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Abstract

This letter presents novel multiplication-free fast codeword search algorithms for encoding of vector quantizers

(VQs) based on squared-distance measure. The algorithms accomplish fast codeword search by performing the partial

distance search (PDS) in the wavelet domain. To eliminate the requirement for multiplication, simple Haar wavelet is

used so that the wavelet coe�cients of codewords are ®nite precision numbers. The computation of squared distance for

PDS can therefore be e�ectively realized using additions. To further enhance the computational e�ciency of the al-

gorithms, the addition-based squared-distance computation is decomposed into a number of stages. The PDS process is

then extended to these stages to reduce the addition complexity of the algorithm. In addition, by performing PDS over

smaller number of stages, lower computational complexity can be obtained at the expense of slightly higher average

distortion for encoding. Simulation results show that our algorithms are very e�ective for the encoding of VQs, where

both low computational complexity and average distortion are desired. Ó 2000 Elsevier Science B.V. All rights

reserved.
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1. Introduction

Vector quantizers (VQs) (Abut, 1990; Gersho
and Gray, 1992) have been shown to be very ef-
fective for signal compression and video coding. In
the design of a VQ, in addition to its rate-distor-
tion performance, the computational complexity

for encoding is usually the important concern. For
the full-search VQs with high vector dimension
and/or large number of codewords, although a
good rate-distortion performance can be achieved,
the high computational complexity for encoding
might cause the VQs impractical for the imple-
mentation of realtime processing systems. To
eliminate the drawback, a number of fast code-
word search algorithms (Bei and Gray, 1985;
Hwang et al., 1997; Paliwal and Ramasubrama-
nian, 1989) have been proposed for the encoding
of full-search VQs. Although reasonable reduc-
tion in computational complexity is achieved,
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multiplications are still required for these algo-
rithms.

The objective of this letter therefore is to
present multiplication-free fast codeword search
algorithms for the encoding of full-search VQs
based on squared-distance measure. Similar to
the technique presented in (Hwang et al., 1997),
our algorithms achieve fast encoding by per-
forming the partial distance search (PDS) (Bei
and Gray, 1985) in the wavelet domain (Vetterli
and Kovacevic, 1995). The wavelet used for the
fast search is the simple Haar wavelet so that the
wavelet coe�cients of codewords are ®nite-preci-
sion numbers. Consequently, squared distance
calculation can be realized using additions. In our
algorithms, the addition-based squared computa-
tion is decomposed into a number of stages. The
PDS is also extended to these stages to further
reduce the addition complexity of the algorithm.
When all the stages for squared computation are
considered in PDS, the actual closest codeword to
each sourceword can always be found and the
rate-distortion performance is not degraded.
Moreover, by performing the PDS over smaller
number of stages, lower computational complex-
ity can be obtained at the expense of possible
slight degradation in average distortion. There-
fore, in our algorithms, in addition to be multi-
plication-free, the addition complexity is allowed
to be controlled to provide best trade o� be-
tween computational complexity and rate-distor-
tion performance in accordance with the
application needs.

2. Preliminaries

In this section we review some basic facts of
wavelet transform (Vetterli and Kovacevic, 1995)
and the fast codeword search algorithm perform-
ing PDS in the wavelet domain (Hwang et al.,
1997). Let X be the n-stage discrete wavelet
transform (DWT) of a 2n � 2n vector x. Then,
as shown in Fig. 1, X is also a 2n � 2n vector
containing sub-vectors xL�ÿn� and xVk; xHk; xDk;
k � ÿn; . . . ;ÿ1, each with dimension 2�n�k��
2�k�n�. Note that, in the DWT, the sub-vectors xLk

(lowpass sub-vectors) and xVk; xHk; xDk (V, H and D

orientation selective highpass sub-vectors),
k � ÿn; . . . ;ÿ1, are obtained recursively from
xL�k�1� with xL0 � x. The decomposition of xL�k�1�
into four sub-vectors xLk; xVk ; xHk; xDk can be car-
ried out using a simple quadrature mirror ®lter
(QMF) scheme as shown in (Vetterli and Kovac-
evic, 1995).

Now, suppose there are K codewords in the
codebook of a full-search VQ: y1; . . . ; yK , each one
with dimension 2n � 2n. Let x be the sourceword
with the same dimension as these codewords. The
objective of the fast search algorithm for the full-
search VQ is to reduce the computational time for
®nding a codeword whose squared distance is
closest to the sourceword. That is, the algorithm
reduces the computational complexities for ®nding
yj� , where j� � arg min16 j6KD�x; yj�; and D�u; v� �PN

i�1�ui ÿ vi�2 is the squared distance between u
and v and N is the dimension of u and v.

Let X and Y j be the n-stage DWT of x and yj,
respectively. It can be shown that D�x; yj� �
D�X ;Y j�: Starting from the upper-left corner of
the DWT coe�cients, we index the elements of
vectors X and Y j in the zig-zag order as shown
in Fig. 2. Let Xi and Y j

i be the ith element of X
and Y j, respectively. Moreover, let Dm�X ;Y j� �Pm

i�1�Xi ÿ Y j
i �2; m � 1; . . . ; 2n � 2n; be the partial

distance between X and Y j. Since D�X ;Y j� >
Dm�X ;Y j�, it follows that:

Fig. 1. The DWT of a vector x.
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D�x; yj� > Dm�X ;Y j�: �1�

In particular, for m � 1, we have D�x; yj� >
�X1 ÿ Y j

1 �2. It then follows that:����������������
D�x; yj�

p
> jX1 ÿ Y j

1 j: �2�

In the algorithm, before the search process,
we obtain the DWT of the codewords. To perform
the fast codeword search, ®rst we initialize the
current closest codeword to be yp, where p �
arg minj D1�X ;Y j� and the current minimum dis-
tortion Dmin to be D�x; yp�. For each codeword yj

to be searched and we compute jY j
1 ÿ X1j. Suppose

jY j
1 ÿ X1j >

���������
Dmin

p
, it follows from Eq. (2) that����������������

D�x; yj�p
>

���������
Dmin

p
. Hence, yj is not the closest

codeword to x and can be rejected. Suppose
jY j

1 ÿ X1j <
���������
Dmin

p
; then we perform the following

PDS process. Starting from m � 2, for each value
of m, m � 2; . . . ; 2n � 2n, we ®rst evaluate
Dm�X ;Y j�. Suppose Dm�X ;Y j� > Dmin; then from
Eq. (1), it follows that D�x; yj� > Dmin and yj can
be rejected. Otherwise, we go to the next value of
m and repeat the same process. This PDS process
is continued until yj is rejected or m reaches
2n � 2n. If m � 2n � 2n, then we compare D�X ;Y j�
with Dmin. If D�X ;Y j� < Dmin; then the current
minimum distortion Dmin is replaced by D�X ;Y j�
and the current closest codeword to x is set to yj.
After all the codewords are searched, the ®nal
current closest codeword is the actual closest

codeword to x and the Dmin is the corresponding
distance.

3. Multiplication-free partial distance search in the

transform domain

Although performing PDS in the wavelet do-
main can signi®cantly reduce the computational
complexity without degrading rate-distortion per-
formance of VQs, multiplications are still required
for the algorithm. The objective of this letter
therefore is to present multiplication-free fast
search techniques which performs PDS in the
transform domain. In our algorithm, the Haar
wavelet is used to obtain wavelet coe�cients for
PDS. This is because the coe�cients in Haar do-
main are ®nite-precision numbers so that the
squared distance calculation for PDS can be real-
ized without multiplications. In addition, because
of the simplicity of the Haar wavelet, even the
®xed-point DSP processors can be e�ectively used
for implementing the transform without large
computational overhead.

Assume the elements in a vector x are q-bit in-
tegers. That is, if x is an element of x, then x can be
expressed as

x � Xqÿ12qÿ1 �Xqÿ22qÿ2 � � � � �X020; �3�
where Xi; qÿ 16 i6 0, are binary numbers taking
only values of 0 or 1. Let X be an element of X in
the Haar domain. Based on Eq. (3), if X is located
in the subbands at intermediate resolution level k,
(that is, X 2 fxHk; xVk; xDkg, where ÿ�nÿ 1�6
k6 ÿ 1) then X can be expressed as

X � Xqÿkÿ12qÿkÿ1 �Xqÿkÿ22qÿkÿ2 � � � � �Xk2k;

�4�
where Xi; k6 i6 qÿ k ÿ 1, are also binary num-
bers taking only values of 0 or 1. Otherwise, if X is
located in the lowest resolution level, (that is,
X 2 fxL�ÿn�; xH�ÿn�; xV �ÿn�; xD�ÿn�g) then the number
of bits required for storing X becomes largest and
X can be expressed as:

X � Xq�nÿ12q�nÿ1 �Xq�nÿ22q�nÿ2 � � � � �Xÿn2ÿn:

�5�

Fig. 2. Zig-zag ordering of DWT coe�cients.
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Given two vectors x and y, de®ne Am � jXm ÿ Ymj,
where the indexing of DWT coe�cients are given
in Fig. 2. Suppose Xm and Ym are inside subbands
at resolution level k, then Am can be written as

Am �Aqÿkÿ12qÿkÿ1 �Aqÿkÿ22qÿkÿ2 � � � � �Ak2k;

�6�
where Ai; k6 i6 qÿ k ÿ 1 are binary numbers
taking only values of 0 or 1. When performing the
PDS, the computation of A2

m is necessary. To
eliminate the requirement for multiplication when
computing A2

m, in this letter we propose two tech-
niques: the usual partial product accumulation
(PPA) (Katz, 1995) and modi®ed PPA.

The PPA technique is based on the fact that

A2
m � Am�Aqÿkÿ12qÿkÿ1 � � � � �Ak2k�; �7�

A2
m � B�

Xqÿkÿ2

r�k

Br; �8�

where

B � AmAqÿkÿ12qÿkÿ1 �9�
and

Br � AmAr2
r: �10�

De®ne S1 � fB;Br; k6 r6 qÿ k ÿ 2g. Since the
computation of elements in S1 require only shift
operations, multiplication is not necessary when
PPA is used for computing A2

m. In addition, from
Eq. (8), it follows that A2

m can be decomposed into
qÿ 2k terms in which each term involves only the
computation of distinct single element in S1.
Therefore, the PDS can be extended over these
terms to further reduce the computational com-
plexity. From Eqs. (9) and (10), it is observed that
B and Br having larger r value in S1 have higher
energy than the other elements. Consequently,
these elements are scanned ®rst for PDS. It is
known that higher discrepancy in energy among
elements for PDS can result in higher e�ciency for
fast codeword search. Nevertheless, all the ele-
ments in S1 are simply the shifted version of Am,
and therefore the di�erence in energy among them
might not be large. To enhance the discrepancy in
energy, the modi®ed PPA is proposed for PDS.

In the modi®ed PPA, we ®rst note that, from
Eq. (6), A2

m � �Xm ÿ Ym�2 can be expressed as

A2
m �

Xqÿkÿ1

s�k

A2
s 22s � 2

Xqÿkÿ1

r�k�1

Xrÿ1

s�k

ArAs2
r2s: �11�

Let

C �
Xqÿkÿ1

s�k

A2
s 22s �12�

and

Cr �
Xr

s�k

Ar�1As2
r�s�2; �13�

where k6 r6 �qÿ k ÿ 2�. We therefore can rewrite
A2

m as

A2
m � C�

Xqÿkÿ2

r�k

Cr: �14�

Let S2 � fC;Cr; k6 r6 qÿ k ÿ 2g be the set
of elements for PDS for modi®ed PPA. Observe
that, Ck �Ak�1Ak22k�2, which is the element
that contain least energy among the elements in
S2, in general has much less energy than Bk �
AkAm2k �Ak�Aqÿkÿ12qÿ1 � � � � �Ak22k�, which
is the element that contain least energy among the
elements in S1. In addition, the di�erence in en-
ergy between C and B, the elements that contain
highest energy in S2 and S1, respectively, is rel-
atively small. Therefore, S2 has higher discrep-
ancy in energy among its elements and can be quite
e�ective for PDS.

In the following, we present the PDS technique
based on PPA and modi®ed PPA in more detail.
Suppose yj is the current codeword to be searched
and it has been found that D�mÿ1��X ;Y j� is less
than the current Dmin. In the original PDS in the
transform domain, Dm�X ;Y j� � D�mÿ1��X ;Y j��
�Xm ÿ Y j

m�2 is computed and compared to current
Dmin. This operation requires one multiplication.
To eliminate the need for multiplications, we ®rst
let A2

m � �Xm ÿ Y j
m�2 in the novel PDS algorithm.

Then, the PDS is extended over the computation
of A2

m. That is, D�mÿ1��X ;Y j� �D is ®rst compared
with Dmin, where D � B when PPA is employed
and D � C when modi®ed PPA is employed.
If D�mÿ1��X ;Y j� �D > Dmin, it follows that
D�x; yj� > Dmin and yj can be rejected. Otherwise,
we start the following fast search process which
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scans the elements having higher energy ®rst (that
is, the Br or Cr having higher index r value).
For simplicity, depending on whether PPA or
modi®ed PPA is used, we assume Dr � Br (for
PPA), or Dr � Cr (for modi®ed PPA). Starting
from i � qÿ k ÿ 2, for each value of i, i �
qÿ k ÿ 2; . . . ; k, we compare D�mÿ1��X ;Y j��
D�Pi

r�qÿkÿ2 Dr with Dmin. If D�mÿ1��X ;Y j��
D�Pi

r�qÿkÿ2 Dr > Dmin, then we reject yj. Other-
wise, we go to next value of i and repeat the same
process. This process is continued until yj is re-
jected, or i reaches k. If i � k and D�mÿ1��X ;Y j��
D�Pk

r�qÿkÿ2 Dr < Dmin, then Dm�X ;Y j� < Dmin.
In this case. we increase the value of m by one and
the same PDS process for the computation of A2

m is
executed. This process is continued until yj is re-
jected or D�X ;Y j� � D2n�2n�X;Y j� < Dmin is ob-
served. In the latter case, we replace the current
Dmin by D�X ;Y j�. After all the codewords are
searched, the actual closest codeword to x are then
identi®ed.

The novel PDS technique can always ®nd the
closest codeword to each sourceword and there-
fore the average distortion for the encoding is not
increased. Nevertheless, the multiplication com-
plexity is eliminated at the expense of increase in
addition complexity. To further reduce the addi-
tion complexity, we can select an integer threshold
T, where k ÿ 16 T 6 qÿ k ÿ 2. During the PDS
process, for each m value, all the Drs having r6 T
are ignored (note that D is always included for
PDS). Therefore, for a larger T value, addition
complexity can be signi®cantly reduced at the ex-
pense of slight increase in average distortion since
the actual closest codeword to each sourceword
might not be identi®ed by ignoring some Drs
for PDS. For simplicity, we de®ne A2

m�T � � D�Pqÿkÿ2
r�T�1 Dr and Dm

T �X ;Y j� �Pm
i�1 A2

m�T �. In addi-
tion, DT �X ;Yp� � D2n�2n

T �X ;Yp�.
A detailed outline for our algorithm is listed

below:

Initialization
Given:

DWT of codewords: fY1;Y2; . . . ;YKg,
Number of bits for each element in vec-
tors in the original domain: q,
Threshold for PDS: T.

Step 1.
For any input source vector x, ®nd X.
Find initial current closest codeword yp;
where

p � arg minj D1
T �X ;Y j�.

Set initial current Dmin � DT �X ;Yp�.
Step 2.

For each codeword yj to be searched:
Set D0

T �X ;Y j� � 0.
For m � 1 to 2n � 2n do

Find the resolution level k of Xm and Y j
m.

Compute Am � jXm ÿ Y j
mj.

Obtain D from Am.
Set S � Dmÿ1

T �X ;Y j� �D
If S > Dmin, then

Reject yj,
Goto Step 3.

Endif
For r � qÿ k ÿ 2 downto T � 1

Compute Dr from Am

S S�Dr

If S > Dmin, then
Reject yj,
Goto Step 3.
Endif

Next r
Dm

T �X ;Y j� � S.
Next m
Dmin  DT �X ;Y j�

current closest codeword  yj.
Step 3.

If all the codewords are searched, then stop,
Otherwise, goto Step 2.

4. Simulation results

In this section, we present some simulation re-
sults to demonstrate the e�ectiveness of the novel
PDS technique. The VQ used for encoding is de-
signed using the generalized Lloyd algorithm
(Linde et al., 1980). The number of codewords K in
the VQ is 1024 and the dimension of vectors is
23 � 23. The training images for the VQ design are
three 512 � 512 images ``Lena'', ``Pepper'' and
``Girl''. All the elements of codewords after VQ
design are quantized with an 8-bit scalar quantizer
(i.e., q � 8).
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Fig. 3 shows the addition complexity vs. PSNR
for the novel PDS technique based on both PPA
and modi®ed PPA for various T value. The PSNR
is de®ned as PSNR� 10 log 2552/(MSE of the re-
constructed images). The addition complexity Ca is
de®ned as Ca � �Za=�2N ÿ 1�, where �Za is the av-
erage number of additions per sourceword and

N � 2n � 2n is the vector dimension. The addition
complexity is measured on the images Lena, Pep-
per and Girl. From Fig. 3, it is observed that the
novel multiplication-free PDS technique based on
modi®ed PPA enjoys lower addition complexity
than the PDS technique based on PPA. This is
because the discrepancy in energy among the ele-
ments for PDS based on modi®ed PPA is higher
than that for PDS based on PPA. In addition, we
®nd that the degradation of the PSNRs for both
PPA and modi®ed PPA is quite small even for
highest T value. In particular, when T � 9, all the
Drs are ignored for the PDS search and therefore
the maximum degradation in PSNR is achieved. In
this case, the PSNR for modi®ed PPA is only de-
graded by 0.17 dB (from 27.30 to 27.13 dB);
whereas, the reduction in addition complexity is
67.91% (from 54.60 to 17.52). These results dem-
onstrated the e�ectiveness of our algorithm.

For comparison purpose we also implement
the exhaustive search, the PDS in the original
domain (Bei and Gray, 1985) and the PDS in the
wavelet domain without eliminating multiplication
(Hwang et al., 1997) for VQ encoding. Table 1
shows the addition complexities, multiplication
complexities, time complexities and the PSNRs of
these algorithms. The multiplication complexity
Cm is de®ned as Cm � �Zm=N , where �Zm is the av-
erage number of multiplications per sourceword.
The time complexity Ct of each codeword search
algorithm is de®ned as the total CPU time re-
quired for arithmetic operations of that algorithm
for the images to be encoded. The PC with Pen-
tium III 450 CPU is used for CPU time measure-
ment. All the complexities listed in the table are
measured on the images Lena, Pepper and Girl.

Table 1

Addition complexities, multiplication complexities, time complexities and PSNRs of various existing codeword search algorithms

Ca Cm Ct PSNR

Exhaustive search 1024 1024 50.49 27.30

PDS (Bei and Gray, 1985) 89.87 85.32 4.55 27.30

PDS + wavelet (Hwang et al., 1997) 24.82 16.28 0.91 27.30

PDS + PPA + wavelet (T � ÿ4) 103.69 0 1.09 27.30

PDS + PPA + wavelet (T � 9) 32.27 0 0.34 27.23

PDS + modi®ed PPA + wavelet (T � ÿ4) 54.60 0 0.57 27.30

PDS + modi®ed PPA + wavelet (T � 6) 24.81 0 0.27 27.16

PDS + modi®ed PPA + wavelet (T � 9) 17.52 0 0.19 27.13

Fig. 3. The PSNR and additional complexity for the novel PDS

techniques based on PPA and modi®ed PPA for various T

values.
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From Fig. 3 and Table 1, it is observed that when
T P 6, the addition complexities of the novel PDS
technique based on modi®ed PPA are less than
those of all the other search techniques listed in
Table 1. In addition, the time complexities of the
novel PDS algorithm for all T values are lower
than those of all the other methods. Based on the
simulation results shown above, the novel PDS
technique therefore can be an e�ective alternative
for the applications where both real-time process-
ing and high PSNR performance are desired.

5. Concluding remarks

We have shown that the PDS technique based
on modi®ed PPA in the wavelet domain is very
e�ective for multiplication-free fast codeword
search. While eliminating the requirements for
multiplication, the algorithm also signi®cantly re-
duces the addition complexity without increasing
the average distortion for VQ encoding. In addi-
tion, the algorithm can accelerate the encoding
process further by ignoring some insigni®cant
stages for PDS at the expense of a slight increase in

average distortion. Therefore, the algorithm can
be e�ciently used for the encoding of VQs having
high vector dimension and/or large number of
codewords.
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