Accepted Manuscript

Rational design, synthesis and biological evaluation of 1,3,4-oxadiazole pyrimidine derivatives as novel pyruvate dehydrogenase complex E1 inhibitors

Haifeng He, Wei Wang, Yuan Zhou, Qin Xia, Yanliang Ren, Jiangtao Feng, Hao Peng, Hongwu He, Lingling Feng

PII:	S0968-0896(16)30160-2
DOI:	http://dx.doi.org/10.1016/j.bmc.2016.03.011
Reference:	BMC 12860
To appear in:	Bioorganic & Medicinal Chemistry
Received Date:	2 February 2016
Accepted Date:	4 March 2016

Please cite this article as: He, H., Wang, W., Zhou, Y., Xia, Q., Ren, Y., Feng, J., Peng, H., He, H., Feng, L., Rational design, synthesis and biological evaluation of 1,3,4-oxadiazole pyrimidine derivatives as novel pyruvate dehydrogenase complex E1 inhibitors, *Bioorganic & Medicinal Chemistry* (2016), doi: http://dx.doi.org/10.1016/j.bmc.2016.03.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Rational design, synthesis and biological evaluation of 1,3,4-oxadiazole
2	pyrimidine derivatives as novel pyruvate dehydrogenase complex E1 inhibitors
3	Haifeng He ^{a1} , Wei Wang ^{b1} , Yuan Zhou ^a , Qin Xia ^a , Yanliang Ren ^a , Jiangtao Feng ^a , Hao Peng ^a ,
4	Hongwu He ^{*a} and Lingling Feng ^{*a}
5	^a Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of
6	Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, P. R. China
7	^b Xi'an Modern Chemistry Research Institute, Xi'an 710065, PR China,
8	* To whom correspondence should be addressed. Tel./fax: +86 (0)27 67867960
9	E-mail addresses: <u>he1208@mail.ccnu.edu.cn</u> (H. He), <u>fl1708@mail.ccnu.edu.cn</u> (L. Feng)
10	¹ These authors equally contributed to this work.
11	
12	
13	
14	
15	
16	
17	
18	
19	G
20	
21	

22 Abstract

23	On the basis of previous study on 2-methylpyrimidine-4-ylamine derivatives I, further synthetic
24	optimization was done to find potent PDHc-E1 inhibitors with antibacterial activity. Three series
25	of novel pyrimidine derivatives 6, 11 and 14 were designed and synthesized as potential E. coli
26	PDHc-E1 inhibitors by introducing 1,3,4-Oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or
27	1,2,4-triazol-4-amine-thioether moiety into lead structure I, respectively. Most of 6, 11 and 14
28	exhibited good inhibitory activity against <i>E. coli</i> PHDc-E1 (IC ₅₀ 0.97 to 19.21 μ M) and obvious
29	inhibitory activity against cyanobacteria (EC ₅₀ 0.83 to 9.86 μ M). Their inhibitory activities were
30	much higher than that of lead structure I. 11 showed more potent inhibitory activity against both E .
31	coli PDHc-E1 (IC ₅₀ < 6.62 μ M) and cyanobacteria (EC ₅₀ < 1.63 μ M) than that of 6, 14 or lead
32	compound I. The most effective compound 11d with good enzyme-selectivity exhibited most
33	powerful inhibitory potency against <i>E</i> , <i>coli</i> PDHc-E1 (IC ₅₀ = 0.97 μ M) and cyanobacteria (EC ₅₀ =
34	0.83 μ M). The possible interactions of the important residues of PDHc-E1 with title compounds
35	were studied by molecular docking, site-directed mutagenesis, and enzymatic assays. The results
36	indicated that 11d had more potent inhibitory activity than that of 14d or I due to its
37	1,3,4-Oxadiazole moiety with more binding position and stronger interaction with Lsy392 and
38	His106 at active site of <i>E.coli</i> PDHc-E1.
39	Keywords antibacterial activity, PDHc-E1 inhibitor, cyanobacteria, 1,3,4-Oxadiazole

44 **1. Introduction**

45	The frequent application of bactericides with same or limited mode of action has led to the
46	wide spread evolution of resistance. ¹⁻³ It is, therefore, necessary to develop efficient bactericides
47	with novel structure or mode of action to overcome microbial disease.
48	The pyruvate dehydrogenase complex (PDHc) plays a pivotal role in cellular metabolism
49	catalyzing the oxidative decarboxylation of pyruvate and the subsequent acetylation of coenzyme
50	A (CoA) to acetyl-CoA. ⁴⁻⁵ The overall reaction of oxidative decarboxylation can be simply
51	exhibited in Fig. 1.
52	Fig.1 Insert Here
53	The complex (PDHc) is comprised of three different enzyme components (E1, E2 and E3) and
54	a number of cofactors. ⁶ Pyruvate dehydrogenase complex E1 component (PDHc-E1, EC1.2.4.1) is
55	the initial member of PDHc, which catalyzes the first step of multistep process, under condition of
56	using thiamine diphosphate (ThDP) and Mg ²⁺ as cofactors. ^{7–9} Particularly PDHc-E1 catalyzes the
57	first irreversible step among multistep process which is catalyzed by PDHc. Hence blocking the
58	activity of PDHc-E1 is the best way to inactivate the PDHc. ThDP plays an important role in the
59	enzyme reaction and the catalysis mechanism. ¹⁰ Therefore, we selected <i>E. coli</i> PDHc-E1 as the
60	target pattern of bacterium to design new cofactor ThDP analogs as inhibitors of PDHc-E1 with
61	bactericidal activity.
62	Certain ThDP analogs have been reported as efficient inhibitors of PDHc-E1 (such as ThTDP,
63	ThTTDP, and triazole-ThDP in Fig. 2). ¹¹⁻¹⁵ However there were few reports about their
64	bactericidal or fungicidal activity, due to their complex structure with highly charged
65	pyrophosphate, poor bioavailability ¹⁶ and poor enzyme-selective inhibition between

66 microorganisms and mammals.¹²

67	Aiming at the aforementioned problems, a series of 2-methylpyrimidine-4-ylamine derivatives
68	containing 1,2,3-triazole ring and substituted benzene ring I, had been firstly chemically
69	synthesized in our laboratory. II, III, IV and V were further synthesized as ThDP analogs by the
70	modification of I (Fig. 2). ^{17–21} Some of them were demonstrated to be effective inhibitors of E .
71	coli PDHc-E1 with moderate antifungal and antibacterial activity. These findings encouraged us to
72	further find useful PDHc-E1 inhibitors out with antibacterial or antifungal activity by further
73	optimization of lead structure I.
74	Fig.2 Insert Here
75	The high charge of the pyrophosphate moiety in ThDP has been replaced by the low charge of

76 the substituted phenoxy group in I. The analysis of molecular docking indicated that the 77 substituted phenoxy ("A and B part") moiety could occupy the binding site of pyrophosphate in 78 active site of E. coli PDHc-E1. However, unliked the interaction of oxygen atom of pyrophosphate with amino acid residues, the oxygen atom of ether bond ("A part") in I could not form hydrogen 79 bond with any amino acid residue in active site of E. coli PDHc-E1.¹⁷ It was thought that 80 81 inhibitory potency against E. coli PDHc-E1 should be increased by enhancing the interaction of the "A or B part" with PDHc-E1. Therefore, the scaffold of I was kept, further optimization 82 83 focused on "A or B part". In this work, 1,3,4-Oxadiazole-thioether moiety as "A part" was 84 introduced into Ι to replace phenoxy-ether bond and produce novel 85 2-methyl-4-amino-5-((4-(((5-substituted-pheny-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-

triazol-1-yl)methyl)pyrimidine 6. Moreover, 2,4-disubstituted-1,3-thiazole group as "B part"
was further introduced into the parent structure 6 to replace substituted benzene ring and form

88	novel 2-methyl-4-amino-5-((4-(((5-(2,4-disubstituted-thiazol-5-yl)-1,3,4-oxadiazol-2-yl)thio)
89	methyl)-1H-1,2,3-triazol-1-yl)methyl)pyrimidine 11 (Fig. 3). On the other hand, considering that
90	1,3,4-Oxadiazole-thioether or 1, 3-thiazole moiety could be as hydrogen bond receptor which
91	would benefit the interaction of the "A and B part" with PDHc-E1, some 1,3,4-Oxadiazole and
92	1,3-thiazole derivatives also showed excellent antibacterial activity. ²²⁻²⁵ Therefore these novel
93	ThDP analog, 1,3,4-Oxadiazole pyrimidine derivatives 6 and 11 are expected to be good <i>E.coli</i>
94	PDHc-E1 inhibitors with bactericidal activity.
95	Fig. 3 Insert Here
96	In order to examine the effect of the structure of "A part" on inhibitory activity,
97	1,3,4-Oxadiazole-thioether moiety in pyrimidine derivatives 11 was replaced with
98	1,2,4-triazol-thioether moiety to give novel 2-methyl-4-amine-5-((4-(((5-(2,4-disubstituted-thiazol)
99	-4H-1,2,4-triazol-4-amine-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)methy l)pyrimidine derivatives
100	14 (Fig. 3).
101	Herein, we report the synthesis of new 1,3,4-Oxadiazole pyrimidine derivatives 6, 11 and
102	1,2,4-triazolyl pyrimidine derivatives 14. Their enzyme inhibition, antibacterial and antifungal
103	activity were examined. The interaction mode of some title compounds with E.coli PDHc-E1 was
104	studied by molecular docking method, probable inhibition mechanism was discussed. The
105	enzyme-selectivity of representative compounds between pig heart and E. coli PDHc-E1 was also
106	examined.
107	2. Chemistry
108	The synthetic route of 6a-1 , 11a-d and 14a-d is depicted in Scheme 1 .
109	

111	Scheme 1. Insert Here
112	Vitamin B1 or thiamine hydrochloride as starting material was used to prepare
113	5-azido-methyl-2-methylpyrimidine-4-ylamine 1, according to the literature method. ²⁶ 1 is the key
114	intermediate for the preparation of title compounds 6a-l, 11a-d and 14a-d. The title compounds
115	could be synthesized by a five-step sequence starting from starting material. Various substituted
116	ethyl benzoate 2 reacted with hydrazine hydrate in ethanol to produce corresponding hydrazide 3.
117	Under same condition, 2,4-disubstituted-1,3-thiazole-5-ethyl formate 7 could be converted into
118	corresponding hydrazide 8.
119	The preparation of 5-substituted-phenyl-1,3,4-Oxadiazole-2-thiol 4 was achieved by
120	the reaction of hydrazide derivatives 3 with carbon disufide under strong basic conditions
121	followed by acidification with dilute hydrochloric acid. Under same condition, 5-(2,4-disubstituted
122	-thiazol-5-yl)-1,3,4-Oxadiazole-2-thiol 9^{27} could be obtained from hydrazide derivatives 8 using
123	carbon disulfide. 4-Amino-5-(2,4-disubstituted-thiazol-5-yl)-4H-1,2,4-triazole-3-thiol 12 was
124	prepared by the cyclization of hydrazide derivatives ${f 8}$, in which ${f 8}$ was firstly converted into the
125	corresponding potassium dithiocarbamate and further cyclized with hydrazine hydrate. The key
126	intermediate, 5, 10 or 13 with terminal alkynes, was prepared via reaction of 3-bromopropyne
127	with corresponding substituted thiol 4, 9 or 12 respectively in refluxing acetone with K_2CO_3 as
128	base. The 1,2,3-triazol ring in the skeleton of title compounds 6, 11 and 14 could be constructed
129	by applying 'click chemistry'. In our present work, 6a-l, 11a-d and 14a-d were synthesized by the
130	1,3-dipolar cycloaddition of 1 with substituted-prop-2-yn-1-thioethers 5, 10, or 13 respectively
131	using CuI as catalyst in the presence of Et_3N and THF. All synthesized compounds were
132	characterized by ¹ H NMR, ¹³ C NMR and mass spectrometry (HR-EIMS).

3. Results and discussion

3.1. *In vitro* inhibition of *E. coli* PDHc E1

135	In order to enhance the inhibitory potency against E. coli PDHc-E1, lead structure I was
136	modified by replacing "A part" with 1,3,4-Oxadiazole-thioether moiety (Fig.3). Several
137	1,3,4-Oxadiazole pyrimidine derivatives 6a-e were firstly synthesized and their inhibitory
138	potency against <i>E. coli</i> PDHc-E1 were evaluated. The IC ₅₀ values of 6a-e and Ia-e ¹⁷ are
139	summarized in Table 1. All 6a-e displayed higher inhibitory activity than that of Ia-e with same R
140	on the benzene ring. Especially the inhibitory activity of 6e was 7-folds higher than that of Ie . The
141	results showed that the inhibitory potency could be significantly improved by replacing ether bond
142	at "A part" in I with 1,3,4-Oxadiazole-thioether moiety. This suggested that the introduction of
143	1,3,4-Oxadiazole-thioether moiety at "A part" should be much beneficial for enhancing inhibition
144	against <i>E. coli</i> PDHc-E1.
145	Table 1 Insert Here
145 146	Table 1 Insert Here Further optimization was focused on R of 6. As shown in Table 1, R at 4-position on the
146	Further optimization was focused on R of 6. As shown in Table 1, R at 4-position on the
146 147	Further optimization was focused on R of 6 . As shown in Table 1 , R at 4-position on the benzene ring was favorable to inhibitory activity. Inhibitory activity against <i>E. coli</i> PDHc-E1
146 147 148	Further optimization was focused on R of 6. As shown in Table 1, R at 4-position on the benzene ring was favorable to inhibitory activity. Inhibitory activity against <i>E. coli</i> PDHc-E1 decreased in the following order: 6a (R=4-NO ₂ , IC ₅₀ = 7.59 μ M) > 6c (R=2-NO ₂ , IC ₅₀ = 9.84
146 147 148 149	Further optimization was focused on R of 6 . As shown in Table 1 , R at 4-position on the benzene ring was favorable to inhibitory activity. Inhibitory activity against <i>E. coli</i> PDHc-E1 decreased in the following order: 6a (R=4-NO ₂ , IC ₅₀ = 7.59 μ M) > 6c (R=2-NO ₂ , IC ₅₀ = 9.84 μ M)> 6i (R=3-NO ₂ , IC ₅₀ = 10.38 μ M); 6b (R=4-Cl, IC ₅₀ = 7.08 μ M) > 6l (R=2-Cl, IC ₅₀ =12.39
146 147 148 149 150	Further optimization was focused on R of 6 . As shown in Table 1 , R at 4-position on the benzene ring was favorable to inhibitory activity. Inhibitory activity against <i>E. coli</i> PDHc-E1 decreased in the following order: 6a (R=4-NO ₂ , IC ₅₀ = 7.59 μ M) > 6c (R=2-NO ₂ , IC ₅₀ = 9.84 μ M)> 6i (R=3-NO ₂ , IC ₅₀ = 10.38 μ M); 6b (R=4-Cl, IC ₅₀ = 7.08 μ M) > 6l (R=2-Cl, IC ₅₀ =12.39 μ M); 6f (R=4-F, IC ₅₀ = 9.11 μ M) > 6j (R=2-F, IC ₅₀ = 19.21 μ M). Small size group as R at
146 147 148 149 150 151	Further optimization was focused on R of 6 . As shown in Table 1 , R at 4-position on the benzene ring was favorable to inhibitory activity. Inhibitory activity against <i>E. coli</i> PDHc-E1 decreased in the following order: 6a (R=4-NO ₂ , IC ₅₀ = 7.59 μ M) > 6c (R=2-NO ₂ , IC ₅₀ = 9.84 μ M)> 6i (R=3-NO ₂ , IC ₅₀ = 10.38 μ M); 6b (R=4-Cl, IC ₅₀ = 7.08 μ M) > 6l (R=2-Cl, IC ₅₀ =12.39 μ M); 6f (R=4-F, IC ₅₀ = 9.11 μ M) > 6j (R=2-F, IC ₅₀ = 19.21 μ M). Small size group as R at 4-position of benzene ring seemed to be good for inhibitory activity. For example, 6f with 4-F as

 $\langle \langle \rangle$

155	(R=2-Cl-4-NO ₂ , IC ₅₀ = 12.80 μ M). Above results indicated that the inhibitory activity of 6 was
156	also dependent upon the structure, position and size of \mathbf{R} on the benzene ring.
157	6 was further modified by replacing substituted benzene ring with
158	2,4-disubstituted-1,3-thiazole moiety at "B part" to form a series of 1,3,4-Oxadiazole pyrimidine
159	derivatives 11. Compared with 6, the inhibitory activity of 11 was further enhanced. As shown in
160	Table 1 and 2 , 11a-d (IC ₅₀ = 0.97-6.62 μ M) displayed better inhibitory activity than 6a-l (IC ₅₀ =
161	7.08-19.21 μ M). Among 11a-d , compounds with CF ₃ as R ¹ displayed higher inhibitory activity
162	than that of compounds with CH_3 as R^1 , irrespective of NH_2 or CH_3NH as R^2 . For example, the
163	inhibitory activity of 11d (R^1 =CF ₃) was 6-folds higher than that of 11b (R^1 =CH ₃). The inhibitory
164	potency against E. coli PDHc-E1 could be remarkably enhanced by introducing both
165	1,3,4-Oxadiazole-thioether and 2,4-disubstituted-1,3 -thiazole moiety to replace both ether bond
166	and benzene ring at "A and B part" in I.
167	Table 2 Insert Here
169	In order to examine the effect of "A part" on inhibitory estivity expired E coli DDHe E1 11

168	In order to examine the effect of "A part" on inhibitory activity against <i>E.coli</i> PDHc-E1, 11
169	was modified to produce 14 by replacing 1,3,4-Oxadiazole-thioether moiety in 11 with
170	1,2,4-triazol-4-amine-thioether moiety as "A part". The inhibitory activity of 14 was shown in
171	Table 2. All 14a-d displayed weaker inhibitory activity than that of corresponding 11a-d with
172	same R^1 and R^2 . Especially 14d showed inhibitory activity 19-folds lower than that of 11d . The
173	result showed that the loss of 1,3,4-Oxadiazole moiety led to a decrease in inhibitory activity
174	against E.coli PDHc-E1. It indicated that the structure of "A part" had a significant effect on
175	inhibitory activity against <i>E. coli</i> PDHc-E1.

176 3.2. Antibacterial activity

177	Most reported ThDP analogs as E. coli PDHc-E1 inhibitors had no useful antibacterial or
178	antifungal activity. 6, 11, and 14 as E. coli PDHc-E1 inhibitors were evaluated for their
179	antifungal and antibacterial activity. Interestingly all tested compounds displayed good
180	antibacterial activity, but very weak fungicidal activity. As shown in Fig. 4. 6, 11, and 14 exhibited
181	obvious inhibitory potency against cyanobacteria at 10 µM. Especially 6b, 6c, 6e, 6f, 6g, 6h, 6i,
182	11a-d, and 14a-c could 90-99% control cyanobacteria, but I only showed <30% inhibitory
183	potency.

184

Fig.4 Insert Here

185 EC_{50} values of 6, 11, 14 and I were further evaluated their inhibitory potency against cyanobacteria. The structure and EC₅₀ of 6, 11, 14 and I are listed in Tables 1 and 2. 6, 11, and 14 186 187 exhibited obvious inhibitory potency against cyanobacteria with EC₅₀ ranging from 0.83 to 9.86 188 μ M. However I with EC₅₀ > 50 μ M. According to the data in Tables 1 and 2, we see that the 189 inhibitory potency of some tested compounds against cyanobacteria is related to their inhibition 190 against E. coli PDHc-E1. 6, 11, and 14 with the IC₅₀ values ranging from 0.97 to 19.21 µM against E. coli PHDc-E1 could exhibit moderate to good antibacterial activity against cyanobacteria. I 191 192 with much weak inhibitory potency against E. coli PHDc-E1 also showed much weak activity 193 against cyanobacteria.

As shown in **Tables 1** and **2**, most **6**, **11** and **14** exhibited much higher inhibitory potency against both *E. coli* PDHc-E1 and cyanobacteria than that of **I**. Especially 1,3,4-Oxadiazole pyrimidine derivatives **11** were much favorable to both enzyme inhibition and antibacterial activity. It could be noticed that **14a-d** containing 1,2,4-triazole moiety as "A part" showed weaker inhibition against both *E. coli* PDHc-E1 and cyanobacteria than that of **11a-d** containing

199	1,3,4-Oxadiazole moiety as "A part". 1,3,4-Oxadiazole pyrimidine derivative 11d was found to be
200	the most effective compound against E. coli PDHc-E1 (IC ₅₀ = 0.97 μ M), and against
201	cyanobacteria with EC ₅₀ value of 0.83 μ M. However 1,2,4-triazole pyrimidine derivative 14d
202	showed poor activity against <i>E. coli</i> PDHc-E1 (IC ₅₀ = $15.67 \square \mu M$), and against cyanobacteria with
203	EC ₅₀ value of 9.86 μM.
204	Above observation showed that both enzyme inhibition and antibacterial activity could be
205	greatly enhanced by introducing both 1,3,4-Oxadiazole-thioether and
206	2,4-disubstituted-1,3-thiazole moiety at "A and B part" to replace both ether bond and benzene
207	ring in I. These results suggested that 1,3,4-Oxadiazole-thioether and 1,3-thiazole moiety as "A
208	and B part" in structure 11 would be much beneficial for enhancing the interaction of 11 with E .
209	coli PDHc-E1 by forming hydrogen bond. Although most 6, 11 and 14 exhibited obvious
210	antibacterial activity against cyanobacteria, they had no significant fungicidal activity against
211	fungus. As shown in Table 3, most 6, 11, and 14 showed $< 60\%$ inhibitory potency against A.
212	solani, R. solani, B. cinerea and C. lagenarium. It showed that most 6, 11, and 14 could
213	selectively inhibit bacterium due to their good inhibition against PDHc-E1 from E. coli.
214	Table 3 Insert Here
215	Table 4 Insert Here
216	Some reported ThDP analogs as PDHc-E1 inhibitors not only had powerful inhibition potency
217	against <i>E. coli</i> PDHc-E1, but also had powerful inhibition potency against human PDHc-E1,
218	because they were had poor enzyme-selective inhibition between mammals and bacteria. ²⁸ In this
219	work, 11a-d with good inhibition against <i>E. coli</i> PDHc-E1 (IC ₅₀ = 0.97-6.62 μ M) were selected to
220	test their inhibition against Pig heart PDHc-E1. As shown in Table 4, 11a-d showed <30%

221	inhibitory potency against pig heart PDHc-E1. These findings showed that 11a-d had better
222	enzyme-selective inhibition between microorganism and mammal, possibly acting as specific
223	inhibitors against bacteria.
224	3.3. Analyses of the interaction between inhibitors and <i>E.coil</i> PDHc-E1
225	In order to understand the inhibition of 11 and 14 against E. coli PDHc-E1, the interaction
226	mode of 11 and 14 with active site of E.coli PDHc-E1 was further explored. The molecular
227	docking simulation of several compounds was carried out by using the SURFLEX module of
228	SYBYL package. ¹⁶ 1,3,4-Oxadiazole pyrimidine derivative 11d as the best PDHc-E1 inhibitor
229	and its corresponding 1,2,4-triazolyl pyrimidine derivative 14d were selected to analyse their
230	interaction with <i>E. coil</i> PDHc-E1 by molecular docking.
231	The binding mode of 11d or 14d with amino acid residues is shown in Fig. 5 A and B,
232	respectively. As shown in Fig. 5, 11d or 14d with a 'V' conformation can occupy the
233	ThDP-binding pocket and bind in the active site of <i>E.coli</i> PDHc-E1. On the right side of the 'V'
234	conformation, the 4-aminopyrimidine ring of 11d or 14d displays a π - π stacking with the
235	side chain ring of Phe602, also forms hydrogen bonds with Met194, Glu571 and Val192, which is
236	similar to the interactions of ThDP or lead structure I with corresponding amino acid residues. For
237	the left side of the 'V' conformation of 11d or 14d , trifluoromethyl group as R^1 on the 1,3-thiazole
238	ring of 11d or 14d has an interaction with Lys392 in the active site of <i>E.coli</i> PDHc-E1 by forming
239	hydrogen bond.
240	Fig. 5 Insert Here
241	In order to confirm the prediction of molecular docking, site-directed mutagenesis and
242	enzymatic assays were further performed. As shown in Fig. 6, the IC_{50} value of 11d against
243	mutants M194A (19.05 µM), E571A (5.02 µM), V192A (33.17 µM), K392A (20.44 µM) or F602A

 \leq

244	(5.08 μ M) was about 18 times, 4 times, 33 times, 20 times or 4 times higher than its value against
245	wild-type PDHc-E1 (0.97 μ M), respectively. These results suggest that the interaction between
246	11d and Met194, Glu571, Val192, Lys392 or Phe602 by forming hydrogen bond plays an
247	important role in the binding of 11d with <i>E.coli</i> PDHc-E1.
248	Fig. 6 Insert Here
249	It was very interesting to explore the different of the binding mode of I, 11 and 14 by
250	comparing with "A part" in their parent structures. No hydrogen bond between any amino acid
251	residues and the oxygen atom of ether bond as "A part" at the middle of the 'V' conformation of I
252	was observed by molecular docking in our previous study. ¹⁵ However the two nitrogen atoms
253	(N-N) and oxygen atom (C-O-C) of 1,3,4-Oxadiazole moiety as "A part" at the middle of the 'V'
254	conformation of compound 11d could form two strong hydrogen bond with Lsy392 and a strong
255	hydrogen bond with His106, respectively (Fig. 5A). As shown in Fig. 5B, the two nitrogen atoms
256	(N-N) of 1,2,4-triazolyl moiety in pyrimidine derivative 14d is turned 180 degree comparing
257	with that of 1,3,4-Oxadiazole moiety in pyrimidine derivative 11d . In this case, the two nitrogen
258	atoms (N-N) of 1,2,4-triazolyl moiety in 14d only form a hydrogen bond with His106, but no
259	other hydrogen bond between 1,2,4-triazolyl moiety and Lsy392 or any amino acid residues was
260	observed.

Further site-directed mutagenesis and enzymatic assays showed that the IC_{50} values of **11d** against the mutants K392A (20.44 μ M) or H106A (11.61 μ M) was about 20 times or 11 times higher than its value against wild-type PDHc-E1 enzyme (0.97 μ M) (**Fig. 6**). These results also revealed that the interaction between **11d** and Lsy392 or His106 by forming hydrogen bond had a significant contribution for its inhibitory activity against *E.coli* PDHc-E1.

Above observation indicated that 1,3,4-Oxadiazole moiety as "A part" in 11 was most

267	favorable to enzyme inhibition against E. coli PDHc-E1 due to more binding position and stronger
268	interaction with the active site of E.coli PDHc-E1. However 1,2,4-triazolyl moiety or ether bond
269	as "A part" had fewer binding position or no interaction with amino acid residues, which led to
270	weak enzyme inhibition of 14 or I. These results provided us a reasonable explanation for why
271	1,3,4-Oxadiazole pyrimidine derivatives 11 had more potent inhibitory activity against E.coli
272	PDHc-E1 than that of 1,2,4-triazolyl pyrimidine derivatives 14 or I .
273	4. Conclusion
274	On the basis of lead structure I, 1,3,4-Oxadiazole pyrimidine derivatives 6a-l, 11a-d and
275	1,2,4-triazolyl pyrimidine derivatives 14a-d as potential <i>E. coli</i> PDHc-E1 inhibitors were designed
276	and synthesized. As novel ThDP analogs, all 6a-l, 11a-d and 14a-d with the IC_{50} values ranging
277	from 0.97 to 19.21 µM against <i>E. coli</i> PHDc E1 could exhibit moderate to good inhibitory potency
278	against cyanobacteria (EC ₅₀ = 0.83-9.86 μ M). However I with much weaker inhibition against <i>E</i> .
279	coli PHDc-E1 showed no inhibitory activity against cyanobacteria. The inhibitory potency of
280	compounds against both E. coli PDHc-E1 and cyanobacteria could be greatly increased by
281	replacing the ether bond of I with 1,3,4-Oxadiazole-thioether, 2,4-disubstituted-1,3-thiazole or
282	1,2,4-triazol-4-amine-thioether moiety as "A and B part". 11 with 1,3,4-Oxadiazole-thioether and
283	2,4-disubstituted-1,3-thiazole moiety as "A and B part" showed more potent inhibitory activity
284	against both E. coli PDHc-E1 and cyanobacteria than that of 6, 14 or I. The most effective
285	compound 11d (IC ₅₀ = 0.97 μ M) exhibited not only much stronger inhibition against <i>E. coli</i>
286	PDHc-E1 than that of corresponding 1,2,4-triazolyl pyrimidine 14d (IC ₅₀ = 15.67 μ M), but also
287	displayed much higher inhibitory potency (EC ₅₀ = 0.83 μ M) against cyanobacteria than that of
288	14d (EC ₅₀ = 9.86 μ M). The above findings showed that there was some correlation between

 $\overline{}$

289 enzyme inhibition and antibacterial activity.

290	Binding mode analysis revealed that 11d displayed much powerful interaction by forming
291	hydrogen bond between 1,3,4-Oxadiazole moiety and Lsy392, His106 at active site of E.coli
292	PDHc-E1. The site-directed mutagenesis and enzymatic assays further proved that the interaction
293	between 1,3,4-Oxadiazole moiety in 11d with Lsy392 or His106 had a significant contribution for
294	its inhibitory activity against E.coli PDHc-E1. It suggested that 11d had more potent inhibitory
295	activity against E.coli PDHc-E1 and bacterium than that of 14d or lead compound I due to
296	1,3,4-Oxadiazole moiety as a "A part" with more binding position and stronger interaction with
297	important amino acid residues than that of 14d or I. These results elucidated that
298	1,3,4-Oxadiazole-thioether and 2,4-disubstituted-1,3-thiazole moiety as "A and B part" were much
299	beneficial than substituted ether bond in the parent structure I for enhancing both inhibition
300	against E. coli PDHc-E1 and cyanobacteria. 11a-d with weak inhibition against pig PDHc-E1
301	acted as special inhibitor selectively against E. coli PDHc-E1 and bacterium. Therefore, the
302	skeleton of 1,3,4-Oxadiazole pyrimidine derivatives 11 could be as the novel lead structure of
303	bactericide for further optimization.

304 **5. Experimental**

305 5.1 Chemistry

Melting points (mp) were measured on an electrothermal melting point apparatus and were uncorrected. ¹H NMR spectra were recorded at 400 MHz, in DMSO- d_6 solution on a Varian Mercury-Plus 400 spectrometer and chemical shifts were recorded in parts per million (ppm) with TMS as the internal reference. High-resolution electron impact mass spectra (HR-EIMS) were recorded under electron impact (70 eV) condition using a MicroMass GCT CA 055 instrument.

- 311 Unless otherwise noted, reagents were purchased from commercial suppliers and used without
- 312 further purification. Intermediate 5-(azidomethyl)-2-methylpyrimidine -4-amine 1 was synthesized
- 313 according to the existing methods.²⁶
- 314 **5.2** General procedure for preparation of 3a-l and 8a-d.
- 315 A mixture of substituted ethyl benzoate 2 (10 mmol) and hydrazine hydrate (20 mmol) in ethanol
- 316 was stirred at room temperature for 3 h and then filtered. The crude product recrystallized from
- 317 absolute alcohol to give 3a-l, which were used directly for the next step. Under this same
- 318 condition, the intermediate compounds **8a-d** were also prepared.
- 319 **5.3 General procedure for preparation of 4a-l and 9a-d.**

320 Substituted benzohydrazide 3 (5 mmol) was dissolved in a solution of potassium hydroxide (6 321 mmol) in water (4 mL) and ethanol (20 mL). Carbon disulfide (10 mmol) was then added while 322 stirring and the reaction mixture was heated under reflux for 8 h. The solvents were removed 323 under reduced pressure; the residue was treated with water and then filtered. The filtrate was 324 cooled, and then neutralized to pH 3 using dilute hydrochloric acid and the separated product thiol 325 4a-l was filtered, washed with water, dried and recrystallised from benzene as yellow crystals, 326 which were used directly for the next step. Under this same condition, the intermediate 327 compounds 9a-d were also prepared.

328

5.4 General procedure for preparation of 12a-d.

To a solution of potassium hydroxide (6 mmol) in absolute ethanol (30 mL), 2,4-disubstituted-1,3-thiazole-5-carbohydrazide **8** (5 mmol) and carbon disulphide (10 mmol) were added and the mixture was stired for 16 h. The precipitated potassium dithiocarbazinate was collected by filtering, washed with ethyl acetate and dried under vacuum. The potassium salt was

333	used in the next step without further purification. A suspension of the potassium salt, water (4.0
334	mL) and hydrazine hydrate (3 mL) were heated under reflux for 5 h, and then the mixture was
335	diluted with 50 mL water and subsequent acidification with dilute acetic acid gave a white
336	precipitate which was filtered, washed with water and recrystallized from aqueous DMF and
337	obtained 12a-d as yellow crystals in good yield.
338	5.5 General procedure for preparation of 5a-l, 10a-d and 13a-d.
339	A solution of substituted thiol 4 (5 mmol), 3-bromopyropyne (0.71 g, 6 mmol) and K_2CO_3 (1.38 g,
340	10 mmol) in acetone (20 mL) was heated under reflux until the reaction was complete based on
341	TLC monitoring. Then residue was dissolved in water (20 mL) and then filtered. The crude
342	product recrystallized from absolute alcohol to give 5a-l, which were used directly for the next
343	step. Under this same condition, the intermediate compounds 10a-d and 13a-d were also prepared.
344	5.6 General procedure for preparation of target compounds 6a-l, 11a-d and 14a-d.
345	CuI (0.04g, 0.2 mmol) was added to a stirred solution of 5-azidomethyl-2-methylpyrimidine-4-yla
346	mine 1 (0.33g, 2 mmol) and 2-substituted-phenyl-5-(prop-2-yn-1-ylthio)-1,3,4-oxadiazole 5 (2
347	mmol) in THF (10mL) followed by Et ₃ N (0.24g, 2.4 mmol). After overnight stirring at room
348	temperature, the reaction mixture was poured into water (20 mL) and then filtered. The crude
349	products were purified by column chromatography on silica gel and elution with
350	petroleumether/acetone (2:1, v/v) to give the corresponding pure title compounds 6a-1 . Under this
351	same condition, the intermediate compounds 11a-d and 14a-d were also prepared.
352	5.6.1.
353	2-methyl-4-amine-5-((4-(((5-(4-nitrophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-triaz

354 ol-1-yl)methyl)pyrimidine (6a)

- 355 Yellow solid; Yield 90%; m.p. 143-145 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ(ppm): 2.33 (s, 3H,
- 356 CH₃), 4.67 (s, 2H, SCH₂), 5.45 (s, 2H, CH₂), 7.06 (s, 2H, NH₂), 8.16 (s, 1H, pyrimidine-5-yl-H),
- 357 8.18 (s, 2H, Ar-H), 8.37 (d, 2H, Ar-H, J = 6.3 Hz); ¹³C NMR (100 MHz, DMSO- d_6) δ(ppm): 25.2,
- 358 27.0, 46.9, 108.2, 124.0, 124.7, 127.8, 128.6, 142.3, 149.2, 156.0, 161.5, 164.1, 164.6, 167.3;
- 359 HR-EIMS (EI) m/z 426.1102 (M+H)⁺, calcd. for $C_{17}H_{16}N_9O_3S$ m/z = 426.1097.
- **5.6.2.**
- 361 2-methyl-4-amine-5-((4-(((5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-tria
- 362 zol-1-yl)methyl)pyrimidine (6b)
- 363 White solid; Yield 93%; m.p. 189-191 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ(ppm): 2.35 (s, 3H,
- 364 CH₃), 4.64 (s, 2H, -SCH₂-), 5.45 (s, 2H, CH₂), 7.06 (s, 2H, NH₂), 7.63 (s, 2H, Ar-H), 7.92 (s, 2H,
- 365 Ar-H), 8.14 (s, 1H, pyrimidine-5-yl-H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ(ppm): 25.0, 26.7, 46.9,
- 366 107.5, 118.0, 120.3, 124.6, 124.9, 134.6, 147.9, 149.0, 155.0, 156.7, 162.9, 165.2; HR-EIMS (EI)
- 367 m/z 415.0890 (M+H)⁺, calcd. for $C_{17}H_{16}CIN_8OS$ m/z = 415.0856.
- **5.6.3**.
- 369 2-methyl-4-amine-5-((4-(((5-(2-nitrophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-triaz
- 370 ol-1-yl)methyl)pyrimidine (6c)
- 371 Yellow solid; Yield 90%; m.p. 171-173 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 2.31 (s, 3H,
- 372 CH₃), 4.67 (s, 2H, -SCH₂-), 5.48 (s, 2H, CH₂), 7.22 (s, 2H, NH₂), 7.89 (s, 2H, Ar-H), 7.98 (s, 1H,
- 373 pyrimidine-5-yl-H), 8.16 (s, 2H, Ar-H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm): 24.5, 26.2,
- 374 46.2, 107.5, 120.1, 120.6, 123.4, 127.5, 131.3, 133.4, 147.2, 150.2, 150.0, 151.1, 158.8, 165.0,
- 375 167.3; HR-EIMS (EI) m/z 426.1102 (M+H)⁺, calcd. for $C_{17}H_{16}ClN_8OS$ m/z = 426.1097.
- **5.6.4**.

377 **2-methyl-4-amine-5-((4-(((5-(2,4-dichlorophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)**-*1H*-1,2,3-

378 triazol-1-yl)methyl)pyrimidine (6d)

- 379 White solid; Yield 91%; m.p. 173-175 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ(ppm): 2.34 (s, 3H,
- 380 CH₃), 4.65 (s, 2H, -SCH₂-), 5.46 (s, 2H, CH₂), 7.05 (s, 2H, NH₂), 7.62 (s, 1H, Ar-H), 7.88 (s, 1H,
- 381 Ar-H), 7.93 (s, 1H, Ar-H), 8.15 (s, 1H, pyrimidine-5-yl-H); ¹³C NMR (100 MHz, DMSO-d₆)
- 382 δ(ppm): 25.5, 27.2, 45.1, 105.5, 120.0, 122.2, 125.6, 127.4, 128.4, 133.4, 133.9, 149.9, 151.0,
- 383 151.4, 158.7, 164.9, 167.2; HR-EIMS (EI) m/z 471. 0320 (M+Na)⁺, calcd. for $C_{17}H_{14}Cl_2N_8OSNa$
- $384 mtext{m/z} = 471.0286.$
- **5.6.5.** 385
- 386 2-methyl-4-amine-5-((4-(((5-phenyl-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)m
- 387 ethyl)pyrimidine (6e)
- 388 White solid; Yield 88%; m.p. 138-140 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 2.34 (s, 3H,
- 389 CH₃), 4.67 (s, 2H, -SCH₂-), 5.48 (s, 2H, CH₂), 7.18 (s, 2H, NH₂), 7.58 (s, 3H, Ar-H), 7.93 (s, 2H,
- 390 Ar-H), 8.18 (s, 1H, pyrimidine-5-yl-H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ(ppm): 23.5, 25.2, 45.2,
- 391 106.5, 116.9, 120.0, 122.0, 123.9, 128.2, 146.8, 147.9, 153.8, 155.6, 161.8, 164.1; HR-EIMS (EI)
- 392 m/z 381.1236 (M+H)⁺, calcd. for $C_{17}H_{17}N_8OS$ m/z = 381.1246.

393 5.6.6.

394 2-methyl-4-amine-5-((4-(((5-(4-fluorophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-tria 395 zol-1-yl)methyl)pyrimidine (6f)

- 396 White solid; Yield 89%; m.p 132-134 °C; ¹H NMR (400 MHz, DMSO- d_6) δ (ppm): 2.34 (s, 3H,
- 397 CH₃), 4.64 (s, 2H, -SCH₂-), 5.45 (s, 2H, CH₂), 7.05 (s, 2H, NH₂), 7.41 (d, 2H, Ar-H, *J* = 6.6 Hz),
- 398 7.98 (s, 2H, Ar-H), 8.14 (s, 1H, pyrimidine-5-yl-H); ¹³C NMR (100 MHz, DMSO- d_6) δ (ppm):

- 399 25.5, 27.2, 45.2, 108.2, 116.0, 119.9, 120.2, 129.4, 129.5, 149.8, 150.9, 156.8, 158.6, 164.8, 166.1,
- 400 167.1; HR-EIMS (EI) m/z 399.1151 (M+H)⁺, calcd. for $C_{17}H_{16}FN_8OS$ m/z = 399.1152.
- 401 **5.6.7.**
- 402 **2-methyl-4-amine-5-((4-(((5-(4-(trifluoromethyl)phenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1**
- 403 H-1,2,3-triazol-1-yl)methyl)pyrimidine (6g)
- 404 White solid; Yield 89%; m.p 132-134 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ(ppm): 2.30 (s, 3H,
- 405 CH₃), 4.66 (s, 2H, -SCH₂-), 5.43 (s, 2H, CH₂), 7.00 (s, 2H, NH₂), 7.94 (s, 2H, Ar-H), 8.14 (s, 2H,
- 406 Ar-H), 8.14 (s, 1H, pyrimidine-5-yl-H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ(ppm): 25.2, 27.0, 47.5,
- 407 108.2, 118.2, 119.9, 124.1, 124.3, 126.6, 129.5, 129.8, 130.0, 130.3, 149.8, 150.9, 156.8, 158.6,
- 408 164.8, 167.1; HR-EIMS (EI) m/z 449.1133 (M+H)⁺, calcd. for $C_{18}H_{16}F_3N_8OS$ m/z = 449.1120.
- 409 **5.6.8.**
- 410 **2-methyl-4-amine-5-((4-(((5-(3,5-dinitrophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-tr**
- 411 iazol-1-yl)methyl)-2-methylpyrimidine (6h)
- 412 Yellow solid; Yield 87%; m.p 163-165 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ(ppm): 2.37 (s, 3H,
- 413 CH₃), 4.66 (s, 2H, -SCH₂-), 5.48 (s, 2H, CH₂), 7.10 (s, 2H, NH₂), 7.60 (s, 2H, Ar-H), 7.60 (s, 1H,
- 414 1,2,3-triazol-1-yl-H), 7.94 (s, 1H, pyrimidine-5-yl-H), 7.94 (s, 1H, Ar-H); ¹³C NMR (100 MHz,
- 415 DMSO-*d*₆) δ(ppm): 25.5, 27.8, 46.5, 108.5, 118.6, 119.7, 122.6, 127.4, 142.3, 149.2, 151.0, 157.5,
- 416 158.9, 164.9, 167.5; HR-EIMS (EI) m/z 471.0950 (M+H)⁺, calcd. for $C_{17}H_{15}N_{10}O_5S$ m/z = 417 471.0948.
- 418 **5.6.9.**
- 419 2-methyl-4-amine-5-((4-(((5-(3-nitrophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-triaz
- 420 ol-1-yl)methyl)pyrimidine (6i)

421	Yellow solid; Yield 90%; m.p 171-173 °C; ¹ H NMR (400 MHz, DMSO-d ₆) δ (ppm): 2.28 (s, 3H,
422	CH ₃), 4.72 (s, 2H, -SCH ₂ -), 5.51 (s, 2H, CH ₂), 7.18 (s, 2H, NH ₂), 7.88 (s, 1H, Ar-H), 8.20 (s, 1H,
423	pyrimidine-5-yl-H), 8.36 (s, 1H, Ar-H), 8.43 (s, 1H, Ar-H), 8.62 (s, 1H, Ar-H); ¹³ C NMR (100
424	MHz, DMSO- <i>d</i> ₆) δ(ppm): 25.1, 27.2, 46.1, 107.6, 119.1, 120.9, 122.1, 127.1, 127.6, 130.1, 145.1,
425	149.1, 150.0, 155.5, 158.5, 164.2, 167.1; HR-EIMS (EI) m/z 426. 1069 (M+H) ⁺ , calcd. for
426	$C_{17}H_{16}N_9O_3S m/z = 426. 1097.$
427	5.6.10.
428	2-methyl-4-amine-5-((4-(((5-(2-fluorophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-tria
429	zol-1-yl)methyl)pyrimidine (6j)
430	White solid; Yield 90%; m.p 165-167 °C; 1H NMR (400 MHz, DMSO-d ₆) δ(ppm): 2.33 (s, 3H,
431	CH ₃), 4.64 (s, 2H, -SCH ₂ -), 5.45 (s, 2H, CH ₂), 7.04 (s, 2H, NH ₂), 7.42 (d, 2H, Ar-H, <i>J</i> = 21.1 Hz),
432	7.65 (s, 1H, Ar-H), 7.96 (s, 1H, Ar-H), 8.15 (s, 1H, pyrimidine-5-yl-H); ¹³ C NMR (100 MHz,
433	DMSO- <i>d</i> ₆) δ (ppm): 25.1, 27.5, 46.1, 107.3, 116.5, 119.6, 123.2, 125.4, 129.5, 131.5, 149.2, 150.8,
434	151.4, 157.4, 158.6, 159.4, 164.2, 167.1; HR-EIMS (EI) m/z 399.1143 (M+H) ⁺ , calcd. for
435	$C_{17}H_{16}FN_8OS m/z = 399.1152.$
436	5.6.11.
437	eq:2-methyl-4-amine-5-((4-(((5-(2-chloro-4-nitrophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,
438	2,3-triazol-1-yl)methyl)pyrimidine (6k)
439	Yellow solid; Yield 93%; m.p 162-164 °C; ¹ H NMR (400 MHz, DMSO- <i>d</i> ₆) δ(ppm): 2.28 (s, 3H,
440	CH ₃), 4.67 (s, 2H, -SCH ₂ -), 5.41 (s, 2H, CH ₂), 6.91 (s, 2H, NH ₂), 8.14 (s, 1H, pyrimidine-5-yl-H),
441	8.20 (s, 1H, Ar-H), 8.23 (s, 1H, 1,2,3-triazol-1-yl-H), 8.40 (s, 1H, Ar-H), 8.43 (s, 1H, Ar-H); ¹³ C

442 NMR (100 MHz, DMSO-*d*₆) δ(ppm): 25.4, 27.8, 47.1, 108.2, 121.5, 124.4, 126.2, 127.1, 130.1,

- 443 132.7, 144.4, 149.2, 158.5, 165.5, 164.1, 164.7, 167.5; HR-EIMS (EI) m/z 460.0710 (M+H)⁺,
- 444 calcd. for $C_{17}H_{15}ClN_9O_3S$ m/z = 460.0707.
- 445 **5.6.12.**
- 446 2-methyl-4-amine-5-((4-(((5-(2-chlorophenyl)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-1,2,3-tria
- 447 zol-1-yl)methyl)pyrimidine (6l)
- 448 White solid; Yield 86%; m.p 126-128 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ(ppm): 2.33 (s, 3H,
- 449 CH₃), 4.65 (s, 2H, -SCH₂-), 5.45 (s, 2H, CH₂), 7.04 (s, 2H, NH₂), 7.53-7.67 (m, 3H, Ar-H), 7.92 (s,
- 450 1H, Ar-H), 8.15 (s, 1H, pyrimidine-5-yl-H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ(ppm): 25.1, 27.5,
- 451 46.1, 107.3, 119.5, 125.3, 126.4, 128.1, 129.7, 131.8, 149.2, 150.8, 150.4, 151.3, 158.3, 164.1,
- 452 167.4; HR-EIMS (EI) m/z 415.0831 (M+H)⁺, calcd. for $C_{17}H_{16}ClN_8OS$ m/z = 415.0856.
- 453 **5.6.13**.
- 454 2-methyl-4-amine-5-((4-(((5-(2-amine-4-methylthiazol)-1,3,4-oxadiazol-2-yl)thio)methyl)-1H-
- 455 **1,2,3-triazol-1-yl)methyl)pyrimidine (11a)**
- 456 Gray solid; Yield 85%; m.p 229-230 °C; ¹H NMR (400 MHz, DMSO-d₆) δ(ppm): 2.30 (s, 3H,
- 457 CH₃), 2.36 (s, 3H, thiazol-CH₃), 4.54 (s, 2H, -SCH₂-), 5.42 (s, 2H, CH₂), 6.93 (s, 2H, pyrimidine
- 458 -4-NH₂), 7.76 (s, 2H, thiazol-2-NH₂), 8.10 (s, 1H, pyrimidine-5-yl-H); ¹³C NMR (100 MHz,
- 459 DMSO-*d*₆) δ(ppm): 14.7, 23.6, 27.8, 46.3, 105.2, 118.3, 119.9, 125.6, 146.1, 149.9, 150.6, 158.6,
- 460 164.7, 167.2, 167.8; HR-EIMS (EI) m/z 417.1031 (M+H)⁺, calcd. for $C_{15}H_{17}N_{10}OS_2$ m/z = 461 417.1028.
- 462 **5.6.14**.
- 463 **2-methyl-4-amine-5-((4-(((5-(2-amine-N,4-dimethylthiazol)-1,3,4-oxadiazol-2-yl)thio)methyl)**
- 464 *-1H*-1,2,3-triazol-1-yl)methyl)pyrimidine (11b)

465	Gray solid;	Yield 86%; m.p	189-191 °C;	¹ H NMR	(400 MHz,	$DMSO-d_6$)	δ(ppm): 2.31	(s, 3H,
-----	-------------	----------------	-------------	--------------------	-----------	--------------	--------------	---------

- 466 CH₃), 2.40 (s, 3H, thiazol-CH₃), 2.87 (s, 3H, NCH₃), 4.54 (s, 2H, -SCH₂-), 5.43 (s, 2H, CH₂), 6.95
- 467 (s, 2H, pyrimidine-4-NH₂), 8.10 (s, 1H, pyrimidine-5-yl-H), 8.28 (s, 1H, NH); ¹³C NMR (100
- 468 MHz, DMSO-d₆) δ(ppm): 14.7, 18.5, 22.5, 27.0, 45.2, 105.8, 118.2, 119.9, 125.1, 146.5, 149.8,
- 469 150.9, 158.6, 164.5, 164.8, 167.8; HR-EIMS (EI) m/z 431.1190 (M+H)⁺, calcd. for $C_{16}H_{19}N_{10}OS_2$
- 470 m/z = 431.1185.
- 471 **5.6.15**.
- 472 2-methyl-4-amine-5-((4-(((5-(2-amine-4-trifluoromethylthiazol)-1,3,4-oxadiazol-2-yl)thio)met
- 473 hyl)-1H-1,2,3-triazol-1-yl)methyl)pyrimidine (11c)
- 474 Gray solid; Yield 81%; m.p 201-202 °C; ¹H NMR (400 MHz, DMSO-d₆) δ(ppm): 2.32 (s, 3H,
- 475 CH₃), 4.58 (s, 2H, -SCH₂-), 5.47 (s, 2H, CH₂), 7.02 (s, 2H, pyrimidine-4-NH₂), 8.12 (s, 1H,
- 476 pyrimidine-5-yl-H), 8.29 (s, 2H, thiazol-2-NH2); ¹³C NMR (100 MHz, DMSO-*d*₆) δ(ppm): 14.5,
- 477 23.9, 28.5, 47.1, 106.5, 118.9, 119.9, 125.6, 128.7, 128.4, 128.2, 127.9, 146.1, 148.2, 149.9, 158.9,
- 478 164.2, 164.7, 167.9; HR-EIMS (EI) m/z 471.0750 (M+H)⁺, calcd. for $C_{15}H_{14}F_{3}N_{10}OS_{2}$ m/z =
- 479 471.0746.
- 480 **5.6.16.**

482

481 **2-methyl-4-amine-5-((4-(((5-(2-amine-N-methyl-4-trifluoromethylthiazol)-1,3,4-oxadiazol-2-y**

I)thio)methyl)-1H-1,2,3-triazol-1-yl)methyl)pyrimidine (11d)

483	Gray solid; Yield 79%; m.p 197-198 °C; ¹ H NMR (400 MHz, DMSO-d ₆) δ(ppm): 2.30 (s, 3H,
484	CH ₃), 2.91 (s, 3H, NCH ₃), 4.57 (s, 2H, -SCH ₂ -), 5.43 (s, 2H, CH ₂), 6.93 (s, 2H, pyrimidine
485	-4-NH ₂), 8.10 (s, 1H, pyrimidine-5-yl-H), 8.76 (s, 1H, NH); ¹³ C NMR (100 MHz, DMSO-d ₆)
486	δ(ppm): 14.7, 20.5, 22.5, 27.0, 45.2, 104.9, 119.3, 120.3, 126.7, 127.8, 128.1, 128.4, 128.6, 148.6,

- 487 149.8, 150.9, 158.9, 160.4, 164.8, 167.8; HR-EIMS (EI) m/z 485.0910 (M+H)⁺, calcd. for
- 488 $C_{16}H_{16}F_3N_{10}OS_2 m/z = 485.0902.$
- 489 **5.6.17.**
- 490 2-methyl-4-amine-5-((4-(((5-(2-amine-4-methylthiazol)-4H-1,2,4-triazol-4-amine-2-yl)thio)me
- 491 thyl)-*1H*-1,2,3-triazol-1-yl)methyl)pyrimidine (14a)
- 492 Gray solid; Yield 86%; m.p 219-220 °C; ¹H NMR (400 MHz, DMSO-d₆) δ(ppm): 2.31 (s, 3H,
- 493 CH₃), 2.37 (s, 3H, thiazol-CH₃), 4.46 (s, 2H, -SCH₂-), 5.42 (s, 2H, CH₂), 5.99 (s, 2H,
- 494 1,2,4-triazol-NH₂), 6.96 (s, 2H, pyrimidine-4-NH₂), 7.23 (s, 2H, thiazol-2-NH₂), 8.10 (s, 1H,
- 495 pyrimidine-5-yl-H); ¹³C NMR (100 MHz, DMSO-*d*₆) δ(ppm): 15.3, 24.3, 27.9, 46.9, 106.3, 118.7,
- 496 119.9, 135.5, 149.9, 150.9, 151.3, 155.4, 158.7, 164.2, 167.6; HR-EIMS (EI) m/z 431.1300
- 497 $(M+H)^+$, calcd. for $C_{15}H_{19}N_{12}S_2$ m/z = 431.1297.
- **4**98 **5.6.18**.
- 499 2-methyl-4-amine-5-((4-(((5-(2-amine-N,4-dimethylthiazol)-4H-1,2,4-triazol-4-amine-2-yl)thi
- 500 o)methyl)-*1H*-1,2,3-triazol-1-yl)methyl)pyrimidine (14b)
- 501 Yellow solid; Yield 76%; m.p 188-189 °C; ¹H NMR (400 MHz, DMSO-*d*₆) δ(ppm): 2.31 (s, 3H,
- 502 CH₃), 2.41 (s, 3H, thiazol-CH₃), 2.83 (s, 3H, NCH₃), 4.45 (s, 2H, -SCH₂-), 5.41 (s, 2H, CH₂), 6.00
- 503 (s, 2H, 1,2,4-triazol-NH₂), 6.96 (s, 2H, pyrimidine-4-NH₂), 7.75 (s, 1H, 1,2,3-triazol-H), 8.08 (s,
- 504 1H, pyramidine-5-yl-H), 8.29 (s, 1H, NH); ¹³C NMR(100 MHz, DMSO-*d*₆) δ(ppm): 12.7, 13.5,
- 505 21.0, 25.1, 44.8, 105.8, 116.2, 117.9, 131.5, 147.8, 148.9, 149.3, 153.2, 156.6, 162.5, 162.8;
- 506 HR-EIMS (EI) m/z 445.1450 (M+H)⁺, calcd. for $C_{16}H_{21}N_{12}S_2$ m/z = 445.1454.
- 507 **5.6.19**.
- 508 2-methyl-4-amine-5-((4-(((5-(2-amine-4-trifluoromethylthiazol)-4H-1,2,4-triazol-4-amine-2-y

509 l)thio)methyl)-1H-1,2,3-triazol-1-yl)methyl)pyrimidine (14c)

- 510 Brown solid; Yield 77%; m.p 169-171 °C; ¹H NMR (400 MHz, DMSO-d₆) δ(ppm): 2.32 (s, 3H,
- 511 CH₃), 4.52 (s, 2H, -SCH₂-), 5.46 (s, 2H, CH₂), 6.02 (s, 2H, 1,2,4-triazol-NH₂), 7.01 (s, 2H,
- 512 pyrimidine-4-NH₂), 7.82 (s, 2H, thiazol-2-NH₂), 8.13 (s, 1H, pyrimidine-5-yl-H),; ¹³C NMR (100
- 513 MHz, DMSO-*d*₆) δ(ppm): 14.7, 23.4, 28.9, 47.8, 109.5, 118.9, 116.9, 125.1, 128.5, 128.9, 129.6,
- 514 130.3, 151.1, 152.6, 157.2, 160.6, 164.2, 166.7; HR-EIMS (EI) m/z 485.1012 (M+H)⁺, calcd. for
- 515 $C_{15}H_{16}F_3N_{12}S_2 m/z = 485.1014.$
- 516 **5.6.20**.

517 2-methyl-4-amine-5-((4-(((5-(2-amine-N-methyl-4-trifluoromethylthiazol)-1,3,4-oxadiazol-2-y

- 518 l)thio)methyl)-4H-1,2,4-triazol-4-amine-2-yl)methyl)pyrimidine (14d)
- 519 Yellow solid; Yield 75%; m.p 156-157 °C; ¹H NMR (400 MHz, DMSO-d₆) δ(ppm): 2.31 (s, 3H,
- 520 CH₃), 2.89 (s, 3H, NCH₃), 4.48 (s, 2H, -SCH₂-), 5.45 (s, 2H, CH₂), 6.01 (s, 2H, 1,2,4-triazol-NH₂),
- 521 6.96 (s, 2H, pyrimidine-4-NH₂), 8.10 (s, 1H, pyrimidine-5-yl-H), 8.32 (s, 1H, NH); ¹³C NMR (100
- 522 MHz, DMSO-*d*₆) δ(ppm): 15.3, 22.5, 23.5, 27.6, 47.2, 110.1, 121.3, 126.3, 129.9, 131.9, 132.1,
- 523 133.4, 133.6, 150.9, 155.8, 157.3, 159.6, 160.4, 166.6; HR-EIMS (EI) m/z 499.1174 (M+H)⁺,
- 524 calcd. for $C_{16}H_{18}F_3N_{12}S_2$ m/z = 499.1171.

525 5.7. Assay of *E.coli* PDHc-E1(*in vitro*) and site-directed mutagenesis of PDHc-E1

The expressing plasmid pMal- C_{2x} -PDHc E1 was transformed into *E. coli* strain TB1 and inoculated in Luria – Bertani broth containing 2% glucose and 30 mg/ml ampicillin at 37 °C until reaching a cell density to A600 of 0.6 – 0.8. Then cells were induced with a final concentration of 0.5 mM IPTG for 7 h at 25°C before harvesting. Purification of the fusion protein was carried out using a MBP affinity column attached to an AKTA purifier 10 (UPC-F920, GE Healthcare Life

531	Sciences). The concentrations of purified proteins were determined by the method of Bradford ²⁹
532	using bovine serum albumin (Tiangen) as standard. The final purity (>95%) of the sample was
533	verified by SDS - PAGE and then the purified protein was stored in 50% (v/v) glycerol at -20°C.
534	The inhibitory activities of synthesized compounds were measured by the enzymatic assay.
535	PDHc-E1 activity was assayed by a modified method of N. Nemeria ³⁰ and measured by
536	monitoring the reduction of 2,6-DichloroPhenolindophenol (2,6-DCPIP) at 600 nm using a
537	microplate reader (BioTek Synergy 2, USA). The total volume of 100 µL reaction mixture
538	contained 50 mM K ₃ PO ₄ , pH 7.2, 2.0 mM sodium pyruvate as substrate, 0.8 mM 2,6-DCPIP, 7.1
539	μ M enzyme and different concentration of inhibitors. The reaction mixtures were incubated for 3
540	min at 37 $^{\circ}$ C, then different concentrations of ThDP (ranging from 0 to 200 μ M) were added to
541	the initiate reaction. To determine the inhibitor concentration of synthesized compounds at 50%
542	inhibition (IC ₅₀), initial rate data taken at saturating substrate, fixed effectors, and systematically
543	varied inhibitor concentrations were fit to Hill equation, $V = V_0 - (V_0 - V_{\infty})/((IC_{50}/I)^n + 1)$. ³¹ Where V,
544	V_0 , and V_{∞} are the velocity, maximum velocity (at $I = 0$), and the limiting velocity (at I
545	saturating); n is the Hill coefficient associated with the inhibitor; and IC ₅₀ is the inhibition
546	concentration of synthesized compounds at 50% inhibition. Each experiment was performed at
547	least three times. All kinetic data were fit to the growth/sigmoidal model from origin 7.0 software.
548	One unit of activity is defined as the amount of 2,6-DCPIP reduced (µmol/min/mg of PDHc-E1).
549	Site-directed mutagenesis of PDHc E1 was accomplished by the introduction of specific base
550	changes into a double-stranded DNA plasmid, as described previously. DNA encoding of the
551	wild-type PDHc E1 cloned into the pMAL- C_{2x} -PDHc-E1 was used as a template for mutagenesis.
552	The standard PCR mixture contained 50-100 ng of template DNA and 100-200 ng of each

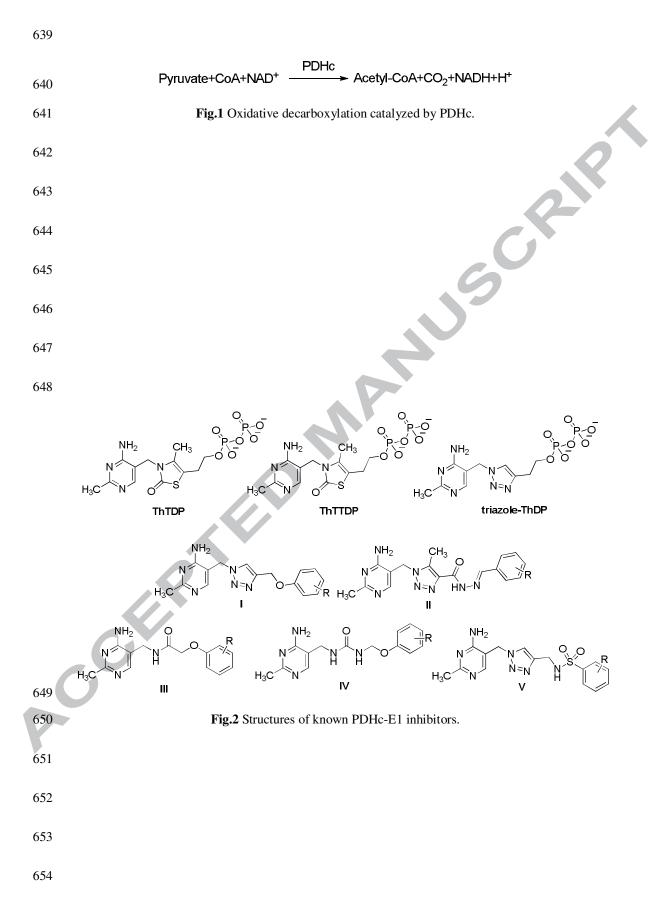
553	mutagenizing primer. The methylated plasmid was digested with DpnI, and 4 μ	L of each reaction
554	was used to transform the DH5 α competent cells. All mutations were co	onfirmed by DNA
555	sequencing. Verified plasmids containing the desired mutations were transform	ned into the E. coli
556	TB1 strain. The mutant PDHc E1 proteins were purified in the same manne	er as the wild-type
557	PDHc E1.	2
558	5.8. Molecular docking	

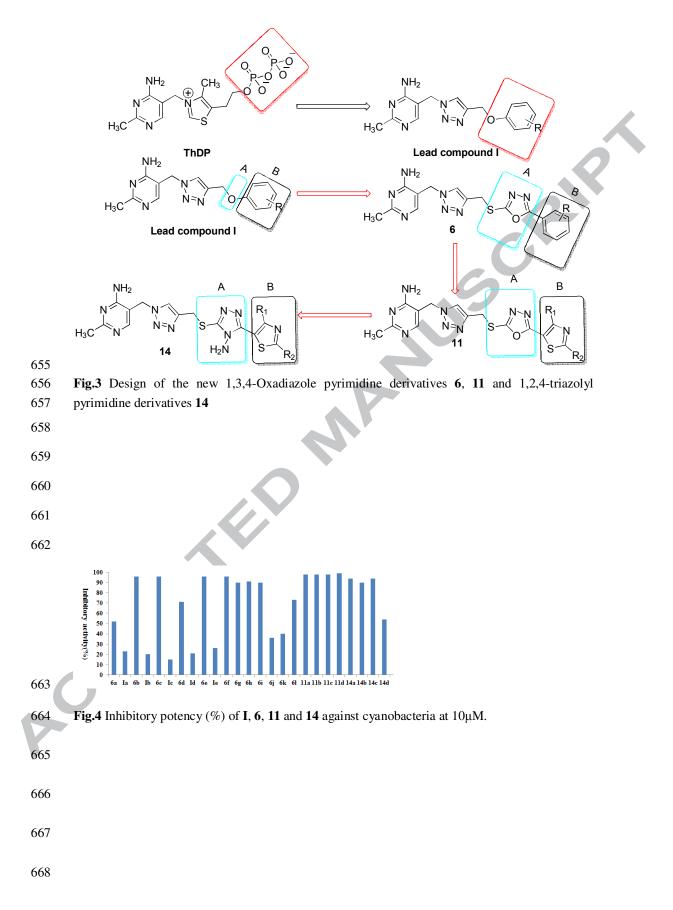
For docking purposes, the crystallographic coordinates of the PDHc-E1 with bound ThDP from E. 559 coli (PDB code: 1L8A)³² were obtained from Brookhaven Data Bank. Hydrogen atoms were 560 561 added to the structure allowing for appropriate ionization at physiological pH. The protonated 562 state of several important residues, such as His142, Tyr177, Glu751, His640 and Met 194, were 563 adjusted by using SYBYL7.3 (Tripos, St. Louis, USA) in favor of forming reasonable hydrogen 564 bond with the ligand. Molecular docking analysis was carried out by the SURFLEX module of 565 SYBYL package to explore the interaction model for the active site of PDHc-E1 with its ligand. All atoms located within the range of 6.5 Å from any atom of the cofactor ThDP were selected 566 into the active site, and the corresponding amino acid residue was, therefore, involved into the 567 568 active site if only one of its atoms was selected. Other default parameters were adopted in the SURFLEX-docking calculations. All calculations were performed on a CCNU Grid-based 569 570 computational (CCNUGrid website environment 571 http://www.202.114.32.71:8090/ccnu/chem/platform.xml).

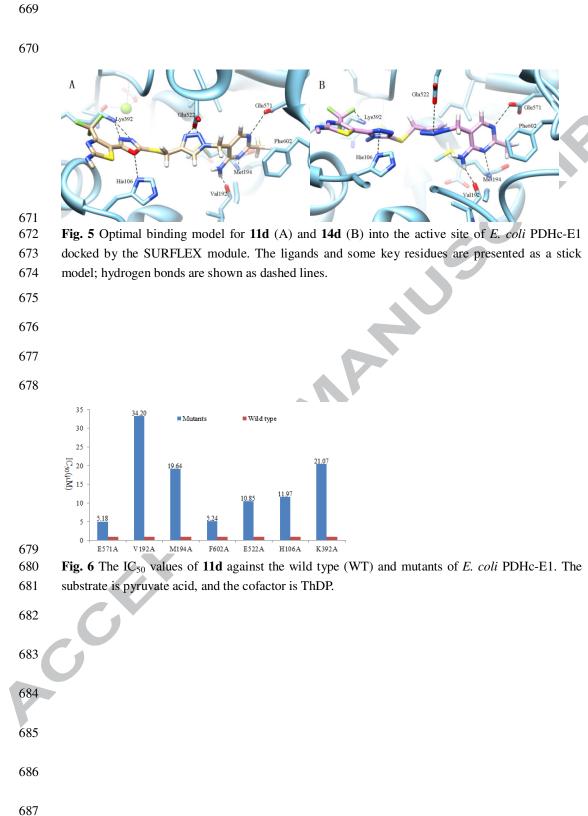
572 Acknowledgments

- 573 The work was supported in part by the National Basic Research Program of China (No.
- 574 2010CB126100); National Natural Science Foundation of China (No. 21172090 and 21472062);
- 575 Natural Science Key Foundation of Hubei Province (No. 2014CFA111); Excellent doctorial
- 576 dissertation cultivation grant from Central China Normal University.

577 **References and notes**


- 578 1. Carmichael, W. W. Hum. *Ecol. Risk Assess.* 2001, 7, 1393.
- 579 2. St-Jean, M.; Blonski, C.; Sygusch, J. *Biochemistry*. 2009, 48, 4528.
- 580 3. Choi, K. H.; Shi, J.; Hopkins, C. E.; Tolan, D. R.; Allen, K. N. Biochemistry. 2001, 40,
- 581 13868–13875.
- 582 4. Bates, D. L.; Danson, M. J.; Hale, G.; Hopper, E. A.; Perham, R. N. Nature. 1977, 268, 313.
- 583 5. Perham, R. N. Annu. Rev. Biochem. 2000, 69, 961.
- 584 6. Wei, W.; Li, H.; Nemeria, N.; Jordan, F.; Protein Expr. Purif. 2003, 28, 140.
- 585 7. Dobritzsch, D.; König, S.; Schneider, G.; Lu, G. J. Biol. Chem. 1998, 273, 20196.
- 586 8. Kluger, R.; Pike, D. C. J. Am. Soc. Chem. 1977, 99, 4504.
- 587 9. Kern, D.; Kern, G.; Neef, H.; Tittmann, K.; Killenberg-Jabs, M.; Wikner, C.; Schneider, G;
- 588 Hübner, G. Science. 1997, 275, 67.
- 589 10. Jordan, F.; Nemeria, N. S. *Bioorg. Chem.* 2005, 33, 190.
- 590 11. Lowe, P.; Leeper, F. J.; Perham, R. N. Biochemistry. 1983, 22, 150.
- 591 12. Nemeria, N.; Yan, Y.; Zhang, Z.; Brown, A.M.; Arjunan, P.; Furey, W.; Guest, J. R.; Jordan, F. J.
- 592 Biol. Chem. 2001, 276, 45969.
- 593 13. Arjunan, P.; Chandrasekhar, K.; Sax, M.; Brunskill, A.; Nemeria, N.; Jordan, F.; Furey, W.
- 594 Biochemistry. 2004, 43, 2405.


- 595 14. Arjunan, P.; Sax, M.; Brunskill, A.; Chandrasekhar, K.; Nemeria, N.; Zhang, S.; Jordan, F.;
- 596 Furey, W. J. Biol. Chem. 2006, 281, 15296.
- 597 15. Erixon, K. M.; Dabalos, C. L.; Leeper, F. J. Chem. Commun. 2007, 960.
- 598 16. Ren, Y. L.; He, J. B.; Feng, L. L.; Liao, X.; Jin, J.; Li, Y. J.; Cao, Y.; Wan, J.; and He, H. W.
- 599 Bioorg. Med. Chem. 2011, 19, 7501.
- 600 17. He, J. B.; Feng, L. L.; Li, J.; Tao, R. J.; Wang, F.; Liao, X.; Sun, Q. S.; Long, Q. W.; Ren, R. L.;
- 601 Wan, J.; He, H. W. Bioorg. Med. Chem. 2012, 20, 1665.
- 602 18. He, J. B.; Feng, L. L.; Li, J.; Tao, R. J.; Ren, Y. L.; Wan, J.; He, H. W. Bioorg. Med. Chem.
- 603 **2014**, 22, 89.
- 604 19. He, J. B.; Ren, Y. L.; Sun, Q. S.; You, G. Y.; Zhang, L.; Zou, P.; Feng, L. L.; Wan, J.; He, H. W.
- 605 Bioorg. Med. Chem. 2014, 22, 3180.
- 606 20. He, J. B.; He, H. F.; Zhao, L. L.; Zhang, L.; You, G. Y.; Feng, L. L.; Wan, J.; He, H. W. Bioorg.
- 607 Med. Chem. 2015, 23, 1395.
- 608 21. He, H. F.; Feng, J.T.; He, J. B.; Xia, Q.; Ren, Y. L.; Wang, F.; Peng, H.; He, H. W.; Feng, L.
- 609 L. *RSC Adv.* **2016**, 6, 4310.
- 610 22. Li, P.; Yin, J.; Xu, W. M.; Wu, J.; Hu, D. Y.; Yang, S.; Song, B. A. Chem. Biol. Drug Des. 2013,
- 611 82, 546.
- 612 23. Rai, N. P.; Narayanaswamy, V. K.; Shashikanth, S.; Arunachalam, P. N. *Eur. J. Med. Chem.*613 2009, 44, 4522.
- 614 24. Malla, R. V.; Ravinder, R. K. Chem. Pharm. Bull. 2010, 58, 953.
- 615 25. Güzeldemirci, N. U.; Satana, D.; Küçükbasmacı, O. J. Enzym. Inhib and Med. Chem. 2013, 28,
- 616 968.

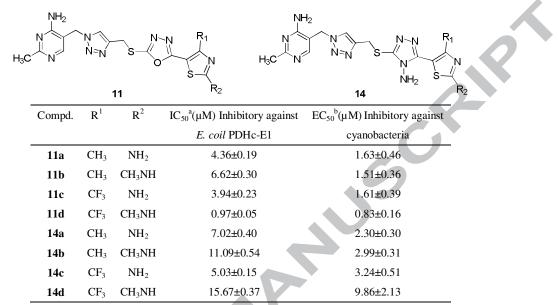

- 617 26. Erixon, K. M.; Dabalos, C. L.; Leeper, F. J. Org. Biomol. Chem. 2008, 6, 3561.
- 618 27. Mathew, V.; Keshavayya, J.; Vaidya, V. P. Eur. J. Med. Chem. 2006, 41, 1048.
- 619 28. Nemeria, N. S.; Korotchkina, L. G.; et al. *Bioorg Chem.* 2006, 34, 362.
- 620 29. Bradford, M. M. Biochem. 1976, 72, 248.
- 621 30. Yan, N. Y.; Zhang, Z.; Brown, A. M.; Arjunan, P.; Furey, W.; Guest, J. R.; Jordan, F. J. Biol.
- *Chem.* **2001**, 276, 45969.
- 623 31. Hines, J. K.; Kruesel, C. E.; Fromm, H. J.; Honzatko, R. B. J. Biol. Chem. 2007, 282, 24697.

MAT

624 32. Stanier, R. Y.; Kunisawa, R.; Mandel, M. Bacteriol. Rev. 1971, 35, 171.

- . . .
- 688

	N H₃C		$ \begin{array}{c} R \\ N \\ H_{3}C \\ N \\ $	N-N R
90		I		6
	Compd.	R	$IC_{50}^{a}(\mu M)$ Inhibitory against	$EC_{50}^{b}(\mu M)$ Inhibitory against
			E. coil PDHc-E1	cyanobacteria
	6a	4-NO ₂	7.59±0.37	9.04±1.98
	Ia	4-NO ₂	8.80±0.35	>50
	6b	4-C1	7.08±0.26	5.25±0.94
	Ib	4-C1	26.44±1.68	>50
	6c	2-NO ₂	9.84±0.45	4.76±0.31
	Ic	2-NO ₂	36.29±1.35	>50
	6d	2,4-diCl	13.18±0.82	5.99±0.88
	Id	2,4-diCl	18.74±1.24	>50
	6e	Н	7.87±0.35	5.15±0.46
	Ie	Н	55.15±4.65	>50
	6f	4-F	9.11±0.19	5.34±0.69
	6g	$4-CF_3$	15.87±0.53	5.35±0.31
	6h	3,5-diNO ₂	8.61±0.34	2.33±0.43
	6i	3-NO ₂	10.38±0.30	5.14±1.11
	6j	2-F	19.21±1.57	8.05±1.36
	61	2-C1	12.39±0.42	2.28±0.18
	6k	2-C1-4NO ₂	12.80±0.67	6.37±1.56


689 Table 1 Structure and inhibitory activity of 1,3,4-Oxadiazole pyrimidine derivatives 6 and I

691 ^aIC₅₀ (μM) value is defined as the micromolar concentration required for 50% inhibition against PDHc-E1 from E.

coli in vitro. ^bThe inhibitory activity against Synechocystis sp. PCC 6803.

702 Table 2 Structure and inhibitory activity of 1,3,4-Oxadiazole pyrimidine derivatives 11 and

703 1,2,4-triazolyl pyrimidine derivatives 14

705 ^aIC₅₀ (µM) value is defined as the micromolar concentration required for 50% inhibition against PDHc-E1 from E.

coli in vitro. ^bThe inhibitory activity against Synechocystis sp. PCC 6803.

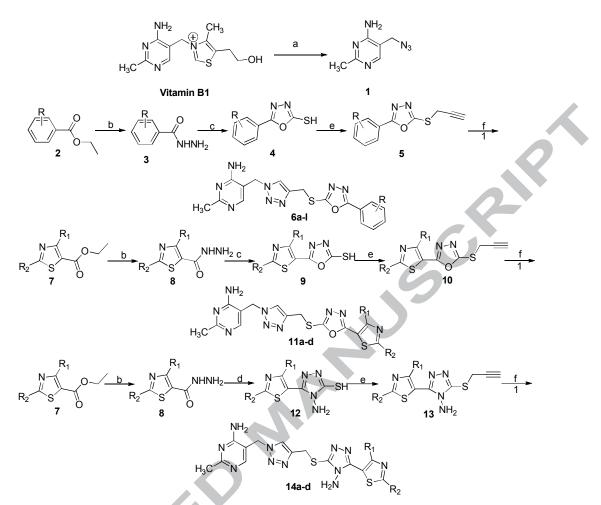
- .

Table 3 Antifungal activity of **6**, **11** and **14**

Inhibitory potency ^a (%)					Inhibitor	y potency ^a (%)		
Comp	A.solan	R.solan	B.cinere	C.orbicular	Comp	A.solan	R.solan	B.cinere	C.orbicular
d.	i^b	i^b	a^b	e^b	d.	i^b	i^b	a^b	e^b
6a	60	55	45	35	6k	35	46	54	38
6b	60	46	45	52	11a	56	11	31	24
6c	58	40	54	48	11b	44	11	31	26
6e	47	30	60	40	11c	53	11	60	25
6f	44	0	60	32	11d	41	14	50	36
6g	35	0	45	45	14a	29	16	16	26
6h	30	30	41	33	14b	25	17	11	16
6i	48	60	59	40	14c	21	11	20	35
6j	40	0	28	32	14d	-21-	11	8	28

^aInhibitory potency (%) against the growth of pathogenic fungi at 100 µg/mL, 0 (no effect), 100% (completely kill).

^bA. solani, Alternaria solani; R. solani, Rhizoctonia solani; B. cinerea, Botrytis cinerea; C. orbiculare,
 Colletotrichum orbicu

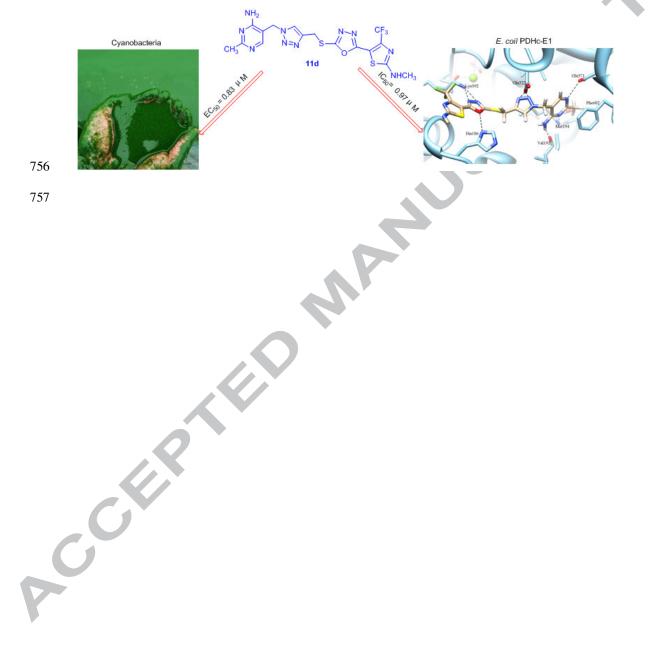

Table 4 Inhibition of **11** against *E. coli* and pig PDHc-E1

Compd.	E. coli PDHc-E1		Pig PDHc-E1	-
	$IC_{50}{}^{a}(\mu M)$	Inhibitory potency ^b (%)	Inhibitory potency ^b (%)	
11a	4.36±0.19	100±1.26	27.15±7.98	
11b	6.62±0.30	100±2.36	15.59±0.76	
11c	3.94±0.23	100±5.66	28.26±1.52	
11d	0.97±0.05	100±3.21	26.07±2.47	

 ${}^{a}IC_{50}(\mu M)$ value is defined as the micromolar concentration required for 50% inhibition against PDHc-E1 from E.

coli in vitro. ^b Inhibitory potency (%) of compounds against enzyme *in vitro* at 100 µM as average of triplicate.

739	9
740	
741	
742	
743	
744	
P	


745

746 Scheme 1. Reagents and conditions (a) NaN_3 , Na_2SO_3 , H_2O , $60 - 65^{\circ}C$ 56%; (b) $NH_2NH_2.H_2O$,

747 EtOH, reflux; (c) CS₂, KOH, EtOH reflux; HCl; (d) CS₂, KOH, EtOH reflux; NH₂NH₂.H₂O,

748 reflux; (e) $BrCH_2CCH$, K_2CO_3 , acetone, reflux, 1h; (f) CuI, Et_3N , THF, rt, 10 - 15 h;

- 750 Graphic abstract for
- 751 Rational design, synthesis and biological evaluation of 1,3,4-oxadiazole pyrimidine
- 752 derivatives as novel pyruvate dehydrogenase complex E1 inhibitors
- 753
- 754 1,3,4-Oxadiazole pyrimidine derivative **11d** exhibited most powerful inhibitory potency against *E*.
- 755 *coli* PDHc-E1 (IC₅₀ = 0.97 μ M) and cyanobacteria (EC₅₀ = 0.83 μ M).

