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Simple homopolymer-incarcerated gold nanocluster cata-
lysts were developed using a self-assembled encapsulation
strategy. In this method, Red-Alμ acting as a reductant also
played the role of an inter-crosslinker via the formation of
tetraalkoxyaluminate with the hydroxy groups in a homo-
polymer. Gold nanoclusters could be immobilized at high
loadings without aggregation, and high catalytic activities were
observed in several aerobic oxidation reactions.

Heterogeneous metal nanoclusters as catalysts have attracted
much attention because of their robustness and unique activity.1

In particular, gold nanoclusters have been shown to possess
remarkable catalytic activities for oxidation reactions and have
been widely studied.2 Our group has developed polystyrene-
based copolymers with crosslinking moieties, which incarcerate
gold nanocluster catalysts via microencapsulation and cross-
linking.3 In this method, nanoclusters are formed by the
reduction of gold salts with NaBH4 in a solution of the polymer,
and they can be stabilized by weak, but multiple, π interactions
between the benzene rings of the polymer and the nanocluster
surface. Addition of a poor solvent for the polymer to the
mixture precipitates the microencapsulated catalyst. Precipitates
containing gold nanoclusters prepared in this way are heated
under neat conditions to afford a solid catalyst: polymer-
incarcerated Au (PI-Au). Using PI-Au, we have demonstrated
various aerobic oxidation reactions.4 We then improved this
technique by introducing spherical carbon black with high
specific surface area as a second support to expand the surface
area of the catalyst (PI/CB-M).5 Gold nanoclusters were highly
dispersed over the polymer matrix that was stabilized on the
surface of the carbon black and were immobilized at high
loadings (ca. 0.28mmol g¹1) without loss of catalytic activity.
In contrast, PI-Au could not maintain high catalytic activity with
such a high loading because of aggregation of the nanoclusters.3a

Using this method, we successfully demonstrated various
interesting metal nanocluster-catalyzed reactions.6 None of the
catalysts caused any significant metal leaching, and the catalysts
were easily recovered and reused.

Although we have previously demonstrated a wide range
of applications of our method, the preparation of copolymers
from synthesized monomers is required. In our current strategy,
both epoxy and hydroxy groups as internal crosslinkers were
introduced into polymers to afford solid solvent-tolerant cata-
lysts through an attack of hydroxy groups to open epoxy rings to
form crosslinkages (Scheme 1a). Simplifying the structure of the
polymer, an alternative approach to using an internal cross-
linking strategy, such as an external addition of crosslinkers,
may be beneficial. Recently, we achieved coimmobilization of
a AuPd bimetallic catalyst and a boron catalyst using our PI
method and performed sequential aerobic oxidationMichael

addition of 1,3-dicarbonyl compounds to allylic alcohols using
this catalyst.6c In this report, we found that tetraalkoxyborates,
which are catalysts for Michael addition reactions, formed from
the NaBH4 and hydroxy groups in the polymer backbone.
Although the borates could be flushed out by water, these results
implied the possibility of crosslinking from the formation of
metal alkoxides between reductants and polymers bearing
hydroxy groups (Scheme 1b). For example, it is known that
aluminum tetraalkoxide can be synthesized from alcoholysis
of aluminum hydrides.7 Herein, we report a simple and readily
prepared homopolymer-incarcerated gold nanocluster catalyst
using self-assembled encapsulation and an aluminum reagent as
a reductant and an inter-crosslinking agent.

We chose a (4-vinylphenyl)methanol-derived homopolymer
as the support and sodium bis(2-methoxyethoxy)aluminum
hydride (Red-Alμ) that has two roles: as a reductant to generate
a metal nanocluster from a metal salt and as an inter-crosslinking
reagent to form aluminates from the hydroxy groups in the
polymer (Scheme 2). A reddish purple solid appeared immedi-
ately on addition of Red-Alμ to a THF solution of the polymer
and a gold salt. This indicated that reduction to form nano-
clusters occurred immediately and that crosslinking occurred
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Scheme 1. Polymers with crosslinkers.
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Scheme 2. Preparation of PIAL-Au catalyst.
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between the alcohol moieties in the polymer and the tetravalent
aluminum species. Addition of ether as a poor solvent to the
polymer completed the precipitation, but the generated solid was
partially soluble in THF. This is probably because of incomplete
crosslinking. The precipitate was heated at 150 °C under neat
conditions to accomplish crosslinking, washed with several
solvents, and then reheated to afford the polymer-incarcerated
aluminum and gold nanocluster catalysts (PIAL-Au 14). The
solid catalysts obtained were completely insoluble in solvents
such as THF, DCM, and water. Inductively coupled plasma
(ICP) analysis revealed that most of the gold used during the
preparation was immobilized on the catalyst. The alkoxide
groups on the tetravalent aluminate may not have been fully
exchanged with the alcohol moieties in the homopolymer before
heating, and complete exchange of the alkoxides could be
facilitated by heating to afford an insoluble solid catalyst. As a
result, a high concentration of aluminum was also detected by
ICP analysis, even after the catalyst had been washed with water.
The borates could be easily washed out with water.6c This
indicates that the aluminate produced in the polymer matrix was
much more stable than the borate in the presence of water,
probably because of the higher coordination number of
aluminum, which would facilitate the formation of multiple
bonds between aluminum and the hydroxy groups in the
polymer and/or prevent dissociation of the aluminumalkoxide
bonds by water.

The catalytic activity was evaluated using the aerobic
oxidation of an alcohol to a ketone (Table 1),3a and the desired
ketone was obtained in high yield (Entry 1). We increased the
metal loading to evaluate how much of the gold could be
immobilized using this method (Entries 24). It was confirmed
using scanning transmission electron microscopy (STEM)
analysis that no aggregation of nanoclusters occurred and that
the size of the nanoclusters was restricted to ca. 2 nm in PIAL-
Au 3 (Figure 1). Surprisingly, very high loadings (around 0.3
0.4mmol g¹1) could be achieved while maintaining a small size
of nanoclusters (23 nm) and a high catalytic activity. This is in
contrast to previous studies, which have indicated that increased
loadings of gold caused aggregation and loss of catalytic
activity.3a In the current system, the nanoclusters were efficiently
stabilized even at high loadings, probably because the formation

of aluminates occurred simultaneously during the reduction of
gold salts, and thus, the gold nanoclusters would be encapsulated
immediately and strongly stabilized after the formation of the
gold nanoclusters. A 4-vinylphenol-derived polymer was exam-
ined as a control, but reduced metal loading was observed,
probably because of the poor flexibility of the polymer, and
the reduced nucleophilic nature of the hydroxy group made it
difficult to form stable tetraalkoxyaluminate species (Entry 5).
When lithium aluminum hydride was used instead of Red-Alμ, a
low metal loading and poor catalytic activity were observed
(Entry 6). STEM analysis confirmed the aggregation of the gold
nanoclusters (see Supporting Information for more details). If a
stronger reductant is used, then the rate of the reduction may be
too fast and aggregation would occur before the formation of
the tetraalkoxyaluminate species and subsequent stabilization of
the nanoclusters.

We also tested PIAL-Au 3 for aerobic oxidation of a
primary alcohol to an aldehyde3a (Scheme 3), a hydroquinone
to a quinone4b (Scheme 4), an amine to an imine4i (Scheme 5),
and aerobic oxidative methyl esterification from an alcohol in
methanol4g (Scheme 6). In all reactions, PIAL-Au 3 showed
a high activity and the desired products were obtained in high
yields.

Table 1. Aerobic oxidation of an alcohol to a ketone with PIAL-Au

OH O

rt, O2, BTF/H2O, 5 h

PIAL-Au X (1 mol%)
K2CO3 (3 equiv)

Entry
Catalyst

X
Target loading Au

/mmol g¹1
Actual loading Au/Al

/mmol g¹1 a
Yield
/%b

1 1 0.08 0.067/3.017 82
2 2 0.16 0.150/2.555 85
3 3 0.32 0.297/2.466 95
4 4 0.48 0.394/1.926 84
5c 5 0.08 0.049/3.952 16
6d 6 0.08 0.034/4.213 3

aDetermined by ICP analysis. bDetermined by GC analysis. cThe
catalyst was prepared from a 4-vinylphenol-derived polymer.
dLiAlH4 was used instead of Red-Alμ during the preparation of the
catalyst.

Figure 1. STEM image of PIAL-Au 3.
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Scheme 3. Aerobic oxidation of a primary alcohol to an aldehyde.
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Scheme 4. Aerobic oxidation of a hydroquinone to a quinone.
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In conclusion, we have developed PIAL-Au through the
self-assembly of a simple homopolymer, a gold salt, and
Red-Alμ. In this simple preparation method to form polymer-
immobilized gold nanoclusters, Red-Alμ played two important
roles: it reduced the gold salt to generate small gold nano-
clusters, and it subsequently made it possible to form inter-
crosslinks of the side chains of the homopolymer by the
formation of tetraalkoxyaluminate to afford microencapsulated
gold nanoclusters while maintaining their small size. High
loadings of gold could be achieved without aggregation of the
gold nanoclusters and a high catalytic activity was confirmed
in several aerobic oxidation reactions. This new class of
immobilization method may make it easier to prepare various
metal nanocluster catalysts. Detailed structural analysis and
further application of this methodology to other catalytic
reactions is ongoing in our laboratory.
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