

Spectrochimica Acta Part A 54 (1998) 921-926

The gas-phase on-line production of phosphoryl halides, POX_3 and their identification by infrared spectroscopy

Abdul W. Allaf *

Atomic Energy Commission of Syria, Department of Chemistry, P.O. Box 6091, Damascus, Syria

Received 28 October 1997; received in revised form 19 December 1997; accepted 23 December 1997

Abstract

A new route has been devised, leading to the production of POX₃ molecules where X = F, Br and I by an on-line process using phosphoryl chloride, POCl₃ as a starting material passed over heated sodium fluoride, NaF, potassium bromide, KBr and potassium iodide, KI at 535, 690 and 480°C, respectively. The products have been characterised by the infrared (IR) spectra of their vapours. The low resolution gas-phase Fourier transform infrared spectra reported for the first time show strong bands centered at 1416.6, 1312.9, 1297.9 and 1285 cm⁻¹, assigned to $v_1(a_1)$, the O=P stretching fundamental of POF₃, POCl₃, POBr₃ and POI₃, respectively. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Gas-phase; Phosphoryl halides; Infrared spectroscopy

1. Introduction

Phosphoryl chloride, $POCl_3$ can be made by the oxidation of PCl_3 with pure oxygen or slightly above room temperature similar to that used on an industrial scale [1]. Phosphoryl bromide, $POBr_3$ can be made also by a similar method using PBr_3 instead of PCl_3 . Another route for preparing POX_3 where X = Cl and Br is as follows:

 $P_4O_{10} + 6 PX_5 \rightarrow 10 OPX_3$

Phosphoryl fluoride, POF_3 can be made by the fluorination of $POCl_3$ using a metal fluoride (ea. M = Na, Mg, Zn, Pb, Ag, etc.). POI_3 was first

made in 1973 by the iodination of POCl₃ with LiI, or by reacting ROPI₂ with iodine [2]:

 $ROPI_2 + I_22 \rightarrow RI + POI_3$

Most of the phosphoryl halide compounds are colourless gases or volatile liquids but POI₃ is dark violet, m.p. 53°C. All of them are monomeric tetrahedral (C_{3v}) symmetry point group molecules. PO₂Cl produced by a photochemical reaction between ozone and OPCl (obtained from POCl₃) in solid argon has been investigated by IR spectroscopy and ab initio SCF calculations [3]. The same molecule is formed by the high temperature reaction between POCl₃, O₂ and Ag. The paper includes all the frequencies observed for the above molecule. The frequencies were: 1122, 586 and 1429 cm⁻¹, as-

1386-1425/98/\$19.00 © 1998 Elsevier Science B.V. All rights reserved. *PII* S1386-1425(98)00019-5

^{*} Tel.: + 963 6111926/7; fax: + 963 6112289.

signed to a_1 (PO₂ s-stretch), PCl stretch and b_2 (PO₂ a-stretch) of PO₂Cl, respectively. Andrews and Withnall reported the formation of P_4O , P_2O , PO and PO_2 species and their matrix isolation infrared spectra by the photolysis and discharge reaction of oxygen atoms with P_4 [4]. Binnewies and Schnöckel mentioned five types of reactions that may lead to OEX or SEX molecules production where, E = P, AS and Sb. One of these reactions is the reduction of phosphoryl halides, POX_3 with elementary silver at high temperature [5]. Boghosian et. al. recorded the gas phase Raman and UV/Vis spectra of the liquid and solid complexes of POCl₃-FeCl₃ molten mixtures under static equilibrium conditions [6]. Moores and Andrews reported some interesting work concerning the oxidation of phosphorus(III) halides by red photolysis of ozone complexes in solid argon [7]. The photolysis of PCl_3/O_3 and PBr_3/O_3 complexes by red visible radiation in solid argon gives phosphoryl halides. This work has been extended by examining the photolysis of ozone in matrices containing the phosphorus(III) halides PF₃, PCl₃ and PBr₃ to generate simple compounds of phosphorus halogen and oxygen and to explore how the products depended on applied wavelength [7].

This paper investigates the gas phase IR spectra and the on-line productions of phosphoryl halides, POX_3 where X = F, Br and I which have not been reported previously, using $POCl_3$ as a precursor passed over heated NaF, KBr and KI for POF_3 , $POBr_3$ and POI_3 productions, respectively.

2. Experimental

The first step was to optimize the production conditions of phosphoryl chloride, $POCl_3$, before attempting to observe POF_3 , $POBr_3$ and POI_3 . $POCl_3$ (Merck, 99.9%) was degased in the vacuum system before use with liquid nitrogen. The online process involved warming the $POCl_3$ with heating tape to 55°C to obtain enough vapor pressure and then pass through an empty tube kept at 475°C. The remaining conditions were the fast flow reaction under 0.3 Torr pressure.

Fig. 1 shows the experimental set up for the synthesis and spectrometric observation of phosphoryl halide, POX_3 where X = F, Br and I. The synthesis routes for POF_3 , $POBr_3$ and POI_3 can be written as follows:

POCl_{3(g)} + 3NaF_(s)
$$\frac{\text{fast flow}}{535^{\circ}\text{C}}$$
 → 3NaCl_(g) + POF_{3(g)}
POCl_{3(g)} + 3KBr_(s) $\frac{\text{fast flow}}{690^{\circ}\text{C}}$ → 3KCl_(g) + POBr_{3(g)}

Fig. 1. The experimental set-up for the synthesis and spectrometric observation of phosphoryl halide, POX₃.

Fig. 2. The gas phase IR spectrum of POCl₃.

$$\text{POCl}_{3(g)} + 3\text{KI}_{(s)} \frac{\text{fast flow}}{480^{\circ}\text{C}} \rightarrow 3\text{KCl}_{(g)} + \text{POI}_{3(g)}$$

Note that, the first empty furnace (F_1) is kept at 475°C in all the above reactions. The salts containing halogens used in these experiments, placed in the second furnace (F_2) , were obtained from Aldrich with a purity (99.9%).

The products from these reactions were passed directly into an IR cell (Fig. 1) fitted with two KBr windows. The distance between the second furnace (F_2) and the IR cell is 3 cm. The cell was pumped out via a liquid nitrogen trap with a rotary pump (E2M8, Edwards) displacing 9.5 m³ h⁻¹. The IR-spectra were obtained on a JASCO 300E FTIR spectrometer at a resolution of 2 cm⁻¹.

3. Results and discussion

Fig. 2 shows the result of passing POCl₃ gas over an empty tube heated at 475°C. Two strong bands were observed within the spectrometer range at 1312.9 and 590 cm⁻¹. The first band centered at 1312.9 cm⁻¹ is assigned to $v_1(a_1)$, the O=P stretching mode of POCl₃ and shows typical PQR-type structure and with a strong Q-head. The second band at 590 cm⁻¹ is assigned to $v_4(e)$, mode of POCl₃. It is known empirically that there could be a shift in the band position between the matrix isolation method and the gas-phase technique of about + 1%. Comparison between the 1312.7 cm⁻ 1, $v_1(a_1)$ stretching mode in POCl₃ observed by the matrix isolation technique after photolysis of PCl₃/O₃ using 520 nm filter [7,8], with that observed by

Fig. 3. Full IR spectra of POX₃ where X = F, C1, Br and I in the range 400–1500 cm⁻¹.

Table 1 Observed gas phase IR frequencies of POX_3 in comparison with matrix isolation and Raman results including the P-R separation (cm^{-1})

Molecule	Mode	Assignment	Observed			P-R separation	
			Matrix [7] isolation	Raman [9] gas-phase	This work (IR) gas-phase	Obs.	Cal.
POF ₃	<i>v</i> ₁	a ₁ (O=P str.)	1410.5	1417	1416.6		
	v_4	e(P-F str.)	990	991	991.2		
	v ₂	a ₁ PF3 umbrella	875	873	872	43.1	41.6
	v ₃	a_1 FPO def.	470	472	472.3		
POCl ₃	<i>v</i> ₁	a ₁ (O=P str.)	1312.7	1312.7	1312.9		
	v_4	e(P-Cl str.)	589	589.5	590	15.4	16.2
POBr ₃	v ₁	$a_1(O=P \text{ str.})$	1295.1		1297.9		
	<i>v</i> ₄	e(P-Br str.)	488	—	490	8.7	8.8
POI ₃	<i>v</i> ₁	a ₁ (O=P str.)		_	1285		
	v_4	e(P–I) str.		—	426	3.9	3.4

gas phase Raman spectroscopy of POCl₃ at 1312.7 cm⁻¹ [9] and this gas phase infrared spectroscopy work at 1312.9 cm⁻¹, is reasonable and fits very nicely especially with the gas phase Raman results. These gas phase IR results fit also within the expected shift between matrix isolation and gas phase results.

Fig. 3 shows three new spectra A, C, and D $(400-1500 \text{ cm}^{-1})$ where spectrum B is the precursor (POCl₃). Spectrum A is the result of passing POCl₃ gas over an empty tube kept at 475°C and also over heated NaF at 535°C. Four new bands were observed at 1416.6, 991.2, 872 and 472.3 cm^{-1} . The first band at 1416.6 cm^{-1} is assigned to $v_1(a_1)$, the O=P stretching mode of POF3 and show a PQR type structure with a very strong Q-head. This result is consistent with expectation and the band is shifted to higher frequency when fluorine replace the chlorine in POCl₃ to form POF_3 which is similar to the NSX work [10]. The second band at 991.2 cm⁻¹ is assigned to $v_4(e)$ POF_3 , the third band at 872 cm⁻¹ is assigned to $v_2(a_1)POF_3$, this band has a PQR type structure and the final band at 472.3 cm^{-1} is assigned to $v_3(a_1)$ POF₃ and also has a PQR type structure. The obtained gas phase IR results for POF₃ are compared with matrix isolation after full arc photolysis of PF₃/O₃ [7] and with gas phase Raman results too [9] (see Table 1). Note that, the observed gas phase IR frequencies are identical to those obtained by gas phase Raman technique and lies within an acceptble range with matrix isolation technique.

There is very little trace of POCl₃ as can be seen in spectrum A and it is estimated that the purity is about 99%. The POF₃ sample was collected using cold slush bath of acetonitrile mixed with liquid nitrogen at -41° C and the IR spectrum was taken for the collected material. The obtained infrared spectrum was exactly identical to that observed by the on-line process.

Spectrum C in Fig. 3 shows the result of passing POCl₃ gas over heated KBr at 690°C. Two new bands were observed at 1297.9 and 490 cm-1. The first band at 1297.9 cm⁻¹ is assigned to $v_1(a_1)$, the O=P stretching mode of POBr₃ and also shows a PQR type structure. The shift to lower frequency again fits with expectation after bromine replaces the chlorine in order to form POBr₃. Comparison of the 1295.1 cm⁻¹ (most intense peak [7]) the $v_1(a_1)$, the O=P stretching mode of POBr₃ observed by matrix isolation technique after full arc photolysis of PBr₃ and ozone [7] and these gas phase IR results at 1297.9 cm⁻¹, is justified. The second band at 490 cm⁻¹ is assigned to $v_4(e)$ of POBr₃. To confirm this reaction, POBr₃ pure sample was obtained from Merck with a purity of 99.9% and replaced in the

gas flow system. The sample has very high vapor pressure so the IR spectrum is recorded without any heating and the result was similar spectrum observed by the new route applied in this work. Therefore, POBr₃ can be collected by our route below 55°C which is the melting point of pure POBr₃.

Fig. 4. The $v_1(a_1)$, O=P stretching band of POX₃ in the range (1200–1500) cm⁻¹.

The final step is shown in Fig. 3 (spectrum D) which is the result of passing POCl₃ gas over heated KI at 480°C. The gas phase IR spectrum of POI₃ is recorded here for the first time and no other spectroscopic data is available. It should be pointed out that the producing of POI₃ is in general far from being trivial due to easy sublimation of iodine at high temperature of heated KI. Nevertheless, the two chraracterized bands of POI_3 are observed. Because, there is no previous experimental spectroscopic data for POI₃, the assignment of the obtained spectrum could be analysed considering the previous analogous molecules. The two bands correspond to POI₃ are centred at 1285 and 426 cm⁻¹. The first band positioned to the right side POCl₃ mode centred at 1285 cm⁻¹, is assigned to $v_1(a_1)$, the O=P stretching mode of POI₃. The observed band has a PR type structure and this experiment has been performed especially under 1 cm⁻¹ resolution in order to resolve this structure. The PR profile can be seen in Fig. 3 (bottom spectrum), the O-head was not observed but that could be due to decreases in electronegativity from fluorine up to iodine which may be responsible for broder band in POI₃ than of the other halides in preceding spectra. The second band at 426 cm⁻¹ is very small and tentatively assigned to $v_4(e)$, of POI₃. As can be seen from the bottom spectrum, the concentration of POCl₃ is too high and it was very difficult to obtain pure POI₃ from POCl₃ owing to easy sublimation of iodine at high temperature of heated KI. Therefore, the concentration of iodine in the vacuum system is very low compared with POCl₃ which could lead to the formation of POCl₂I or POCl₂ in some stages before forming the interested POI₃ molecule (Fig. 4).

All the observed frequencies (cm^{-1}) of POX₃ determined by this gas phase IR spectroscopy work in comparison with the data obtained by matrix isolation and gas phase Raman results are listed in Table 1. The Table also includes the observed and calculated values using the method of Paul and Dijkstra [11] for the $v_1(a_1)$ POX₃ where X = F, Cl, Br and I. The overall shift between the matrix isolation and these gas phase IR spectra of $v_1(a_1)$, the O=P main stretching mode of POF₃, POCl₃ and POBr₃, is 6.1, 0.2 and 2.8 cm⁻¹, respectively. This shift is in agreement with the less 1% shift between matrix isolation and gas phase IR results.

It is concluded that the present work reports for the first time, the on-line production and detection of POF₃, POCl₃, POBr₃ and POI₃, in the gas-phase. These experimental data agree with expectations and are comparable with the data obtained by matrix isolation and gas phase Raman spectroscopy. The frequency shift between matrix isolation and this gas phase IR results is less than 1% and in good agreement with the two techniques. Concerning our gas phase infrared and Raman results, both results are in excellent agreement. POF₃ can be collected by our route at -41° C using cold slush bath of acetonitrile mixed with liquid nitrogen. POBr₃ can be collected also by the new applied route at around 55°C.

Acknowledgements

I would like to thank Professor Dr I. Othman (DG) and Professor Dr Y. Koudsi (Head of Chemistry Department) for their encouragement as well as Mr N. Odeh and Miss D. Naima for their effort in setting up the experiments and gratefully acknowledges TWAS for research grant No. 94-025 RG/CHE/AF/AC. I am very grateful to Drs R. Suffolk, D.R.M. Walton, H. Klawi, G. Zazafoon and Z. Ajji for their valuable discussion, as well as Miss Wafa'a Alibrahim and Miss B. Alrez for the help.

References

- N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 1st ed., Pergamon Press, Oxford, 1989.
- [2] A.V. Kirsanov, Zh.K. Gorbatenko, N.G. Feshchenko, Chemistry of phosphorus iodides, Pure Appl. Chem. 44 (1975) 125.
- [3] R. Ahlrichs, C. Ehrhardt, M. Lakenbrink, S. Schunck, H. Schnöckel, J. Am. Chem. Soc. 108 (1986) 3596.
- [4] L. Andrews, R. Withnall, J. Am. Chem. Soc. 110 (1988) 5605.
- [5] M. Binnewies, H. Schnöckel, Chem. Rev. 90 (1990) 321.
- [6] S. Boghosian, G.A. Voyiatzis, G.N. Papatheodoron, J. Chem. Soc. Dalton Trans 16 (1996) 3505.
- [7] B.W. Moors, L. Andrews, J. Phys. Chem. 93 (1989) 1902.
- [8] A.J. Downs, G.P. Gaskill, S.P. Saville, Inorg. Chem. 21 (1982) 3385.
- [9] R.J.H. Clark, D.M. Rippon, Mol. Phys. 28 (1974) 305.
- [10] A.W. Allaf, G.Y. Matti, R.J. Suffolk, J.D. Watts, Electron Spectrosc. Relat. Phenom. 48 (1989) 411; and Chem. Phys. Lett. 155 (1989) 32.
- [11] W.A. Seth Paul, G. Dijkstra, Spectrochim. Acta Part A 23A (1967) 2861.