)-2-(Benzyloxy)-3,11-dimethoxytetrahydroprotoberber-

 ine (18a)Yield 86\%; mp 107-110 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.46(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.99(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}$, $1 \mathrm{H}), 6.72$ (dd, $J=8.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66$ (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}$, $1 \mathrm{H}), 5.15(\mathrm{~s}, 2 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, 3.64 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.11$ (m, 3H), 2.78 (dd, $J=16.4,11.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.69-2.58 (m, 2H); ESI-MS m/z $402[\mathrm{M}+\mathrm{H}]^{+}$.
6.7.3. (S)-2,3-Methylenedioxy-9,11-dimethoxy-12-hydroxymethyltetrahydroprotoberberine (18b)

Yield 79\%; mp $134{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.79(\mathrm{~s}, 1 \mathrm{H})$, $6.59(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.77-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.12$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.49-3.36 (m, 2H), 3.18-3.07 (m, 2H), 2.84-2.75 (m, 1H), 2.68$2.59(\mathrm{~m}, 2 \mathrm{H}), 1.83$ (br, 1H); NOE $6.36(1 \mathrm{H})$ connected with 3.87 $(3 \mathrm{H})$ and $3.85(3 \mathrm{H})$; ESI-MS $m / z 370[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.4. (S)-2,3,11-Trimethoxytetrahydroprotoberberine (18d)

Yield 87\%; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.74(\mathrm{~s}, 2 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 3.96-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~s}$, $3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.30(\mathrm{dd}$, $J=16.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.69-$ 2.63 (m, 2H); ESI-MS m/z $326[\mathrm{M}+\mathrm{H}]^{+}$.
6.7.5. (S)-2,3-Methylenedioxy-11-methoxytetrahydroprotoberberine (18e)

Yield 82\%; mp 114-116 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.00(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.69(\mathrm{~m}, 3 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.68-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 1 \mathrm{H})$, $3.16-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.87$ (dd, $J=15.9,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.55(\mathrm{~m}$, $2 \mathrm{H})$; ESI-MS $m / z 310[\mathrm{M}+\mathrm{H}]^{+}$.
6.7.6. (S)-2,3,9,11-Tetramethoxytetrahydroprotoberberine (18f)

Yield 85%; mp $153-156{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.73(\mathrm{~s}$, $1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~d}, \mathrm{~J}=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H})$, $3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.70-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.08$ $(\mathrm{m}, 3 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.67-2.60(\mathrm{~m}, 2 \mathrm{H})$; ESI-MS m/z 356 $[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.7. (S)-2,3,9,11-Tetramethoxy-12-hydroxymethyltetrahydro-

 protoberberine (18g)Yield 76\%; mp 132-133 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.77$ (s, $1 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 4.77-4.61(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~d}$, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.55-3.36$ (m, 3H), 3.18-3.07 (m, 2H), 2.82-2.74 (m, 1H), 2.68-2.56 (m, 2H), 2.04 (br, 1H); ESI-MS m/z $386[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.8. (S)-2,3-Methylenedioxy-9,11-dimethoxytetrahydroprotoberberine (18h)

Yield 83%; mp $155-157{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.73$ (s, $1 \mathrm{H}), 6.59(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H}), 5.92(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24-3.08(\mathrm{~m}, 3 \mathrm{H}), 2.90-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.57$ (m, 2H); ESI-MS m/z $340[\mathrm{M}+\mathrm{H}]^{+}$.
6.7.9. (S)-2-(Benzyloxy)-1,3,9,11-tetramethoxytetrahydroprotoberberine (18i)

Yield 85%; mp $124-125^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 7.55-7.53 (m, 2H), 7.42-7.32 (m, 3H), $6.48(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H})$,
$6.31(\mathrm{~s}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=28.4,10.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.07(\mathrm{~m}, 1 \mathrm{H})$, $3.97-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}$, 3 H), $3.77-3.73(\mathrm{~m}, 1 \mathrm{H}), 3.48$ (dd, $J=16.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.00$ (m, 2H), 2.86-2.67 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 158.73$, 156.99, 152.05, 151.18, 139.01, 137.69, 137.05, 130.82, 128.18 (2C), 128.15 (2C), 127.74, 124.23, 115.47, 107.37, 103.84, 95.86, 75.03, 60.79, 55.77, 55.21, 55.15, 55.10, 52.63, 48.13, 33.76, 30.24; ESI-MS m/z $462[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.10. (S)-1,3,9,11-Tetramethoxytetrahydroprotoberberine (18j)

Yield 84\%; mp 90-92 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.32(\mathrm{~d}$, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=4.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 9 \mathrm{H}), 3.78(\mathrm{~s}$, $3 \mathrm{H}), 3.48$ (dd, $J=16.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.89$ $(\mathrm{m}, 1 \mathrm{H}), 2.81-2.67(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 158.99$ (2C), 157.48, 157.12, 136.57, 136.34, 118.84, 114.45, 104.27, 103.87, 96.59, 96.01, 55.29, 55.24 (2C), 55.16, 54.69, 52.42, 47.81, 33.08, 30.05; ESI-MS m/z $356[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.11. (S)-1,2,3,9,11-pentamethoxytetrahydroprotoberberine (18k)

Yield 74\%; mp 171-174 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.46$ (s, $1 \mathrm{H}), 6.33(\mathrm{~d}, \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.05-$ 3.96 (m, 1H), 3.92 (s, 3H), 3.87 (s, 3H), 3.86 (s, 3H), 3.81 (s, 3H), 3.79 (s, 3H), 3.46 (dd, $J=17.1,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.26-3.19$ (m, 1H), 3.09-3.05 (m, 2H), 2.96-2.79 (m, 2H); ESI-MS m/z $386[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.12. (S)-1,2,3,9,11-Pentamethoxy-12-hydromethyltetrahydroprotoberberine (181)

Yield 77%; $\mathrm{mp} 91-93^{\circ} \mathrm{C}$; chiral HPLC: hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=0.6 \mathrm{ml} / \mathrm{mim}, \lambda=214 \mathrm{~nm}, 99 \%$ ee; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.25(\mathrm{~m}$, 2H), 4.18-4.10 (m, 1H), 3.94 (d, $J=0.9 \mathrm{~Hz}, 3 \mathrm{H}$), 3.88 ($\mathrm{s}, 3 \mathrm{H}$), 3.86 (s, 6H), 3.84 (s, 3H), 3.68 (dd, $J=17.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.27-3.22 (m, $2 \mathrm{H}), 3.06-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 157.39,156.72,152.10,150.74,140.13,135.52$, $129.98,123.88,118.60,114.66,107.23,92.42,60.74,60.65,56.11$, 55.84, 55.70, 55.31, 54.49, 52.36, 47.37, 30.15, 29.66; ESI-MS m/z $416[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.13. (S)-1,2,3-Trimethoxy-10,11-methylenedioxytetrahydroprotoberberine ($\mathbf{1 8 m}$)

Yield 86\%; mp 89-91 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.58$ (s , $1 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 4.12$ (d, $J=14.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 3.95-3.91(\mathrm{~m}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}$, 3 H), 3.36 (dd, $J=16.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.15-3.08 (m, 1H), 3.02-2.88 $(\mathrm{m}, 2 \mathrm{H}), 2.77-2.66(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 152.06$, 150.53, 146.12, 145.80, 140.21, 129.63, 127.35, 125.86, 123.53, 108.46, 107.21, 106.07, 100.54, 60.80, 60.60, 57.31, 55.75, 54.81, 47.17, 32.74, 29.52; ESI-MS m/z $370[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.14. (S)-1,3-Dimethoxy-4-hydromethyl-10,11-methylenedioxytetrahydroprotoberberine ($\mathbf{1 8 n}$)

Yield 73%; mp $164-165^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.54$ (s, 2H), $6.38(\mathrm{~s}, 1 \mathrm{H}), 5.88(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 2 \mathrm{H}), 4.06-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.87$ $(\mathrm{s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=16.5,3.9 \mathrm{~Hz}$, 1 H), 3.13-3.00 (m, 3H), 2.68-2.56 (m, 2H), 2.18 (br, 1H); ESI-MS $\mathrm{m} / \mathrm{z} 370[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.15. (S)-1,3,11-Trimethoxy-4-hydromethyltetrahydroprotoberberine (180)

Yield 76\%; mp 121-122 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.00(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.38(\mathrm{~s}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~d}, \mathrm{~J}=15.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H})$,
3.19-3.05 (m, 3H), 2.85-2.81 (m, 1H), 2.78-2.69 (m, 1H); ESI-MS $\mathrm{m} / \mathrm{z} 356[\mathrm{M}+\mathrm{H}]^{+}$.

6.7.16. (S)-1,3,9,12-Tetramethoxy-4-hydromethyltetrahydroprotoberberine (18p)

Yield 69\%; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.66$ (s, 2H), 6.38 (s, 1H), 4.68 (dd, $J=16.2,12 \mathrm{~Hz}, 2 \mathrm{H}$), 4.22 (d, $J=16.8 \mathrm{~Hz}, 2 \mathrm{H}$), 4.02 (d, $J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}$, 3H), 3.51-3.43 (m, 1H), 3.22-3.12 (m, 3H), 2.90-2.85 (m, 1H), 2.50-2.41 (m, 1H), 2.01 (br, 1H); ESI-MS m/z $386[\mathrm{M}+\mathrm{H}]^{+}$.
6.7.17. (S)-2,3-Dimethyloxy-9,11-dimethyltetrahydroprotoberberine (18q)

Yield 77%; chiral HPLC: hexane $/ i-\operatorname{PrOH}=70 / 30$, flow rate $=0.6 \mathrm{ml} / \mathrm{mim}, \lambda=214 \mathrm{~nm}, 98 \%$ ee; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~s}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}$, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.58$ (dd, $J=11.2$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (dd, $J=16,3.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.21-3.13 (m, 2H), 2.93-2.86 (m, 1H), 2.70-2.62 (m, 2H), $2.29(\mathrm{~s}$, 3H), $2.20(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS m/z $324[\mathrm{M}+\mathrm{H}]^{+}$.
6.7.18. (RS)-2,3-Dimethyloxy-9,11-dimethyltetrahydroprotoberberine (18r)

Yield 81\%; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.85(\mathrm{~s}, 1 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H})$, $6.73(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87$ ($\mathrm{s}, 3 \mathrm{H}$), 3.58 (dd, $J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28$ (dd, $J=16,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.12(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $2.60(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS m/z $324[\mathrm{M}+\mathrm{H}]^{+}$.

6.8. General procedures for the synthesis of compounds 19 are described as those for 19c

6.8.1. (S)-2-Hydroxy-3,9,11-trimethoxytetrahydroprotoberberine (19c)

Compound $\mathbf{1 8 c}(0.35 \mathrm{~g}, 0.8 \mathrm{mmol})$ was refluxed in a mixture solution of concentrated hydrochloric acid (10 mL) and EtOH (3 mL) for 2 h . Then, the reaction mixture was cooled to $0^{\circ} \mathrm{C}$, alkalified pH to 9 by $\mathrm{K}_{2} \mathrm{CO}_{3}$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL} \times 2)$. The combined organic layer was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated to give the crude product, which was purified by column chromatography to yield $19 \mathrm{c}(0.23 \mathrm{~g}, 83 \%$, chiral HPLC: hexane $/ i-\operatorname{PrOH}=70 / 30$, flow rate $=0.6 \mathrm{ml} / \mathrm{mim}$, $\lambda=214 \mathrm{~nm}, 97 \%$ ee) as a light yellow solid: mp $118-120^{\circ} \mathrm{C} ; .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{~s}, 2 \mathrm{H})$, 4.12 (d, $J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 6 \mathrm{H}), 3.52$ (dd, $J=11.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.10(\mathrm{~m}, 3 \mathrm{H})$, 2.89-2.82 (m, 1H), 2.66-2.59 (m, 2H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 158.85,156.74,145.22,143.92,136.29,130.25,125.96,115.82$, $111.56,110.61,103.88,95.98,58.94,55.75,55.28,55.24,53.37$, 51.56, 37.03, 29.03; ESI-MS m/z $342[\mathrm{M}+\mathrm{H}]^{+}$.
6.8.2. (S)-2-Hydroxy-3,11-dimethoxytetrahydroprotoberberine (19a)

Yield 85%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.04(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $6.83(\mathrm{~s}, 1 \mathrm{H}), 6.73-6.69(\mathrm{~m}, 2 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 5.56(\mathrm{br}, 1 \mathrm{H}), 3.98$ (d, J = 14.7 Hz, 1H), $3.87(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.57(\mathrm{~m}, 2 \mathrm{H})$, 3.28 (dd, $J=15.9,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 2 \mathrm{H}), 2.93-2.83(\mathrm{~m}$, $1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 2 \mathrm{H})$; ESI-MS $\mathrm{m} / \mathrm{z} 312[\mathrm{M}+\mathrm{H}]^{+}$.

6.8.3. (S)-1,3,9,11-Tetramethoxy-2-hydroxytetrahydroprotoberberine (19b)

Yield 87\%; mp 153-156 ${ }^{\circ}$ C; chiral HPLC: hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=0.6 \mathrm{ml} / \mathrm{mim}, \lambda=214 \mathrm{~nm}, 99 \%$ ee; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.42(\mathrm{~s}, 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~d}$, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 6 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.73-3.66(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.14-2.95(\mathrm{~m}, 2 \mathrm{H})$, 2.88-2.61 (m, 3H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 158.93,157.12$,
146.34, 144.27, 136.98, 136.62, 125.85, 124.13, 115.26, 106.55, 104.01, 96.02, 60.23, 56.10, 55.35, 55.29, 55.22, 52.68, 48.41, 33.77, 29.84; ESI-MS m/z $372[\mathrm{M}+\mathrm{H}]^{+}$.
6.8.4. (S)-2-Hydroxy-3,9,11-trimethoxy-12-hydroxymethyltetrahydroprotoberberine (19d)

Yield 76%; mp $133-134^{\circ} \mathrm{C}$; chiral HPLC: hexane $/ i-\mathrm{PrOH}=70 / 30$, flow rate $=0.6 \mathrm{ml} / \mathrm{mim}, \lambda=214 \mathrm{~nm}, 99 \%$ ee; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 4.74-4.57(\mathrm{~m}$, 2 H), 4.12 (d, J= $15 \mathrm{~Hz}, 1 \mathrm{H}$), 3.85 (s, 3H), 3.83 ($\mathrm{s}, 3 \mathrm{H}$), 3.82 ($\mathrm{s}, 3 \mathrm{H}$), 3.47-3.33 (m, 3H), 3.19-3.16 (m, 2H), 2.81-2.56 (m, 3H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 157.37,156.31$ (2C), 145.23, 144.03, 135.30, 125.77, 118.64 (2C), 111.58, 110.65, 92.52, 58.88, 55.99, 55.89, 55.68, 55.37, 53.47, 51.44, 33.95, 28.95; ESI-MS m/z 372 $[\mathrm{M}+\mathrm{H}]^{+}$.

6.8.5. (S)-2-Hydroxy-3-methoxy-9,11-dimethyltetrahydroprotoberberine (19e)

Yield 89\%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 6.83(\mathrm{~s}, 2 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H})$, $6.60(\mathrm{~s}, 1 \mathrm{H}), 4.04(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.47(\mathrm{~m}, 2 \mathrm{H})$, 3.26-3.18 (m, 3H), 2.93-2.89 (m, 1H), 2.70-2.63 (m, 2H), $2.28(\mathrm{~s}$, $3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$; ESI-MS m/z $310[\mathrm{M}+\mathrm{H}]^{+}$.

6.9. Binding assay of new compounds at the $D_{1}, D_{2}, 5-\mathrm{HT}_{1 \mathrm{~A}}$, and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors

All the synthesized THPB compounds were subjected to the competitive binding assays for the human cloned dopamine (D_{1} and D_{2}) and serotonin ($5-\mathrm{HT}_{1 \mathrm{~A}}$ and $5-\mathrm{HT}_{2 \mathrm{~A}}$) receptors, which were expressed by HEK293 cells. The initial screening at a concentration of $10 \mu \mathrm{M}$ for every compound to inhibit the binding of a tritiated labeled ligand to the corresponding receptor was tested. Compounds that inhibited binding by more than 90% for DA receptor and serotonin receptor were subjected to measure the $K_{\mathrm{i}} / \mathrm{IC}_{50}$. [${ }^{3} \mathrm{H}$]-8-Chloro-3-methyl-5-phenyl-2,3,4,5-tetrahydro- 1 H -benzo-[d]azepin-7-ol (SCH23390), $\left[{ }^{3} \mathrm{H}\right]$-Spiperone, $\left[{ }^{3} \mathrm{H}\right]$-8-OH-DPAT, and $\left[{ }^{3} \mathrm{H}\right]$-Ketanserin were used as standard radioligands for $\mathrm{D}_{1}, \mathrm{D}_{2}, 5$ $\mathrm{HT}_{1 \mathrm{~A}}$, and $5-\mathrm{HT}_{2 \mathrm{~A}}$ receptors, respectively.

6.10. $\left[{ }^{35} \mathrm{~S}\right]$ GTP γ S binding assays for compounds $18 \mathrm{j}, 18 \mathrm{k}$, and 19c

Stably transfected D_{1} cell membrane fraction was prepared, and the $\left[{ }^{35}\right.$ S] GTP γS binding assay was performed as previously described. Compounds 18j, 18k, and 19c were diluted to various concentrations and added to the reaction tubes. The D_{1} receptor agonist SKF38393 (1-phenyl-2,3,4,5-tetrahydro-1H-3-benzaze-pine-7,8-diol) and antagonist SCH23390 (7-chloro-3-methyl-1-phenyl-1,2,4,5-tetrahydro-3-benzazepin-8-ol) were used for comparison.

6.11. Molecular modeling

Docking study was performed using the Glide program from the Schrödinger Suite. The 3D model of the D_{1} receptor was constructed using a homology-modeling approach based on the x-ray crystal structure of bovine rhodopsin (Protein Data Bank: 1F88) by our group. ${ }^{24}$ The D_{1} receptor was processed by removing all solvent, adding hydrogens and minimal minimization with the OPLS2001 force field using Protein Preparation Wizard. The grid was sized to $15 \AA$ in each direction. All the small molecules were generated and minimized using SYBYL 7.3, Tripos. ${ }^{27}$ In all cases, the compounds were prepared for docking using Ligprep under its default parameters. The maximum number of heavy atoms permitted per compound was 120 , and the maximum number of rotatable bonds allowed per compound was 30. Docking was
performed using Glide in standard-precision mode, with up to 50 poses saved per molecule. The top scoring pose for each compound, as assessed by its Glide score, was employed for discussions.

Acknowledgments

We gratefully acknowledge financial support from National Basic Research Program of China (Grants 2009CB940903, 2009CB522000, 2011CB5C4403, and 2012CB518000), the National Natural Science Foundation of China (Grants 20721003, 30825042, 81130023, and 81025017), National S\&T Major Projects (2012ZX09103-101-072). The support from The Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions is also appreciated.

References and notes

1. (a) Rowley, M.; Bristow, L. J.; Hutson, P. H. J. Med. Chem. 2001, 44, 477; (b) Davis, K. L.; Kahn, R. S.; Ko, G.; Davidson, M. Am. J. Psychiatry 1991, 148, 1474; (c) Seeman, P.; Lee, T.; Chau, W.-M.; Wong, K. Nature 1976, 261, 717; (d) van Rossum, J. M. Arch. Int. Pharmacodyn. Ther. 1966, 160, 492.
2. (a) Dunlop, B. W.; Nemeroff, C. B. Arch. Gen. Psychiatry 2007, 64, 327; (b) Missale, C.; Nash, S. R.; Robinson, S. W.; Jaber, M.; Caron, M. G. Physiol. Rev. 1998, 78, 189.
3. (a) Lewis, M. M.; Huang, X.; Nichols, D. E.; Mailman, R. B. CNS Neurol. Disord. Drug Targets 2006, 5, 345; (b) Radad, K.; Gille, G.; Rausch, W. D. Pharmacol. Rep. 2005, 57, 701; (c) Ehringer, H.; Hornykiewicz, O. Parkinsonism Relat. Disord. 1998, 4, 53.
4. Goodman, A. Biochem. Pharmacol. 2008, 75, 266.
5. (a) McRobb, F. M.; Crosby, I. T.; Yuriev, E.; Lane, J. R.; Capuano, B. J. Med. Chem. 2012, 55, 1622; (b) Beaulieu, J. M.; Gainetdinov, R. R. Pharmacol. Rev. 2011, 63, 182; (c) Sidhu, A.; Niznik, H. B. Int. J. Dev. Neurosci. 2000, 18, 669.
6. Zhang, A.; Neumeyer, J. L.; Baldessarini, R. J. Chem. Rev. 2007, 107, 274.
7. (a) Zhang, J.; Xiong, B.; Zhen, X.-C.; Zhang, A. Med. Res. Rev. 2009, 29, 272; (b) Haney, M.; Ward, A. S.; Foltin, R. W.; Fischman, M. W. Psychopharmacology 2001, 155, 330.
8. (a) Selemon, L. D.; Begović, A.; Williams, G. V.; Castner, S. A. Pharmacol. Biochem. Behav. 2010, 96, 325; (b) Liu, X.; Jernigen, C.; Gharib, M.; Booth, S.; Caggiula, A. R.; Sved, A. F. Behav. Pharmacol. 2010, 21, 153; (c) Bossert, J.
M.; Wihbey, K. A.; Pickens, C. L.; Nair, S. G.; Shaham, Y. Psychopharmacology 2009, 206, 51; (d) Caine, S. B.; Thomsen, M.; Gabriel, K. I.; Berkowitz, J. S.; Gold, L. H.; Koob, G. F.; Tonegawa, S.; Zhang, J.; Xu, M. J. Neurosci. 2007, 27, 13140.
9. (a) Berenguer, I.; Aouad, N.; Andujar, S. Bioorg. Med. Chem. 2009, 17, 4968; (b) Itoh, Y.; Beaulieu, M.; Kebabian, J. W. Eur. J. Pharmac. 1984, 100, 119; (c) Iorio, L. C.; Barnett, A.; Leitz, F. H.; Houser, V. P.; Korduba, C. A. Pharmacology 1983, 226, 462.
10. (a) Berkowitz, B. A.; Zabko-Potopovitch, S. S.; Heible, J. P. Federation Proc. 1984, 43, 743; (b) Seiler, M. P.; Markstein, R. Mol. Pharmacol. 1982, 22, 282.
11. (a) Pendlton, R. G.; Samler, L.; Kaiser, C.; Ridley, P. T. Eur. J. Pharmacol. 1978, 51, 19; (b) Settler, P. G.; Saru, H. M.; Zirkle, C. L.; Saunders, H. L. Eur. J. Pharmacol. 1978, 50, 419.
12. Andersen, P. H.; Grønvald, F. C.; Hohlweg, R.; Hansen, L. B. Euro. J. Pharmacol. 1992, 219, 45.
13. (a) Qiang, L.; Sasikumar, T. K.; Burnett, D. A. Bioorg. Med. Chem. Lett. 2010, 20, 836; (b) Sasikumar, T. K.; Duane, A. B.; William, J. G. Bioorg. Med. Chem. Lett. 2010, 20, 832; (c) Wu, W.-L.; Burnett, D. A.; Spring, R.; Greenlee, W. J. J. Med. Chem. 2005, 48, 680; (d) Berger, J. G.; Chang, W.-K.; Clader, J. W.; Hou, D.; Chipkin, R. E.; Mcphail, A. T. J. Med. Chem. 1913, 1989, 32.
14. Kozlik, A.; Sargent, B. J.; Needham, P. L. WO 9313073, 1993.
15. Riddall, D. R. Euro. J. Pharmacol. 1992, 210, 279.
16. (a) Robaa, D.; Enzensperger, C.; Lehmann, J. J. Med. Chem. 2011, 54, 7422; (b) Hoefgen, B.; Decker, M.; Mohr, P.; Schramm, A. M.; Rostom, S. A. F. J. Med. Chem. 2006, 49, 760; (c) Witt, T.; Hock, F. J.; Lehmann, J. J. Med. Chem. 2000, 43, 2079.
17. Xu, S.-X.; Yu, L.-P.; Han, Y.-R. Acta. Pharmacol. Sin. 1989, 10, 104.
18. Cheng, J.-J.; Yang, Y.-S. J. Org. Chem. 2009, 74, 9225.
19. (a) Gao, M.; Liu, C.-L.; Yang, S.; Zhen, X.-C.; Jin, G.-Z. Acta. Pharmacol. Sin. 2007, 28, 627; (b) Jin, G.-Z.; Zhu, Z.-T.; Fu, Y. Trends. Pharmacol. Sci. 2002, 23, 4; (c) Jin, G.-Z.; Sun, B.-C. Adv. Exp. Med. Biol. 1995, 363, 27; (d) Jin, G.-Z.; Huang, K.; Sun, B.-C. Neurochem. Int. 1992, 20, 175.
20. Mo, J.; Zhang, H.; Yu, L.-P.; Sun, P.-H.; Jin, G.-Z.; Zhen, X.-C. Neurobiol. Aging. 2008, 31, 926.
21. Mo, J.; Guo, Y.; Yang, Y.-S.; Shen, J.-S.; Jin, G.-Z.; Zhen, X.-C. Curr. Med. Chem. 2007, 14, 2996.
22. Guo, Y.; Zhang, H.; Jin, G.-Z.; Zhen, X.-C. Schizophrenia Res. 2009, 115, 41.
23. Dong, Z.-J.; Gao, X.; Chen, L.-J.; Han, Y.-F.; Jin, G.-Z. Life Sci. 1997, 61, 465.
24. Fu, W.; Shen, J.-H.; Luo, X.-M.; Zhu, W.-L.; Jiang, H.-L. Biophys. J. 2007, 93, 1431.
25. Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.; Klicic, J. J. J. Med. Chem. 2004, 47, 1739.
26. (a) Glide, version 4.0; Schrödinger LLC: New York, 2005.; (b) Maestro, Version 8.0; Schrödinger LLC. New York, 2007.
27. Tripos Inc., 1699, South Hanley Road, St. Louis, MO 63144.

[^0]: * Corresponding authors. Tel.: +86 215080 7042; fax: +86 2150807042 (H.L.);tel.: +865126588 1160; fax: +8651265880369 (X.Z.).

 E-mail addresses: zhenxuechu@suda.edu.cn (X. Zhen), hliu@mail.shcnc.ac.cn (H. Liu).
 ${ }^{+}$These two authors contributed equally to this work.

[^1]: ${ }^{\text {a }}$ Potency of selected compound inhibits 50% of $\left[{ }^{3} \mathrm{H}\right]$ SCH23390 binding with D_{1} receptor.
 ${ }^{\text {b }}$ Potency of selected compound inhibits 50% of $\left[{ }^{3} \mathrm{H}\right]$ Spiprone binding with D_{2} receptor.
 ${ }^{\text {c }}$ Only compounds with the inhibition of radioligand binding higher than 80% were further tested for K_{i} values. The $K_{\mathrm{i}} \pm$ SE was derived from the equation $K_{\mathrm{i}}=\mathrm{IC} 50 / 1+[\mathrm{C} /$ K_{d}].
 ${ }^{\mathrm{d}}$ Compound $\mathbf{1 8 r}$ is a racemate of compound $\mathbf{1 8 q}$.

