Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Generation of hexahydroazulenes

Guido Krämer, Heiner Detert, Herbert Meier*

Institute of Organic Chemistry, University of Mainz, D-55099 Mainz, Germany

ARTICLE INFO

Article history: Received 17 March 2009 Revised 12 May 2009 Accepted 13 May 2009 Available online 21 May 2009

ABSTRACT

(*Z*)-Cyclodec-1-en-6-yne (**3**) generates three conjugated hexahydroazulenes $3 \rightarrow 1k \rightarrow 1c$, 1ℓ under FVP conditions, whereas flash vacuum pyrolysis (FVP) of cyclodecyne (**2**) leads to 1,2,9-decatriene (**9**). We attribute the different thermal behavior of **2** (ring opening) and **3** (ring closure) to different transannular interactions. Altogether 22 constitutional isomers of hexahydroazulene should exist; three new isomers (**1k**, 1ℓ , and **1m**) are presented here, ten were described earlier, but the reinvestigation of the dehydration route of bicyclic alcohol **11** showed that one of the ten structures has to be revised.

© 2009 Published by Elsevier Ltd.

Partly hydrogenated azulenes (bicyclo [5.3.0]decenes, -decadienes, -decatrienes, etc.) are interesting starting compounds for the synthesis of polycycles. However, the majority of hydroazulenes are still unknown. Thus, for example, 22 hexahydroazulenes **1** should exist as constitutional isomers and, moreover, 16 of them should show stereoisomerism. Scheme 1 summarizes the 9 hexahydroazulenes **1a–i**, which are, to the best of our knowledge, presently known.^{1–11}

Ten-membered carbocycles should be favorable precursors for the generation of hydroazulenes, because these medium-sized ring systems exhibit strong transannular interactions. In the previous years several oxidative transannular ring closures on the basis of cyclodecyne have been published.^{12–16} The high energy content of triple bonds makes cycloalkynes as interesting sources for thermal isomerization routes.¹⁷ We present here the reactivity of cyclodecyne (**2**) and (*Z*)-cyclodec-1-en-6-yne (**3**) under flash vacuum pyrolysis (FVP) conditions.

Cyclodecyne (**2**) was prepared by oxidation of 1,2-cyclodecanedione bis-hydrazone.^{18–20} Scheme 2 summarizes the preparation of (*Z*)-cyclodec-1-en-6-yne (**3**). 6-Hydroxycyclodecanone (**4**), which exists in a tautomeric equilibrium with its hemiacetal **4'**,^{21,22} was transformed to the semicarbazone **5**²³, whose bicyclic form is in DMSO below the NMR detection limit of 5%. Reaction with SeO₂ yielded selenadiazole **6**,²⁴ which was dehydrated with POCl₃/pyridine or (PhO)₃PCH₃⁺ Γ /hexamethylphosphoramide²⁵ to yield **7**.²⁶ Both the processes are regio- and stereoselective. Among the possible products, **7** is the structure with the lowest strain.²⁷ Fragmentation of **7** on Cu powder gave the target compound **3**.²⁸

Cyclodecyne (**2**) does not give octahydroazulene **8**²⁹ under FVP conditions. It is selectively transformed at 600–650 °C and 10 $^{-4}$ kPa into 1,2,9-decatriene (**9**).³⁰ A presumably non-concerted

[6e] process $2 \rightarrow 9$ is favored in comparison to the [4e] process $2 \rightarrow 8$ (Scheme 3).

Scheme 2. Preparation of (Z)-cyclodec-1-en-6-yne (3).

^{*} Corresponding author. Tel.: +49 6131 3922605; fax: +4961313925396. *E-mail address:* hmeier@mail.uni-mainz.de (H. Meier).

(*Z*)-Cyclodec-1-en-6-yne (**3**) behaves different to **2**. It does not form tetraene **10**, its FVP yields hexahydroazulenes with conjugated double bonds. The transannular CC bond formation should first lead to **1j**³¹, but **1j** was not present in the product mixture in sufficient quantity to be identified. Fast secondary isomerizations (formal, presumably non-concerted [1,3-*H*] and [1,5-*H*] hydrogen shifts) furnished **1c**, **1k**, and **1***ℓ*. The optimum reaction temperature was around 560 °C at 10^{-4} kPa (Scheme 4). At lower temperatures, the conversion is too low, at higher temperatures

Figure 1. GC of FVP of 3 at 560 °C (Carlo Erba HRGC 5160, column MN 3314-1).

too much decomposition occurs—solely the absolute yield of 1ℓ increases (Scheme 4). Figure 1 shows the gas chromatogram of the reaction mixture obtained at 560 °C. The connected ion trap indicated correct m/z values 134 for all three peaks.

In order to check the structure of the major product **1k**, we repeated an early study of Anderson³² and dehydrated the bicyclic

Cq

sp³-C CH₂

CH

sp²-C CH

Table 1

Compound

¹³C NMR data of hexahydroazulenes in CDCl₃

Scheme 4. Thermal isomerization of (*Z*)-cyclodec-1-en-6-yne (**3**) hexahydroazulenes.

Scheme 5. Dehydration of the bicyclic alcohol 11.

alcohol **11** with *p*-toluenesulfonic acid. It turned out that the reported product **1k** was not formed at all. We got a 2:1:1-mixture of **1m**, 1ℓ , and **1h** in a quantitative process (Scheme 5).

The ¹³C NMR data permit the unambiguous differentiation between the obtained hexahydroazulenes by symmetry, multiplicity, and chemical shift criteria (Table 1).

A preparative GC separation of the two mixtures $1c/1k/1\ell$ and $1h/1\ell/1m$ seems to be easily feasible (Fig. 1); however, both mixtures can be directly transformed on Pd/charcoal to azulene (12).

References and notes

- 1. Stanley, S. W.; Heyn, A. S. J. Am. Chem. Soc. 1975, 97, 3852-3854.
- 2. Boyer, F.-D.; Hanna, I. J. Org. Chem. 2005, 70, 1077-1080.
- 3. Boyer, F.-D.; Hanna, I. Eur. J. Org. Chem. 2006, 471–482.
- 4. Japenga, J.; Klumpp, G. W.; Kool, M. Rec. Trav. Chim. Pays-Bas 1978, 97, 7-9.
- 5. Gleiter, R.; Steuerle, U. Chem. Ber. 1989, 122, 2193-2204.
- Dane, L. M.; De Haan, J. W.; Klosterziel, H. Tetrahedron Lett. 1970, 11, 2755– 2758.
- 7. Jost, R.; Chaquin, P.; Kossanyi, J. Tetrahedron Lett. 1980, 21, 465-466.
- 8. Vogt, T.; Winsel, H.; De Meijere, A. Synlett 2002, 1362–1364.
- Dauphin, G.; David, L.; Kergomard, A.; Veschambre, H. Bull. Soc. Chim. Fr. 1970, 3162–3163.
- 10. Kossanyi, J.; Jost, P.; Furth, B.; Deccord, G.; Chaquin, P. J. Chem. Res. (M) **1980**, 4601–4624.

- 11. Polo, E.; Bellabarba, R. M.; Prini, G.; Traverso, O.; Green, M. J. Organomet. Chem. 1999, 577, 211–218].
- 12. Wille, U.; Henger, G.; Jargstorff, C. J. Org. Chem. 2008, 73, 1413-1421.
- 13. Sigmund, D.; Schiesser, C. H.; Wille, U. Synthesis 2005, 1437–1444.
- Dreessen, T.; Jargstorff, C.; Lietzau, L.; Plath, C.; Stademann, A.; Wille, U. Molecules 2004, 9, 480–497.
- 15. Jargstorff, C.; Wille, U. Eur. J. Org. Chem. 2003, 3173-3178.
- 16. Wille, U. J. Am. Chem. Soc. 2002, 124, 14-15.
- 17. Meier, H. Adv. Strain Org. Chem. 1991, 1, 215–272.
- Prelog, V.; Schenker, K.; Günthardt, H. Helv. Chim. Acta 1952, 35, 1598–1615.
 Cram, D. L. Allinger, N. L. Am. Chem. Soc. 1956, 78, 2518–2524.
- Cram, D. J.; Allinger, N. L. J. Am. Chem. Soc. **1956**, 78, 2518–2524.
 Cyclodecane-1,2-dione bishydrazone: ¹H NMR (CDCl₃): (E,E)-isomer (87%) δ 5.30 (br s, 4H, NH₂), 2.53 (m, 4H, α-CH₂), 1.67 (m, 4H, CH₂), 1.32 (m, 4H, CH₂), 1.16 (m, 4H, CH₂); (E,Z)-isomer (13%) δ 5.55 (br s, 2H, NH₂), 5.30 (br s, 2H, NH₂), 2.67 (m, 4H, α-CH₂), 1.67 (m, 4H, CH₂), 1.16 (m, 4H, CH₂); (2,2)-isomer δ 152.6 (CN), 25.5, 24.3, 23.5, 20.9; (E,Z)-isomer δ 164.5, 151.5 (CN), 27.2, 25.8, 25.4, 24.6, 24.2, 23.6, 22.7, 21.1.
- 21. Mijs, W. J.; de Vries, K. S.; Westra, J. G. *Rec. Trav. Chim. Pays-Bas* **1968**, 87, 580–584.
- The ratio 4/4' amounts to about 50:50 in CDCl₃ and to 78: 22 in CD₃OD. Compound 4: ¹H NMR (CD₃OD): δ 4.90 (br s,1H, OH), 3.83 (m, 1H, 6-H), 2.76 (d,d, ²J = 15.7 Hz, ³J = 9.2 Hz, ³J' = 3.7 Hz, 2H, 2-H, 10-H), 2.40 (d,d, ²J = 15.7 Hz, ³J = 8.3 Hz, ³J' = 3.9 Hz, 2H, 2-H, 10-H), 2.10-1.45 (m, 12H, 3.4,5,7,8,9-H); ¹³C NMR (CD₃OD): δ 217.5 (C-1), 69.9 (C-6), 42.8 (C-2, C-10), 34.5, 24.3, 23.9 (C-3,4,5, 7,8,9). Compound 4': ¹H NMR (CD₃OD): δ 4.90 (br s, 1H, OH), 4.07 (m, 1H, 6-H), 2.10-1.45 (m, 16H, 2,3,4, 5,7,8,9,10-H); ¹³C NMR (CD₃OD): δ 103.5 (C-1), 76.6 (C-6), 41.7 (C-2, C-10), 34.6, 24.3, 23.9 (C-3,4,5,7,8,9).
- Compound 5: Mp 173–174 °C. ¹H NMR (CD₃SOCD₃): δ 9.01 (s, 1H, NH), 6.20 (br s, 2H, NH₂), 4.21 (m, 1H, 6-H), 3.61 (br s, 1H, OH), 2.43–2.07 (m, 4H, 2,10–H), 1.84–1.18 (m,12H, 3,4,5,7,8,9–H); ¹³C NMR (CD₃SOCD₃): δ 157.3 (CO), 151.1 (C-1), 68.5 (C-6), 33.8, 32.2, 31.6, 29.3, 23.6, 22.1, 22.1, 19.8 (C-2,3,4,5,7,8,9,10).
 Compound 6: Mp 101–103 °C. ¹H NMR (CDCl₃): δ 3.91 (m, 1H, 8–H), 3.20 (m,
- 24. Compound **6**: Mp 101–103 °C. ¹H NMR (CDCl₃): δ 3.91 (m, 1H, 8-H), 3.20 (m, 3H), 3.05 (m, 1H), 1.95 (m, 1H), 1.89 (m, 2H), 1.63 (m, 2H), 1.48 (m, 1H), 1.38 (m, 1H), 1.33 (m, 1H), 1.15 (m, 1H), 1.02 (m, 1H) [CH₂ groups], 1.48 (br s, 1H, OH). Broadening of the signals indicates that the ring dynamics are becoming slow at room temperature in terms of the NMR time scale; ¹³C NMR (CDCl₃): δ 160.1, 159.5 (C-3a, 11a), 69.8 (C-8), 33.7, 28.3, 27.2, 27.0, 26.1, 24.9, 19.5 (C-4,5,6,7,9,10,11).
- Hutchins, R. O.; Hutchins, M. G.; Milewski, C. A. J. Chem. Soc. 1972, 37, 4190– 4192.
- 26. Compound **7**: Mp 66 °C. ¹H NMR (CDCl₃): δ 5.40 (m, 2H, 7,8-H), 3.21 (m, 1H), 3.01 (m, 2H), 2.70 (m, 1H), 2.25 (m, 2H), 2.0–1.7 (m, 6H) [CH₂ groups]; ¹³C NMR (CDCl₃): δ 160.7, 159.8 (C-3a,11a), 130.7, 129.0 (C-7,8), 31.3, 26.8, 25.2, 24.7, 23.8, 23.5 (C-4,5,6,9,10,11). ⁷⁷Se NMR (CDCl₃): δ 203.5.
- 27. See: Dale, J.; Ekeland, D.; Schaug, J. Chem. Commun. 1968, 1477-1479.
- Compound 3: Colorless oil, bp₁₂ 110 °C; ¹H NMR (CDCl₃): δ 5.36 (m, 2H, 1,2-H), 2.28 (m, 4H, 3,10-H), 2.19 (m, 4H, 5,8-H), 1.57 (m, 4H, 4,9-H); ¹³C NMR (CDCl₃): δ 130.3 (C-1,2), 82.1 (C-6,7), 25.3, 23.9 (C-3,4,9,10), 18.1 (C-5,8).
- House, H. O.; Nomura, G. S.; Van Derveer, D.; Wissinger, J. E. J. Org. Chem. 1986, 51, 2408–2416, and references therein.
- 30. Column chromatography (SiO₂, pentane) enables a simple separation of the mixture of **9** (35%, $R_{\rm f}$ = 0.90) and **2** (65%, $R_{\rm f}$ = 0.50). **9**: ¹H NMR (CDCl₃): δ = 5.68 (ddt, ³J_{trans} = 17.0 Hz, ³J_{cis} = 10.3 Hz, ³J' = 6.7 Hz, 1H, 9-H), 4.97 (m, 1H, 3-H), 4.87 (m, 1H, 10-H), 4.81 (m, 1H, 10-H), 4.52 (m, 2H, 1-H), 2.00–1.85 (m, 4H, 4,8-H), 1.37–1.20 (m, 6H, 5,6,7-H). ¹³C NMR (CDCl₃): δ = 208.6 (C-2), 138.9 (C-9), 114.1 (C-10), 89.9 (C-3), 74.4 (C-1), 33.6 (C-8), 28.9, 28.7, 28.5, 28.1 (C-4,5,6,7).
- 31. See for example: Snider, B. B.; Killinger, T. A. J. Org. Chem. 1978, 43, 2161–2164.
- 32. Anderson, A. G.; Nelson, J. A. J. Am. Chem. Soc. 1951, 73, 232-235.