BRIDGE-SPLITTING REACTION OF A DINUCLEAR PLATINUM(II) COMPLEX CROSS-LINKED BY TETRA-ACETYLETHANE DIANION $[Pt_2(L_2)_2(dahd-O_2,O'_2)][BF_4]_2$ (dahd=TETRA-ACETYLETHANE; L=SEt₂, PMe₂Ph; L₂ = 1,5-CYCLOOCTADIENE); METAL-CARBON BONDED PLATINUM(II) COMPLEX OF TETRA-ACETYLETHANE WITH (C³,O')-CHELATE

SHINSAKU YAMAZAKI*

Chemistry Laboratory, Gakuen College Kochi, 292 Asahi Tenjin-cho, Kochi 780, Japan

TOMOHARU AMA

Department of Chemistry, Faculty of Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780, Japan

and

ZENEI TAIRA

Department of Pharmaceutical Sciences, Tokushima Bunnri University, 180 Boji Yamashiro-cho, Tokushima 770, Japan

(Received 10 April 1987; accepted after revision 16 September 1987)

Abstract—A Pt(II) complex of tetra-acetylethane (dahd = 3,4-diacetyl-2,4-hexadiene-2,5-diol) dianion bonding with (C³,O')-chelate, Pt(L)(L')(dahd-C³,O'){L = L' = SEt₂; L = L' = PMe₂Ph; L = SEt₂, L' = PPh₃; L = L' = 2,9-R₂-1,10-phen(R = H, Me) where L' is *trans* to C³} has been prepared. *cis*-PtCl₂L₂(L = SEt₂, PMe₂Ph) reacts with K₂-dahd in CH₃OH to produce a dinuclear cationic complex [Pt₂L₄(dahd-O₂,O'₂)]²⁺ in which dahd is cross-linked with symmetrical bifunctional chelation. An analogous COD (1,5-cyclooctadiene) complex [Pt₂(COD)₂(dahd-O₂,O'₂)][BF₄]₂ has been prepared by treating PtCl₂(COD) with AgBF₄ and H₂-dahd. [Pt₂L₄(dahd-O₂O'₂)][BF₄]₂, by treating with K₂dahd, readily transforms into PtL₂(dahd-C³,O') (L = SEt₂, PMe₂Ph). This PtL₂(dahd-C³,O')(L = SEt₂, PMe₂Ph) in HBF₄/acetone solution converts to the dinuclear complex [Pt₂L₄(dahd-O₂,O'₂)][BF₄]₂, liberating H₂-dahd in a stoichiometric yield.

These anomalous Pt(II) complexes linked by the dahd dianion are characterized using IR, ¹H, ¹³C-NMR and fast atom bombardment mass spectroscopy, conductance and molecular weight measurements.

Dinuclear Pd(II) and Rh(I) complexes of tetraacetylethane (dahd = 3,4-diacetyl-2,4-hexadiene-2,5-diol) cross-linking two metal nuclei as bifunctional O₂-chelates have been described before.¹ In them, a reaction of $[Pt_2(PPh_3)_4(dahd-O_2,O'_2)][BF_4]_2$ with the bidentate azaheterocyclic ligand phen have been seen to undergo an anomalous bridge-splitting between the two metal nuclei giving a fivecoordinate complex $[Pd(PPh_3)(phen)_2] [BF_{4]2,2}^{2}$ and concurrently an insoluble complex containing dahd cross-linking of the metal nuclei as an O₁-uni, O'₁unidentate ligand $[Pd(phen)(dahd-O_1,O'_1)]_n$. The latter product readily transforms into its linkage isomer with a metal-carbon bond Pd(phen)(dahd-

^{*}Author to whom correspondence should be addressed.

C³,O'). Knowing that H₂-dahd itself is stabilized in a dienolate form as a γ,γ' -bis(acetylacetone),¹ the activation of its C(3) to form a M–C bond has been an unexpected result. Some evidence for catena-[Pd(phen)(dahd-O₁,O'₁)]_n which somewhat surprisingly accompanies a trace amount of paramagnetic species may indicate that this novel linkage isomerization of the dahd from (O₂,O'₂)-chelate to (C₃,O')-chelate proceeds via a two electron transfer from the dahd ligand to the metal or to the other ligand.

One problem in these Pd(II) complexes is that the reaction products were obtained in low yields as the stoichiometry indicates, in addition to their low solubilities. From these previous findings, we have thus attempted the syntheses and characterizations of dinuclear and mononuclear Pt(II) complexes in which the dahd dianion links Pt(II) as a bidentate O_2 -chelate and (C³,O')-chelate, using a monodentate SEt₂ or PMe₂Ph and bidentate 1,5-COD as ligands.

EXPERIMENTAL

Preparation of complexes— $[Pt_2(SEt_2)_4(dahd-O_2,O'_2)]$ [BF₄]₂

cis-PtCl₂(SEt₂)₂³ (3.0 g) in acetone containing 1.4 g of H₂-dahd was added with AgBF₄ (2.8 g) and the solution after stirring for 2 h, was filtered (2 g of AgCl ppt. 200% per Pt atom). The solution was then evaporated forming a yellow oil. The oil product was washed with water to remove liberated HBF₄. The residue was dried *in vacuo* and crystallized from acetone-diethylether to give white crystals (2.7 g; 71%). Found : C, 27.7 ; H, 4.6. Calc. for C₁₈H₁₆O₄B₂F₈ : C, 27.9 ; H, 4.7%. Conductance (acetone) : Λ_M , 224 Ω^{-1} cm² mol⁻¹.

$[Pt_2(PMe_2Ph)_4(dahd-O_2,O_2')][BF_4]_2$

cis-PtCL₂(PMe₂Ph)₂⁴ (0.7 g) was dissolved in mixed solvents of CH₂Cl₂-CH₃OH containing 0.16 g of H₂-dahd. To the solution, 0.52 g of AgBF₄ was added. The solution, after stirring for 2 h, was filtered (0.34 g of AgCl ppt. 181% per Pt atom), reduced in volume to ~ 5 cm³ and addition of diethylether to the residual solution gave pale brown crystals (0.74 g; 87% per Pt atom). Found : C, 37.2; H, 4.3. Calc. for C₂₁H₃₀O₃BF₄P₂Pt (with one water of solvation): C, 37.4; H, 4.5%. ¹H NMR{CDCl₃-(CD₃)₂CO}: $\delta_{\rm H}$ (water of solvate ion), 5.2 ~ 5.3 ppm(vb). The signal due to the hydrogen from water which is always concomitant with the solvent (CD₃)₂CO is observed at ~ 3.00 ppm and is relatively sharp. Conductance (acetone): Λ_{M} , 236 Ω^{-1} cm² mol⁻¹.

 $[Pt_2(COD)_2(dahd-O_2,O_2')][BF_4]_2$

PtCl₂(COD)⁵ (1.3 g) was dissolved in CH₂Cl₂ containing 0.4 g of H₂-dahd. To this solution, an acetone solution of AgBF₄ (1.3 g) was added. The solution, after stirring overnight, was filtered (0.9 g of AgCl ppt. 185% per Pt atom). The filtrate was then added to silica gel and filtered. The solution was reduced in volume to ~ 5 cm³ under pressure, and addition of diethylether to the residual solution gave pale brown crystals (1.1 g; 63% per Pt atom). Found: C, 31.3; H, 3.7. Calc. for C₁₃H₂₀O₃BF₄Pt (with one water of solvation): C, 30.9; H, 4.0%. ¹H NMR{(CD₃)₂CO}: $\delta_{\rm H}(\rm H_2O$ of solvation), 3.0 ppm(vb). Conductance (acetone): $\Lambda_{\rm M}$, 226 Ω^{-1} cm² mol⁻¹.

Pt(SEt₂)₂(dahd-C³,O')

cis-PtCl₂(SEt₂)₂ (0.3 g) in CH₃OH was mixed with 0.2 g of K_2 -dahd¹ and a few drops of NEt₃. The solution was stirred for 16 h and then filtered. The filtrate was evaporated. The residue was dissolved in about 20 cm³ of CH₂Cl₂ and the solution was transferred to a separating funnel. After addition of an equi-volume of H₂O, the solution was vigorously shaken to mix. The CH₂Cl₂ phase was transferred to a round bottom flask and the solvent was removed under reduced pressure to give a yellow oil. After drying in vacuo, the product was crystallized from CH₂Cl₂-diethylether to give pale brown micro-crystals (0.13 g; 34%). When the reaction oily product is not washed with H₂O, the yield of crystal product is raised to 78%. Found: C, 37.8; H, 5.6. M.W. (cryoscopic method in C₆H₅NO₂), 381. Calc. for $C_{18}H_{32}O_4S_2Pt: C, 37.8; H, 5.6\%, M = 572.$ ¹H, ¹³C NMR are in vide infra. The low molecular weight measurement in nitrobenzene suggests that one SEt₂ of the complex is displaced in solution by the nitrobenzene solvent. FABMS : $M^+ = 572$ (vide infra).

Pt(SEt₂)₂(dahd-C³,O') was also obtained by treating [Pt₂(SEt₂)₄(dahd-O₂,O'₂)][BF₄]₂ with K₂-dahd in CH₃OH. When [Pt₂(SEt₂)₄(dahd-O₂,O'₂)][BF₄]₂ (0.75 g) was added to K₂-dahd (0.2 g) in CH₃OH the pale yellow solution turned dark yellow. The solution, after stirring for a day, was filtered to separate a small amount of dark white ppt. The solvent was then removed under reduced pressure to give a pale brown oil, which was washed with water and decanted. The oily residue, after being dried *in vacuo*, was crystallized from CH₂Cl₂diethylether to give white crystals (0.64 g; 84% per Pt atom).

$Pt(PPh_3)(SEt_2)(dahd-C^3,O')$

Pt(SEt₂)₂(dahd-C³,O') (0.24 g) in CH₂Cl₂ was added to 0.22 g of PPh₃. The solution was stirred for 1 day and reduced in volume under pressure to about 5 cm³. Addition of diethylether and *n*-hexane to the residual solution gave a pale yellow solid, which was recrystallized from CH₂Cl₂ and diethylether (0.24 g; 79%). Found : C, 51.3; H, 5.0. M.W. (vapour pressure osmometry in CH₂Cl₂) 680. Calc. for C₃₂H₃₇O₄PSPt: C, 51.7; H, 5.0. M = 744.

Pt(phen)(dahd-C³,O')

Pt(SEt₂)₂(dahd-C³,O') (0.11 g) was dissolved in CH₂Cl₂ and to the solution 0.05 g of phen \cdot H₂O was added. The solution was stirred for about a week giving a pale orange precipitate. The product was crystallized from CH₂Cl₂ using isothermal vaporization (0.09 g; 82%). Found: C, 47.0; H, 3.6; N, 5.0. M.W. (vapour pressure osmometry in CH₂Cl₂) 532. Calc. for C₂₀H₂₄N₂O₄Pt: C, 46.2; H, 3.5; N, 4.9%. M = 574.

$Pt(2,9-Me_2-phen)(dahd-C^3,O')$

Pt(SEt₂)₂(dahd-C³,O') (0.12 g) in CH₂Cl₂-acetone was added with 2,9-Me₂-phen \cdot 0.5H₂O (0.06 g). The solution was refluxed for about a week and then diethylether and *n*-hexane were added. On allowing the solution to stand in a refrigerator overnight an orange solid with CH₂Cl₂ of solvate (0.08 g; 55%) was produced. Found : C, 44.0; H, 3.9; N, 4.1. Calc. for C₂₅H₂₆Cl₂N₂O₄Pt: C, 43.9; H, 3.8; N, 4.1%. ¹H NMR (CDCL₃): δ_{CH_2} (CH₂Cl₂ of solvate) 5.23 ppm.

Pt(PMe₂Ph)₂(dahd-C³,O')

cis-PtCl₂(PMe₂Ph)₂ (0.63 g) was suspended in CH₃OH and 0.3 g of Na₂-dahd-(CH₃OH)_x and NEt₃ (0.25 g) was added, giving a homogeneous solution. The solution, after stirring for 5 days (the time required to produce a small amount of dark white solid) was filtered. The solvent was removed under reduced pressure to give a pale green oil, which was added to water and allowed to stand for a day to give pale green crystals with one water of solvation (0.4 g; 50%). Found: C, 45.6; H, 5.1. Calc. for $C_{26}H_{36}O_5P_2Pt: C, 45.6; H, 5.3\%$.

IR spectra were recorded on a Hitachi 260-10 infrared spectrophotometer. Spectrometers used for NMR studied were: ¹H NMR, JEOL JNM-MH-100, Hitachi R-90H FT-NMR spectrometers; ¹³C NMR: Hitachi R-90H FT-NMR (22.66 MHz). Molecular weights were obtained using a Corona Molecular Weight Apparatus M-117 (vapour pressure osmometry) in CH₂Cl₂ at 30°C. Electroconductivity was measured in a dried acetone solution ($ca \ 1 \times 10^{-3}$ M) using a DKK AO-6 instrument. FABMS spectra was produced using a JEOL HX-100. Elemental analyses were performed by the Micro-Analytical Centre, Department of Pharmaceutical Sciences, Kyoto University.

RESULTS AND DISCUSSION

Dinuclear Pt(II) complex cross-linked by the dahd(3,4-diacetyl-2,4-hexadiene-2,5-diol) dianion $[Pt_2(L_2)_2(dahd-O_2,O_2')][BF_4]_2\{L = SEt_2,$ PMe₂Ph, or $L_2 = 1,5$ -cyclooctadiene(COD)} is formed by treating cis-PtCl₂L₂ (L = SEt₂, PMe₂Ph) and $PtCl_2(COD)$ with AgBF₄ in the presence of H₂-dahd in acetone or CH₃OH. IR and ¹H NMR data of $[Pt_2(L_2)_2(dahd-O_2,O'_2)][BF_4]_2$, is given in Table 1 and shows that dahd bonds the Pt(II) nuclei by symmetrical O-bonding bifunctional chelation. These spectral data agree well with those of the corresponding Pd(II) and Rh(I) complexes $[M_2(L_2)_2(dahd-O_2,O'_2)][BF_4]_n$ (M = Pd, L = PPh₃, $L_2 = bdpe\{1,2 - bis(diphenylphosphino)ethane\},$ n = 2; M = Rh, L = CO, n = O).¹

 $[Pt_2L_4(dahd-O_2,O'_2)][BF_4]_2$ (L = SEt₂,PMe₂Ph), by treating with K₂-dahd or Na₂-dahd in CH₃OH, readily transforms into PtL₂(dahd). PtL₂(dahd) was directly obtained in a moderate yield by reacting *cis*-PtCl₂L₂ with K₂-dahd or Na₂-dahd in the presence of NEt₃.

IR, ¹H and ¹³C NMR spectra of PtL₂(dahd) $\{L = SEt_2, PMe_2Ph, PPh_3; L_2 = 2,9-R_2-phen\}$ (R = H, Me) are shown in Fig. 2 (L = SEt₂) and Tables 1 and 2. ¹H NMR spectrum of Pt(SEt₂)₂ (dahd) shows that two Me groups of the dahd are equivalent, while the other two are non-equivalent. A resonance occurs at 2.51 in the lower field region close to that proposed for an acetyl group of, for example, y-carbon-bonded β -diketonate Pt(II) complexes,⁶ while the resonance at 2.10 is consistent with one carbonyl bound to Pt(II) in the enol form. This indicates that one acetylacetonate group of the dahd contains a localized (C=C) group. Characteristic IR absorption bands are consistent with those, in which 1502 cm^{-1} is due to v(C—O), 1636 cm⁻¹ to v(C=C), and two bands at 1728 and 1670 cm⁻¹ are due to v(C=O). The ¹H NMR also exhibits magnetically non-equivalency of the two sulphur atoms. A ${}^{13}C{}^{1}H$ NMR spectrum of $Pt(SEt_2)_2(dahd)$ obtained when operating in the Fourier Transform Mode (with 30,000 of pulse acquisition and 4 s of pulse intervals) agrees well with these observations. The satellites due to the ¹⁹⁵Pt splitting at 73.1 is due to the 3-carbon nucleus

			Characteristic	bands (IR) ^a		γH1	
Complex	v(C≡C	Ô	v(C==C)	v(CC) + v(CO) or v(CO)		δ _{Me}	
$[Pt,(SEt,)_{a}(dahd)][BF_{a}],^{c}$				1562(vs)			2.10
[Pt,(PMe,Ph),(dahd)][BF4], ^d				1556(vs)			2.13
[Pt ₃ (COD) ₃ (dahd)][BF ₄] ²				1542(vs)			2.15
Pt(SEt ₃),(dahd)	1728(w)	1670(vs)	1636(m)	1502(vs)	2.51(1)	2.15(2)	2.10(1)
Pt(PPh ₃)(SEt ₂)(dahd) ^g	1719(w)	1673(vs)	1632(m)	1501(vs)	2.18(2)	2.08(1)	1.99(1)
Pt(PMe,Ph),(dahd)*	,	1673(vs)	1627(s)	1515(s)	2.40(1)	2.14(2)	1.96(1)
Pt(phen)(dahd)	1735(w)	1680(vs)	1632(m)	1547(vs)	2.47(1)	2.14(2)	2.07(1)
Pt(2.9-Me ₂ -phen)(dahd) [/]		1680(vs)	1632(m)	1503(vs)	2.26(1)	2.10(2)	1.95(1)
^a Measured in nujol mulls. ^b Measured in CDCl ₃ unless otherwist ^c $\delta_{Me}(SEt_3) 1.47(t), \delta_{CH_3}(SEt_3) 3.04$ wit ^d $\delta_{Me}(PMe_2Ph) 1.71$ with $[J^{(195}Pt-H)]$ ^e $M_{Me}(SEt_3) 1.44(t) 1.33(t), \delta_{CH_3}(SEt_3) 3$ ^f $\delta_{Me}(SEt_3) 1.44(t) 1.33(t), \delta_{CH_3}(SEt_2) 3$ ^g $\delta_{Me}(SEt_3) 0.91(t), \delta_{CH_3}(SEt_2) 2.56(q_1, 10)$ ^h $\delta_{Me}(PMe_2Ph) 1.60(d)$ with $J_{P,H} = 12$ ^h δ of the azaheterocyclic ligand: 2,9-F ^h δ of the azaheterocyclic ligand: 4,7-F	indicated. Chemica h $[J(^{195}Pt-H)] = 35$ = 34 Hz, $J_{P,H} = 13$ = 34 Hz, $J_{P,H} = 13$.05 (q, $J_{H,H'} = 7$ H, . Hz, $J_{P,H} = 37$ Hz. 1, Hz, $J_{H,H} = 37$ Hz. 1, Hz, $J_{H,H} = 37$ Hz. 1, 10.18(d) 9.40(d), 4, 18.38(d), 5.6-H 7.74	l shifts are rel (HZ, $J_{H,H'} = 7$ HZ, $M_{easurec}$ (I) = 74 HZ. δ_{i} $J_{P_{i,H}} = 28$ HZ) $J_{P_{i,H}} = 28$ HZ) $J_{r_{i,H}} = 28$ HZ	lative to Me ₄ Si ⁷ Hz. ⁴ in (CD ₃) ₂ CO- ²⁴ in (CD) 2.5 c ²⁵ (q); [⁴ J (¹⁵⁵ ¹⁵ (1 ⁵⁵) ¹⁵¹ ¹² [⁴ J(15)] (1 ⁵⁵) ¹⁶¹ ¹⁴ = 11 Hz, J_{Pt1} ¹⁴ (1d), 5,6-H 7 (d) 7.52(d), 2,9	at 0.00. at 0.00. - CDC1 ₃ . - 2.9 (multiplet). - 2.9 (multipl	s of dahd ²) = 5 1) = 6 Hz. s at 1,8-positio be discerned.	i Hz. ns of dahd) = 7	Hz.

Table 1. IR and ¹H NMR data

356

S. YAMAZAKI et al.

				1 auto 2.		IN Uala						
				da	hd				SF	11.	PMe	PH
Complex	C ^{2,7}	ũ	రి	む	ũ	C ^{1,8}	Cı	ů	C	C 7		
Pt(SEt ₂) ₂ (dahd)	201.8	194.3	188.5	120.1	73.1	30.3	28.6	24.3	31.4	13.1		
	[51.1]	[41.5]	[28.3]	[40.1]	[489.2]			[42.2]	[22.1]	[15.2]		
Pt(PPh3)(SEt2)(dahd)	201.8	195.5	191.1	118.3	81.5	30.5	28.7	24.2	30.6 27.9	12.5 12.9		
	(6.3)	(4.5)			(60.0)				[15.2]			
Pt(PMe ₂ Ph) ₂ (dahd)	202.4	196.0	190.7	117.8	80.7	30.4	28.8	25.7			12.6	11.8
• • •	[34.2]							[64.8]				
	(6.2)	(4.8)	(1.6)	(4.8)	(26.0)			(5.5)			(34.6)	(40.8)
Pt(phen)(dahd) [*]	205.4	195.4		,		30.2	28.5	23.9			•	•
Pt(2,9-Me ₂ -phen)(dahd) ^e	207.0	193.7	189.7	118.9	60.2	29.6	28.7	23.8				
	[49.9]				[313.5]			[75.3]				
⁴ Chemical shifts are relative t	to Me ₄ Si at 0.	00. The sol	vent used is	CDCI, [J	[(H-H]] 8	are in brace	s; J(PC)	in parenthe	ses; the ot	her resonan	ces and the	ir coupling
constants which are not describe ^b Resonances due to azahetere	id in the table peyclic ligand	were not di are as the f	scernible ow ollowing: C	ving to the 1 22, C ⁹ 153.2	low solubilit 3 149.0; C ³ ,	ies or insuf C ⁸ 128.0 1	ficient S/N [25.0; C ⁴ , (ratio. 2 ⁷ 138.3 137	.0; C ^{5,6} 12	6.6; C ¹³ , C	¹⁴ 130.2 130	10; C ¹¹ , C ¹²
147.6 145.1.)				, ,							
^c Resonances due to azahetero C ¹² 149.2 147.4; <i>Me</i> -C ⁹	cyclic ligand a 28.5 24.3.	are as the fo	llowing; C ²	, C° 167.5	162.5; C³, C	° 125.8 125	.5; C ⁴ , C'	127.0 126.7;	C ⁵ , C ⁶ 137	.1 136.9; C	¹³ , C ¹⁴ 127.	5 127.3; C ¹¹ ,

Table 2. ¹³C{¹H} NMR data^{*}

Fig. 1. (a) Proposed structure of $[Pt_2(L_2)_2(dahd-O_2,O'_2)]^{2+}$. (b) Linkage modes of tetra-acetylethane dianion given by a bridge splitting reaction of $[M_2(L_2)_2(dahd-O_2,O'_2)][BF_4]_n$ (M = Pd, L = PPh₃, n = 2; M = Rh, L = CO, n = O); Ac = CH₄CO -.

of the dahd and the large coupling constant $[{}^{1}J({}^{195}\text{Pt}-{}^{13}\text{C})] = 489.2$ Hz is consistent with C-3 atom directly bonding to Pt(II),⁷ while $[{}^{2}J({}^{195}\text{Pt}-{}^{-}\text{C}^{4})]$ was obtained as 40.1 Hz at 120.1.

These spectral data of $Pt(SEt_2)_2(dahd)$ agree with a structure having low symmetry in which dahd bonds to Pt(II) with a (C³,O')-chelate as proposed in Fig. 3. Interestingly, ¹³C NMR resonances due to one SEt_2 could be observed with ¹⁹⁵Pt satellites, while the other has no ¹⁹⁵Pt satellites.

It has been reported from variable temperature ¹H NMR evidence that cis-PtCl₂{S(CH₂C₆H₅)₂}⁸ undergoes dynamic inversion motion at the pyramidal sulphur. In the present case, one sulphide in $Pt(SEt_2)_2(dahd-C_3,O')$ is assumed likely to be undergoing analogous dynamic behaviour at an ambient temperature, but lower temperature NMR spectra have not been obtained. However, ¹³C NMR data of the analogous central carbon-bonded Pt(II) complexes of acetylacetone, $Pt(acac-O)(acac-C^3)(py)$ and $Pt(acac-C^3)_2(py)_2^9$ may be useful for the arrangement of sulphides in $Pt(SEt_2)_2(dahd-C^3,O')$. From the magnitude of the coupling constant ¹⁹⁵Pt—C³, observed for the acetylacetonate complexes, where $J(^{195}Pt-C^3)$ for Pt(acac-O)(acac- C_3)(py) is 619 Hz and for Pt(acac- C^3)₂(py)₂ is 369 Hz, s-bonding character of C-3 is apparently correlated with a trans labilizing effect:¹⁰ O(acac) < C(3)(acac). Thus, the sulphur being stereochemically nonrigid in $Pt(SEt_2)_2(dahd-C^3,O')$ can be explained by an arrangement which is *trans* to C(3) (a resonance in the higher field region) and not to O. FABMS of $Pt(SEt_2)_2(dahd-C^3,O')$ is given in Fig. 4 as an explicit pattern, in which the basal peak is $M^+(m/z = 572)$ and the isotopic ion distribution patterns agree well with the calculated ones.

A sulphide of Pt(SEt₂)₂(dahd-C³,O') is readily displaced by PPh₃ to give Pt(PPh₃)(SEt₂)(dahd-C³,O'). ¹³C NMR spectrum of the complex with a relatively large [²J(P-C)] = 60.0 Hz is as expected, consistent with PPh₃ being arranged at the *trans* position to C³. In addition, NMR resonances due to the CH₂ group of SEt₂ with ¹⁹⁵Pt satellites may be due to the stereochemical rigidity being arranged *trans* to O.

¹H and ¹³C NMR of Pt(PMe₂Ph)₂(dahd) is comparable with Pt(SEt₂)₂(dahd-C³,O'), and they exhibit non-equivalency of the two phosphorus atoms. The chemical shifts due to the dahd carbons of Pt(PMe₂Ph)₂(dahd) agree with those obtained for Pt(SEt₂)₂(dahd-C³,O'). The weak resonances at 81.8 and 79.4 Hz, the latter of which was partially overlapped with that of the solvent CDCl₃ are tentatively assigned to the C³ nucleus coupled to the *trans* phosphorus nucleus. Its chemical shift and two bond coupling constant [²J(³¹P-C³)] = 56.7 Hz are however comparable with those obtained for Pt(PPh₃)(SEt₂)(dahd-C³,O').

Pt(SEt₂)₂(dahd-C³,O') reacts with the bidentate azaheterocyclic ligand phen to give Pt(phen)(dahd-C³,O'). IR, ¹H and ¹³C NMR spectral data of this complex agree very closely with those of PtL₂(dahd-C³,O')(L = SEt₂, PMe₂Ph) and also with Pd(phen) (dahd-C³,O').^{1 13}C NMR of an analogous 2,9-Me₂phen complex was more informative than the phen complex, because we could raise its solubility, and the data are compatible with the proposed structure (Fig. 3).

The bridge-splitting reaction of the dinuclear

Fig. 2. (a) ¹³C{¹H} NMR spectrum of Pt(SEt₂)₂(dahd-C³,O') in CDCl₃; (b) expanded in the range of 0 ~ 50 ppm; (c) expanded (× 3) in the range 50 ~ 100 ppm; (c) expanded in the range 50 ~ 100 ppm; (d) expanded (× 3) through y-axis. *Due to impurity included.

Fig. 3. Proposed structure of $PtL_2(dahd-C^3,O')$ {L = SEt₂, PMe₂Ph, L₂ = 2,9-R₂-phen(R = H, Me)}.

Pt(II) complex cross-linked by the dahd dianion as an (O_2,O'_2) -chelate by the attack of basic K_2 -dahd, may firstly proceed via an uptake of the counter anion (KBF₄) and concurrent insertion of the dahd dianion into the inner sphere (Scheme 1). On the other hand, by treating PtL₂(dahd-C3,O') (L = SEt₂, PMe₂Ph) with an equivalent amount of HBF₄ in aqueous acetone, [Pt₂L₄(dahd)][BF₄]₂ (L = PMe₂Ph, yield 73%) and H₂-dahd (46%) were obtained.

Fig. 4. FABMS of Pt(SEt₂)₂(dahd-C³,O').

These indicate that linkage modes of the dahd dianion to Pt(II) in acidic conditions favour the bifunctional (O_2, O'_2) -chelate, while in basic conditions it prefers the (C^3, O') -chelate. It has so far been known that deprotonation of β -diketonate Pt(II) complexes, $Pt(tfac)_2(PPh_3)$ (tfac = 1,1,1- trifluoroacetylacetone),¹¹ PtCl(acac-O)(π -val) (val = vynylalcohol)¹² and PtCl(acac-O)(acac)¹² favours carbon-bonded complexes of the β -diketone at C-3 and up to C-1. Considering that dahd itself is γ, γ' -bis(acetylacetonate) and stabilized in the dienol-dienolate form both in H2-dahd13 and $[M_2(L_2)_2(dahd)][BF_4]_n$ (M = Pd, L = PPh₃, L₂ = bdpe, n = 2; M = Rh, L = CO, n = 0; M = Pt, $L = SEt_2$, PMe₂Ph, $L_2 = COD$, n = 2), an activation of C-3 of the dahd forming metallation should still

Scheme 1.

be noteworthy. Unfortunately, an intermediate, such as $[PtL_2(dahd-O_1,O_1')]_n$ or any paramagnetic species as found for catena- $[Pd(phen)(dahd-O_1,O_1')]_n$, have not been isolated.

Interestingly, the linkage mode of the dahd dianion to Pt(II) as a (C³,O')-chelate is comparable with the Pt(II) complex of Vitamin C Pt(*cis*-dach) (ascorbate) (dach = diaminocyclohexane),¹⁴ having antitumor properties which Hollis *et al.* established by X-ray analysis, in addition to their similar frameworks.

Acknowledgement—An author (S. Y.) is grateful to Y. Tanaka (Hitachi Ltd, Naka Engineering Centre, Ibaragi) for obtaining ¹³C NMR spectra.

REFERENCES

- 1. S. Yamazaki, Polyhedron 1986, 5, 1183.
- S. Yamazaki, Polyhedron 1985, 4, 1915; S. Yamazaki, Bull. Chem. Soc. Jpn. 1987, 60, 1155.
- 3. G. B. Kauffman and D. O. Cowan, *Inorg. Synth.* 1960, 6, 211.
- J. M. Jenkins and B. L. Shaw, J. Chem. Soc. (A) 1966, 770.
- 5. J. X. McDermott, J. F. White and G. M. Whitesides, J. Am. Chem. Soc. 1976, 98, 6521.
- J. Lewis and C. Oldham, J. Chem. Soc. (A). 1966, 1456; S. Kawaguchi, Coord. Chem. Rev. 1986, 70, 51.
- B. E. Mann and B. F. Taylor, ¹³C NMR Data for Organometallic Compounds. Academic Press, London (1981).

361

- P. Haake and P. C. Turley, *Inorg. Nucl. Chem. Lett.* 1966, 2, 173; P. Haake and P. C. Turley, *J. Am. Chem. Soc.* 1967, 89, 4611.
- 9. T. Ito. T. Kiriyama, Y. Nakamura and A. Yamamoto, Bull. Chem. Soc. Jpn. 1976, 49, 3257.
- A. Yamamoto, Organometallic Chemistry. Syokabo, Tokyo (1986); F. Basolo and R. G. Pearson, Mechanism of Inorganic Reactions 2nd edn. John Wiley, New York (1967).
- S. Okeya, Y. Nakamura and S. Kawaguchi, Bull. Chem. Soc. Jpn. 1981, 54, 3396.
- J. Hills, J. Francis, M. Mori and M. Tsutsui, J. Am. Chem. Soc. 1974, 96, 4800.
- L. F. Power and K. E. Turner, *Inorg. Nucl. Chem.* Lett. 1972, 8, 313; J. P. Schaefer and P. J. Wheatley, J. Chem. Soc. 1966, 528.
- 14. L. S. Hollis, A. R. Amundsen and E. W. Stern, J. Am. Chem. Soc. 1985, 107, 274.