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Abstract: Cu-mediated annulations of N-hydroxyallyl-

amines with nitrosoarenes proceed through unprecedent-
ed formal [3++2] cycloadditions of N-hydroxyaminoallyl

radicals with nitrosoarenes. Our mechanistic analysis op-
poses a 5-endo-trig cyclization involved in the final ring-

closure step. To manifest the reaction utility, chemical

elaborations of resulting isoxazolidinyl products into 2- or
3-substituted quinoline N-oxides and acyclic 1,3-diamino-

2-ols are also described.

[3++2] Cycloaddition reactions are powerful tools to access five-

membered carbo- or heterocyclic compounds.[1] Allyl radicals
are versatile to react with various p-bond motifs to implement

formation of a C¢X (X = C, N) bond.[2–4] In the gaseous phase,
allylic radicals can undergo [3++2] cycloadditions with butadi-

enes,[3a] acetylenes,[3b] alkenes,[3c] allenes,[3d] and indenes,[3e]

albeit with poor chemoselectivity. Such radical [3++2] cycloaddi-
tions are unlikely to occur in solution, because a final 5-endo-

trig cyclization is a difficult process according to Baldwin’s
rule.[5] We are aware of no example of [3++2] cycloadditions of
allyl radicals with any kind of 2p-bond motif, although 5-endo-
trig cyclizations have been reported for alkenes of special

types.[6] The development of such radical [3++2] cycloadditions
is highly desirable in allyl radical chemistry.

We reported Cu-catalyzed aerobic oxidations of 3-N-hydroxy-

allylamines to form initially nitroxy radicals I,[7, 8] which were
convertible to 3-N-hydroxyaminoallylic radicals I’, possibly by
an intermolecular hydrogen transfer. The dimerization of I’
yielded no common 1,5-hexadiene derivatives, but afforded

1,4-dihydroxy-2,3-diaminocyclohexanes I’2 efficiently [Eq. (1)] .[9]

Herein, we report Cu-mediated [3++2] annulation reactions of

3-N-hydroxyallylamines with nitrosoarenes to form isoxazo-
lidin-5-yl products 3 [Eq. (2)] with excellent diastereoselectivi-
ties (d.r. >25:1). Notably, the overall transformation represents

a 3-amino-1,2-dioxygenation of an allylamine skeleton. Our
mechanistic analysis opposes a 5-endo-trig radical cyclization;

instead, the success of these radical [3++2] annulations is attri-
buted to the relay action of allyl radical I’ and its N-hydroxy-

amino functionality. Chemical elaborations of resulting product

3 into highly functionalized N- and O-containing compounds

will be described.

Table 1 shows the optimizations of [3++2] annulation reac-
tions of 3-N-hydroxyallylamine 1 a (1.0 equiv) with nitrosoben-

zene (2 a ; 2 equiv) using various Cu salts, oxidants, and sol-

vents. We initially tested the reaction with CuBr2, CuCl2, CuBr,
and CuCl (5 mol %) in toluene/O2 at 25 8C, affording isoxazo-

lidinyl product 3 a in 24–58 % yields (entries 1–4) that indicated
the CuI is more efficient than the CuII. The diazene oxide 2 a’
was isolated in small proportions (18–20 %). Interestingly, the

Table 1. Optimization of reaction conditions.

Entry Initiator [mol %] Oxidant Solvent[a] Products Yield [%][b]

1 a 3 a 2 a’

1 CuBr2 (5) O2 toluene – 24 20
2 CuCl2 (5) O2 toluene – 27 26
3 CuBr (5) O2 toluene – 58 18
4 CuCl (5) O2 toluene – 48 22
5 [(IPr)CuCl] (5) O2 toluene – 73 traces
6 [(IPr)CuCl] (5) H2O2

[c] toluene – 54 10
7 [(IPr)CuCl] (5) tBuOOH[c] toluene – 56 4
8 [(IPr)CuCl] (5) O2 DCE – 62 6
9 [(IPr)CuCl] (5) O2 THF – 67 3
10 [(IPr)CuCl] (5) N2 toluene 74 traces 25
11 – O2 toluene – traces 15
12 TEMPO (10) N2 toluene – 60 5

[a] 1 a (0.15 m, 1 equiv) and 2 a (0.30 m, 2 equiv). [b] Product yields are re-
ported after purification through a neutral alumina column. [c] Molecular
sieve 4æ was added.
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presence of the nitrosobenzene completely suppressed the
formation of oxidative dimerization product I’2. We envisage

that the acidic CuII complex likely coordinates with N-hydroxyl-
amine 1 a to inhibit the formation of nitroxy radicals.[7] Accord-

ingly, we tested electron-rich [(IPr)CuCl] (IPr = 1,3-bis(diisopro-
pylphenyl)imidazol-2-ylidene), which greatly increased the

yield of desired 3 a (up to 73 %) with diazene oxide 2 a’ ob-
tained in a negligible amount. With [(IPr)CuCl] (5 mol %), other

oxidants, such as H2O2 and tert-butyl hydroperoxide (TBHP), af-

forded desired 3 a in 54 % and 56 % yields, respectively (en-
tries 6–7). Other solvents, like 1,2-dichloroethane and THF, af-
forded compound 3 a in 62 % and 67 % yields, respectively (en-
tries 8 and 9). In the absence of O2, no reaction occurred, and

initial 1 a was recovered in 74 % yield (entry 10). Likewise, the
reaction led to a mixture of complicated products if no Cu cat-

alysts were employed (entry 11). The use of 2,2,6,6-tetramethyl-

piperidine N-oxide (TEMPO) under N2 also implemented this
annulation, yielding desired 3 a in 60 % yield (entry 12). These

data suggest that both Cu/O2 and TEMPO serve as radical ini-
tiators. The isoxazolidinyl framework of compound 3 a was in-

ferred from an X-ray diffraction of its relative 4 f (Scheme 1).[10]

Table 2 shows the generalization of this [3++2] annulation

using various 3-N-hydroxyallylamines 1 b–1 k (1.0 equiv) and ni-
trosobenzene (2 a ; 2.0 equiv). The reactions were mediated

with [(IPr)CuCl] (5 mol %) under O2 (1 atm.) in toluene (25 8C,
0.5–1.0 h), yielding 3 b–3 k as single diastereomeric products

(d.r. >25:1). We tested the reactions on N-hydroxyallylamines
1 b–1 e bearing electron-rich and -deficient aniline substituents
(X = CH3, tBu, Cl, and F; entries 1–4), the resulting products

3 b–3 e were obtained in satisfactory yields (68–76 %). The reac-
tion is extensible to additional substrates 1 f–1 h bearing vari-

ous aryl groups at the alkenyl C2-carbons (Ar = 4-Me-Ph, 4-Cl-
Ph, 2-thienyl), yielding desired compounds 3 f–3 h in 71–74 %

yields (entries 5–7). To our delight, these annulations were

compatible with substrates 1 i–1 k bearing various alkyl groups
at the alkenyl C2-carbons (R = Me, Et, isopentyl) ; their desired

products 3 i–3 k were obtained in reasonable yields (54–67 %;
entries 8–10). A complicated mixture of products was obtained

when we attempted the reaction on tert-butyl-substituted N-
hydroxyallylamine.

The Cu-mediated reactions of C2-unsubstituted N-hydroxyal-

lylamines 1 l and 1 m with nitrosobenzene (2 a) proceeded

through a distinct aerobic oxidation, such that O2 was an oxi-
dant rather than a radical activator; the optimized yields of de-

sired 3 l and 3 m were 74 % and 67 %, respectively, with
a molar ratio of amine/2 a = 2.0:1.1 [Eq. (3)] . Herein, initial N-hy-

droxyallylamine 1 l acted as a nucleophile, which was replace-
able by other N-hydroxyallylamines. We successfully employed

N-hydroxyaminopropane (4 equiv) as a nucleophile, affording

compound 3 l’ in 78 % yield [Eq. (4)] .

The reaction scope was expanded with various nitrosoarenes

(Scheme 1). The reaction of 4-methyl-substituted nitrosoben-
zene (R = Me) gave isoxazolidin-5-yl species 4 a in 61 % yield.
The reaction became more efficient with electron-deficient ni-
trosoarenes (R = Cl, Br, NO2, and CO2Et), affording products

4 b–4 e in 74–80 % yields. Electron-deficient nitrosoarenes are
more favorable for this reaction presumably because they are

efficient electron acceptors.[11] We finally synthesized com-

pound 4 f, which had good crystallinity for X-ray diffraction to
confirm the isoxazolidinyl framework.[10]

Scheme 2 shows the elaboration of resulting isoxazolidin-5-
yl species 3 a into useful N- and O-containing compounds.

Treatment of species 3 a with p-TSA (10 mol %) efficiently yield-
ed substituted quinoline N-oxide product 5 a and diazene

Scheme 1. Reaction scope of nitrosoarenes.

Table 2. Tests on 3-N-hydroxyallylamines.

[a] 1 b (0.14 m, 1 equiv) and 2 a (0.30 m, 2 equiv). [b] Product yields are re-
ported after purification through a neutral alumina column.
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oxide in 69 % and 6 % yields, respectively. Importantly, product

5 a was directly accessible by heating a mixture of nitrosoben-
zene (2 a ; 2 equiv) and 3-N-hydroxyallylamines 1 a (1 equiv)

with [(IPr)CuCl]/O2 (5 mol %) and p-TSA (10 mol %) in toluene;

the yield of resulting 5 a was 72 % along with diazine oxide 2 a’
at 10 % yield. To highlight the value of intermediate 3 a, we de-

veloped a two-step one-pot cascade reaction involving an ini-
tial Pd-catalyzed amination of readily available allylic acetate

1 a’ in toluene for 1 h, followed by heating the same solution
with nitrosobenzene (2 a ; 1.2 equiv), [(IPr)CuCl] , and oxygen to

yield 3-phenyl quinoline N-oxide 5 a efficiently.

Unlike 2-substituted analogues,[12a] the synthesis of 3-substi-
tuted quinoline N-oxides requires prior synthesis of their quin-

oline derivatives, which are usefully prepared from the conden-
sation of expensive 2-aminobenzaldehydes with ketones or al-

dehydes.[12b–d] In this regard, the synthesis of quinoline N-oxide
5 a in a Pd/Cu/H+ relay catalysis (Scheme 2) is appealing, be-

cause cheap nitrosoarenes and allylic acetates are employed in

this one-pot synthesis. The reaction scope was generalized
with various N-hydroxyaniline 2 a“, allylic acetates 1’, and nitro-

soarenes 2 in a 1:1:1.2 molar proportions (Table 3).[13] With elec-
tron-deficient nitrosobenzenes (X = Cl, Br, and CO2Et), Cu-medi-

ated annulations with species 1 a’ provided 3-substituted quin-
oline N-oxides 5 b–5 d in satisfactory yields (>71 %, entries 1–
3). This catalytic synthesis was extendible to additional allylic

acetates bearing various aryl and alkyl groups at their C2-car-
bons (R = 4-tolyl, 4-chlorophenyl, methyl, and isopentyl), yield-
ing 3-substituted quinoline oxides 5 e–5 h in 61-70 % yield (en-

tries 4–7). For unsubstituted and C3-substituted acetates 1 l’
and 1 m’–1 o’, resulting products 5 i and 5 j–5 k were obtained
in 65–70 % yields (entries 8–10).

Table 4 shows the applicability of our new method to the ef-
ficient synthesis of 1,3-diamino-2-ols through reductive N¢O
cleavages of compounds 3 ; herein, these reactions represents

triple N- and O-functionalizations of readily available allylic ace-
tates. The reactions were performed with Pd/C and H2 (1 atm)

in MeOH, yielding desired products 6 a–6 e exceeding 68 %
yields (entries 1–5).

Control experiments [Eqs. (5)–(7)] were carried out to eluci-
date the mechanism for our major reactions depicted in

Tables 1–2 and Scheme 1. We tested a reaction on 2-cycloprop-

yl-substituted substrate 1 n, giving compound 3 n of the same
type [Eq. (5)] ; the radical II was thus excluded, because the cy-

clopropane ring of 3 n was not cleaved.[6] To identify the
source of the C2-amino group of compound 3 a, compound

1 a, N-hydroxyaniline (2 a“; 2 equiv), and C6D5NO (d5-2 a) were
tested for a brief period (10 min) to attain a 32 % conversion of
the reaction [Eq. (6)] . The resulting product d10-3 a contained

mainly C6D5NH¢O¢ at its C2-carbon (>90 %), indicating that
the C2-amino group appeared primarily from C6D5NO. The for-

mation of carbocation II’ was unlikely to occur here because
potent nucleophile 2 a” did not participate in the reaction. In

contrast, the reactions depicted in Equations (3) and (4), likely
involve nitrone 7 according to the results in Equation (7),

which gave the same product 3 l’ as in Equation (4). Such ni-
trone species are unlikely to form for 2-substituted N-hydroxy-
allylamines according to a separate experiment.[14]

Scheme 2. Chemical elaboration.
Table 4. Synthesis of 1,3-diamino-2-ols by N¢O cleavage.

Entry R R’ Compounds (t [h] , yield [%])[b]

1 Ph H (3 a)[a] 6 a (8, 71)
2 4-Me-Ph H (3 f) 6 b (5, 76)
3 CH3 H (3 i) 6 c (6, 74)
4 isopentyl H (3 j) 6 d (5, 68)
5 H allyl (3 l) 6 e (6, 69)

[a] 3 a (0.045 m). [b] Product yields are reported after purification through
a silica gel column.

Table 3. Catalytic synthesis of quinoline oxides.

[a] 1’ (0.3 m) and 2 a’’ (0.3 m). [b] Product yields are reported after purifica-
tion through a silica gel column.
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Scheme 3 shows a plausible mechanism to rationalize the
major annulations, in which [(IPr)CuCl]/O2 acts as a radical ini-
tiator The key step of this mechanism involves an addition of
the nitrosobenzene to N-hydroxyaminoallyl radical I’ to form

new nitroxy radical III.[11] Notably, such a radical/nitroso addi-

tion is operable only for 2-substituted allyl radicals (R = alkyl,
aryl), otherwise the nitrone species will form in the case of un-

substituted allylamine 1 l [Eq. (7)] . A 5-endo-trig cyclization of
radical III is excluded because the experiment in Equation (5)

opposes radical intermediate II. Herein, we postulate that spe-
cies III abstracts a hydrogen from initial 1 to form species IV
and initial nitroxy radical I, thus completing a radical chain re-

action. Accordingly, the generation of nitroxy radical 1 a in cat-
alytic amounts is sufficient for the reaction. In species IV, we

envisage that the N-hydroxy group forms a hydrogen bond
with the nitroso to increase its electrophilicity, leading to the

formation of a C¢O bond as depicted by intermediate V. This
acid-mediated O-nitroso alkylation by enamine nucleophiles
has a literature example.[15] The 5-exo-trig cyclization of result-

ing species VI is known to be feasible to yield observed prod-
uct 3 a. Equation (6) excludes the intermediacy of tertiary car-

bocation II’. To examine the reactivity of this carbocation, we
treated compound 3 with p-TSA to form 2,5-dihydroisoxazole

intermediate VII, which subsequently underwent an acid-cata-
lyzed ring opening to induce a skeletal rearrangement, yielding

observed product 4 through an intramolecular cyclization of

resulting intermediates VIII or VIII’. In the preceding VI!3
transformation, resulting 2,5-dihydroisoxazole species 3 likely

exists in two diastereomeric forms; we postulate that the
Brønsted acid is likely to exist in this Cu/O2 system to promote

an interconversion between species 3 and carbocation II’. The
released N-hydroxyaniline will be closely associated with carbo-

cation II, and its attack on this cation will form single diaste-
reomeric products.

Prior to this work, intermolecular [3++2] cycloadditions of
allyl radicals with p-bond motifs remained a formidable task in

solution chemistry. In summary, we reported the success of
such formal cycloadditions in Cu-mediated [3++2] annulations
of 3-N-hydroxyallylamines with nitrosoarenes. These transfor-
mations represent remarkable 3-amino-1,2-dioxygenations of
allylamines. Notably, the resulting isoxazolidin-5-yl products

can be transformed into 2- or 3-substituted quinoline oxides in
the presence of a Brønsted acid. We subsequently employed

the Pd/Cu/H+ relay catalysis to access these quinoline oxides
directly from cheap allylic acetates. Our mechanistic analysis in-

dicated that the addition of allyl radicals to nitrosoarenes is
feasible only with 2-substituted allyl radicals ; nitrone species

formed in the case of unsubstituted and 3-substituted allyl-

amines.
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