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Palladium-catalysed Asymmetric Hydrosilylation of Styrenes with a New Chiral 
Monodentate Phosphine Ligand 
Kenji Kitayama, Yasuhiro Uozumi and Tamio Hayashi" 
Department of Chemistry, Faculty of Science, Kyoto University, Sakyo, Kyoto 606-0 I ,  Japan 

Asymmetric hydrosilylation of styrenes (ArCH=CHR) with trichlorosilane in the presence of a palladium catalyst (0.1 
mol%) bearing a new chiral monodentate phosphine ligand, (S)-2-diphenylphosphino-l,l'-binaphthyl [(S)-H-MOP], 
followed by oxidation of the resulting I-aryl-I-silylalkanes, gives optically active benzylic alcohols of up to 96% 
enantiomeric excess (e.e.1. 

Catalytic asymmetric hydrosilylation of alkenes is recognised 
as one of the important methods for the preparation of optically 
active alcohols.' Although simple terminal alkenes such as oct- 
1-ene2 and cyclic alkenes such as norbornene3 have been 
efficiently converted into the corresponding secondary alkyl 
alcohols with over 90% enantioselectivity by use of a palladium 
catalyst coordinated with 2-diphenylphosphino-2'-methoxy- 
1 ,l'-binaphthyl (MeO-MOP),4 such high selectivity has not 
been observed in the hydrosilylation of styrene derivatives.5.6 
Here we report that a new monodentate phosphine ligand, (S)- 
2-diphenylphosphino- 1,l '-binaphthyl (H-MOP),7 which has 
the same basic skeleton as MeO-MOP but lacks the methoxy 
group, is particularly effective for the palladium-catalysed 
hydrosilylation of styrenes to give the corresponding benzylic 
alcohols with high enantiomeric purity, the enantioselectivity 
ranging from 89 to 96% e.e. (Scheme 1). 

Asymmetric hydrosilylation of styrene l a  with trichlorosil- 
me was carried out without any solvents in the presence of 0.1 
mol% of a H-MOP-palladium catalyst, generated in situ by 
mixing [PdCl(n-C3H5)]2 and (S)-H-MOP. Reaction at 0 "C for 
12 h gave a quantitative yield of 1 -phenyl- 1 -trichlorosilylethane 
2a as a single regioisomer, which was converted into (R)- 
1-phenylethanol3a in 97% yield by oxidative cleavage of the 
carbon-silicon bond8 (entry 1, Table 1). The absolute config- 
uration R was assigned by its optical rotation { [aID22 +45.0 (c 
1.80, CH2C12) } ,9 and the enantiomeric excess was determined 
to be 93% e.e. by HPLC analysis of the (3,5-dinitrophe- 
ny1)carbamate ester of alcohol 3a ( ArNCO-pyridine-toluene), 
with a chiral stationary phase column (Sumichiral OA-4700, 
hexane:dichloroethane : ethanol = 50 : 15 : 1). The hydrosilyla- 
tion carried out at -10 "C slightly raised the enantiomeric excess 
to 94% e.e. (entry 2). 

Rather surprisingly, the MeO-MOP ligand, which is substi- 
tuted with a methoxy group at the 2'-position on H-MOP and 
has been used successfully for the asymmetric hydrosilylation 
of other types of alkenes,2J is much less effective than H-MOP 
for the present asymmetric hydrosilylation of styrene. Thus, the 
hydrosilylation of l a  in the presence of a MeO-MOP- 
palladium catalyst under the same reaction conditions (0 OC, 
without solvent) gave (R)-3a with only 14% e.e. (entry 4). The 
enantioselectivity was greatly improved (7 1 % e.e.) by the use of 
benzene as the solvent (entry 5),5 but it is still much lower than 
that with H-MOP. 

OH 

1 a Ar = Ph, R = H 2a-g 3a-g 

Pd-L* H202 

HSiCI3 A r b R  ,go% * 

A r & ~  (0.1 mot%) SiCl3 KF, KHC03 

b Ar = 4-MeCsH4, R = H 
C Ar = 4-CF&H4, R = H 
d Ar = 3-CICsH4, R = H 
e Ar = 4-CICgH4, R = H 
f Ar=Ph,R=Me 
g Ar = Ph, R = Bun 

X = H: (S)-H-MOP 
X = OMe: (R)-MeO-MOP 
X = OH: (R)-HO-MOP 

pph2 X = C02Me: (R)-CO*Me-MOP 
X = CN: (R)-CN-MOP 

L*= 3 
\ \  X = Et: (S)-Et-MOP 

Scheme 1 

Table 1 Asymmetric hydrosilylation of styrenes 1 with trichlorosilane catalysed by palladium-MOP complexesa 

Conditions Yield (%)b E.e.(%)c of 3 
Entry Styrene 1 Ligand TPC t o f2  (Config.)d Specific rotation of 3 

1 
2 
3e 
4 
5 4  
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 

la 
la 
l a  
l a  
la 
l a  
l a  
la 
la 
l b  
l b  
l c  
l c  
Id  
l e  
If 
1g 

(S)-H-MOP 
(5')-H-MOP 
(5')-H-MOP 
(R)-MeO-MOP 
(R)-MeO-MOP 

(R)-COzMe-MOP 
(R)-HO-MOP 

(R)-CN-MOP 
(S)-Et-MOP 
(S)-H-MOP 
(R)-MeO-MOP 

(R)-MeO-MOP 
(S)-H-MOP 

(S)-H-MOP 
(S)-H-MOP 
(S)-H-MOP 
(S)-H-MOP 

0 12h  100 

0 19h  90 
0 24h  100 
5 44h  100 
0 22 h 84 
0 12h  100 
0 24h  100 
0 12h  100 
0 15 h 94 
5 4 d  100 
0 5 d  98 
5 5 d  84 
0 36h  68 
0 5 d  80 

20 7 d 95 
20 4 d  89 

-10 32 h 92 

~~ 

[ a ] ~ ~ ~  + 45.0 (C 1.80, CH2C12) 

[CX]D~~ + 35.8 (C 0.96, CH2C12) 
[(Y]D*~ - 15.6 (C 1.13, CH2C12) 
[CY]D~~ - 14.5 (C 1.83, CH2C12) 

[ a ] ~ * ~  4- 44.7 (C 1.27, CHC13) 

[ a ] ~ ~ ~  + 27.9 (c 0.61, MeOH) 

[ a ] ~ ~ '  + 39.7 (C 1.02, CHC13) 
[ a ] ~ ~ ~  + 36.6 (C 1.42, Et2O) 
[C%]D~' + 40.0 (C 1.24, CHC13) 
[ a ] ~ ~ ~  4- 31.4 (C 1.03, CHC13) 

a The hydrosilylation was carried out without solvent unless otherwise noted. The catalyst was generated in situ by mixing [PdC1(n-C3H5)l2 and a chiral 
phosphine ligand. The ratio of 1:HSiCl3:Pd:P is 1:  1.2:0.001:0.002. b Isolated yield by distillation. c Determined by HPLC analysis of the 
(3,5-dinitrophenyl)carbamate esters of alcohols 3 with a chiral stationary phase column (Sumi- chiral OA-4700 or 4100). d Determined by measurement of 
the optical rotation. For (R)-3a, (R)-3b, (R)-3d, (R)-3e and (R)- 3f ,  see ref. 9. For (R)-3c, see ref. 10. For (R)-3g, see ref. 11. e In benzene (1 mol dm-3 solution). 
f Reported in ref. 5. 
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Several MOP derivatives containing other substituents at the 
2’-position4.7 were also examined for their enantioselectivity in 
the hydrosilylation of styrene (entries 6-9). It was found that the 
electronic nature of the substituent is not a decisive factor in the 
enantioselection, all of the MOPS substituted with methoxy, 
hydroxy, carbomethoxy , cyan0 and ethyl groups showing low 
enantioselectivity irrespective of their electron-withdrawing or 
electron-donating character. It follows that the small size of the 
hydrogen at the 2’-position in H-MOP is important for the high 
enantioselectivity. The dihedral angle between the two naphthyl 
rings in the binaphthyl skeleton, which is controlled by steric 
bulkiness of the 2’-substituent, is presumably related to the 
enantioselectivity . 

The H-MOP-palladium complex also cataly sed the asym- 
metric hydrosilylation of styrene derivatives substituted on the 
phenyl ring lb-e  and P-alkyl-substituted styrenes If and l g  to 
give the corresponding benzylic alcohols (R)-3b-g9-11 of over 
89% e.e. (entries 10, 12, 14-17). Interestingly, H-MOP- 
palladium catalyst was less enantioselective and/or less active 
than MeO-MOP-palladium for the hydrosilylation of non- 
styrene alkenes such as oct-l-ene and norbornene. 
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