
Send Orders for Reprints to reprints@benthamscience.net 

20 Letters in Drug Design & Discovery, 2015, 12, 20-28  

 

Design, Synthesis and Cytotoxic Evaluation of Novel Imatinib Amide  
Derivatives that Target Abl Kinase 

Ri-Sheng Yao
*
, Qiu-Xiang Guan, Xiao-Qin Lu and Ban-Feng Ruan

*
 

School of Medical Engineering, Hefei University of Technology, Hefei, 230009, P.R. China 

Abstract: Novel imatinib amide derivatives (a1-28, b1-9) were synthesized and evaluated for their biological activities. 

All compounds were characterized by 
1
H NMR, MS and elemental analysis. Among all the derivatives, compounds a4, 

a10, a21, b1 and b2 displayed the most significant ability of inhibiting K562 cell proliferation with the IC50 values of 

0.67, 0.66, 0.65, 0.59 and 0.62 �M, respectively, indicating that these compounds were potent inhibitors of Bcr-Abl in 

leukemic K562 cells, comparable to the reference compound imatinib. Molecular docking study was performed to posi-

tion compounds a21 and b1 into the active site of Abl to determine the probable binding modes. 
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INTRODUCTION 

The Ph chromosome, discovered in 1960 by Nowell and 
Hungerford [1], is a truncated chromosome 22 that results 
from a reciprocal exchange of genetic material between the 
long arms of chromosomes 9 and 22. The translocation re-
sults in the juxtaposition of 3' DNA sequences derived from 
the Abelson (Abl) proto-oncogene normally located on 
chromosome 9 with 5' sequences of the breakpoint cluster 
region (Bcr) gene on chromosome 22 and creates the Bcr-
Abl oncogene [2-4]. The tyrosine kinase activity of Bcr-Abl 
leads to the chronic phase of chronic myeloid leukemia 
(CML) [5-7].  

Therefore, screening small molecules that inhibit Bcr-Abl 
kinase activity of leukemic cells without adversely affecting 
the normal cell population has been the mainstream concept 
of curing leukemia patients. Imatinib (STI571, Gleevec) in-
hibits the activity of Bcr-Abl by binding to the kinase do-
main of Bcr-Abl when the protein is in its closed, inactive 
conformation [8]. Thus, imatinib is considered as a potent 
selective Bcr-Abl tyrosine kinase inhibitor and a first-line 
therapy for the majority of CML cases because of its high 
efficacy and relatively mild side effects [9, 10]. Although the 
majority of diagnosed patients achieve durable responses to 
STI-571 therapy at both the hematological and cytogenetic 
levels, relapse and resistance are observed in a large percent-
age of patients [11]. Results from crystallographic studies 
indicate that mutations in the kinase domain of Bcr-Abl itself 
account for the main reasons of resistance to STI-571 [12, 
13].  

The frequency of relapse and resistance in leukemia 
cases undergoing STI-571 therapy has paved the way for the 
development of second generation Bcr-Abl inhibitors such as  
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dasatinib [14] and nilotinib [15]. Due to the challenge of 
more and more leukemia patients emerging every year, ef-
forts are now focused on the synthesis of novel molecules 
that inhibit the Bcr-Abl to provide more opportunity for the 
endangered patients. 

In recent years, it was reported that the benzene acryla-
mide and benzamide derivatives have potent anti-tumor ac-
tivity [16-18]. Since X-ray crystal structure shows that most 
of the interactions of imatinib with the protein is from the 
moiety of 2-[N-(2-methyl-5-amino-phenyl) amino]-4-(3-
pyridyl) pyrimidine, we would like to hybridize the moieties 
of imatinib and benzene acrylamide or benzamide, make 
them into one molecule by the principle of pharmacophore 
combination and design a series of novel imatinib derivatives 
with the expectation of obtaining compounds with potent 
inhibition activity of Bcr-Abl in leukemic K562 cells. Bio-
logical assays have proved that our strategy is successful by 
yielding several compounds with IC50 values around 0.59 
�M to inhibit the K562 cell proliferation. 

MATERIALS AND METHODS 

1. Instruments 
1
H NMR spectra were recorded with a Bruker DRX 300 

model spectrometer in CDCl3 and (CD3)2SO solutions with 
TMS as an internal standard. Melting points were measured 
on a Buchi micro melting point apparatus. The ESI-MS spec-
tra were recorded on a Mariner System 5304 Mass spec-
trometer. Carbon, hydrogen and nitrogen assays were ob-
tained with a CHN–O-Rapid instrument and were within ± 
0.4% of the theoretical values. 

2. Syntheses 

Thirty-eight compounds were synthesized via the route 
outlined in Scheme (1). Compounds 2 were synthesized by 
the known procedure [19], and compounds 3 were obtained 
as reported [20]. The target compounds a1-26 were prepared  
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by the reaction of compounds 3 and 4, while compounds b1-
6 were prepared by the reaction of compounds 4 and 6. Fur-
thermore, a27 was synthesized by hydrolysis reaction of a26,
and a27 interacted with NaOH to obtain a28. Finally, com-
pounds b7-9 were synthesized by hydrolysis reaction of b4-
6.

General Procedure for the Preparation of Compounds a1-
26

To a solution of 4 (4.5 mmol) and 1.5 mL of N, N-
diisopropylethylamine in 30 mL of CH2Cl2 was added 3 (5.4 

mmol) at 0 - 5 °C, and the reaction mixture was stirred for 12 
h at room temperature, the solid that formed was collected 
by filtration. The product was obtained and purified by silica 
gel chromatography to afford the target product. 

a1: (E)-N-(4-methyl-3-(4-(pyridin-3-yl) Pyrimidin-2-ylam-
ino) phenyl) Cinnamamide  

White solid; Yield: 87.3%; m.p. 187-189 °C. 
1
H NMR 

(CDCl3, 300 MHz) �: 2.21 (s, 3H), 6.80 (d, 1H, J = 1.8 Hz), 
7.22 (d, 1H, J = 2.4 Hz), 7.41-7.44 (m, 5H), 7.56-7.69 (m, 
4H), 8.04 (s, 1H), 8.43-8.57 (m, 2H), 8.71 (d, 1H, J = 1.8 
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Scheme (1). Reagents and conditions: (i) malonic, pyridine, piperidine, 90 ¡ãC; (ii) (COCl)2, CH2Cl2, rt; (iii) CH2Cl2, N,N-

diisopropylethylamine, rt; (iv) KOH, methanol, reflux; (v) NaOH, methanol, rt (vi) NH3.H2O, methanol, rt . 
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Hz), 9.33 (s, 1H), 10.21 (s, 1H). MS (ESI): 409.0 
(C25H21N5O, [M+H]

+
); Anal. Calcd for C25H21N5O: C, 73.68; 

H, 5.21; N, 17.22%; Found: C, 73.69; H, 5.19; N, 17.19%. 

a2:(E)-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylami-
no)phenyl)-3-(2-(trifluoromethyl) phenyl) Acrylamide  

White solid; Yield: 84.5%; m.p. 284-286 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.23 (s, 3H), 6.89-6.93 (d, 1H,  
J = 12.0 Hz), 7.21-7.19 (d, 1H, J = 5.4 Hz), 7.41-7.55 (m, 
4H), 7.63-7.90 (m, 4H), 8.03 (d, 1H, J = 1.8 Hz), 8.48-8.66 
(m, 2H), 8.70 (d, 1H, J = 2.4 Hz), 8.98 (s, 1H), 9.27 (s, 1H), 
10.32 (s, 1H). MS (ESI): 476.5 (C26H20F3N5O, [M+H]

+
); 

Anal. Calcd for C26H20F3N5O:C, 65.66; H, 4.29; N, 14.75%; 
Found: C, 65.68; H, 4.24; N, 14.73%. 

a3:(E)-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylami-
no)phenyl)-3-(3-(trifluoromethyl) phenyl) Acrylamide  

White solid; Yield: 80.5%; m.p. 281-282 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.23 (s, 3H), 6.89-6.93 (d, 1H,  
J = 12.0 Hz), 7.21-7.19 (d, 1H, J = 6.0 Hz), 7.41-7.55 (m, 
4H), 7.63-7.90 (m, 4H), 8.03 (d, 1H, J = 1.8 Hz), 8.58-8.66 
(m, 2H), 8.80-8.81 (d, 1H, J = 3.6 Hz), 8.98 (s, 1H), 9.21 (s, 
1H), 10.15 (s, 1H). MS (ESI): 476.4 (C26H20F3N5O, 
[M+H]

+
); Anal. Calcd for C26H20F3N5O: C,65.67; H, 4.25; N, 

14.76%; Found: C, 65.68; H, 4.24; N, 14.75%. 

a4:(E)-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylam-
ino)phenyl)-3-(4-(trifluoromethyl) phenyl) Acrylamide  

Yellow solid; Yield: 81.9%; m.p. 288-291 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.18 (s, 3H), 6.91-6.95 (d, 1H,  
J = 12.3 Hz), 7.14-7.17 (d, 1H, J = 8.4 Hz), 7.44-7.51 (m, 
3H), 7.58-7.63 (d, 1H, J = 15.6 Hz), 7.73-7.82 (m, 4H), 7.96 
(s, 1H), 8.44-8.48 (t, 2H, J = 12.3 Hz), 8.64-8.65 (d, 1H,  
J = 3.6 Hz), 8.97 (s, 1H), 9.24 (s, 1H), 10.25 (s, 1H). MS 
(ESI): 476.5 (C26H20F3N5O, [M+H]

+
); Anal. Calcd for 

C26H20F3N5O: C, 65.68; H, 4.27; N, 14.74%; Found: C, 
65.70; H, 4.27; N, 14.73%. 

a5:(E)-3-(2-chlorophenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Champagne solid ; Yield: 82.6% ; m.p. 255-256 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.29 (s, 3H), 6.88-6.90 (d, 1H,  
J = 9.0 Hz), 7.19-7.21 (d, 1H, J = 6.3 Hz), 7.39-7.42 (t, 4H,  
J = 8.1 Hz), 7.50-7.59 (m, 2H), 7.76-7.78 (m, 1H), 7.84-7.88 
(d, 1H, J = 12.0 Hz), 8.00 (s, 1H), 8.47-8.54 (m, 2H), 8.69-
8.70 (d, 1H, J = 2.4 Hz), 8.98 (s, 1H), 9.27 (d, 1H, J = 1.2 
Hz), 10.21 (s, 1H). MS (ESI): 443.7 (C25H20ClN5O, 
[M+H]

+
). Anal. Calcd for C25H20ClN5O: C, 68.11; H, 4.55; 

N, 15.91%; Found: C, 68.05; H, 4.56; N, 15.85%. 

a6:(E)-3-(3-chlorophenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

White solid; Yield: 82.9%; m.p. 228-229 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.22 (s, 3H), 6.88-6.92 (d, 1H,  
J = 12.0 Hz), 7.19-7.21 (d, 1H, J = 6.3 Hz), 7.39-7.42 (t, 4H, 
J = 8.4 Hz), 7.50-7.59 (m, 2H), 7.76-7.88 (m, 1H), 7.84-7.88 
(d, 1H, J = 12.3 Hz), 8.01 (s, 1H), 8.47-8.53 (m, 2H), 8.69-
8.70 (d, 1H, J = 2.4 Hz), 8.97 (s, 1H), 9.27-9.28 (d, 1H,  
J = 3.0 Hz), 10.27 (s, 1H). MS (ESI): 443.3 (C25H20ClN5O, 

[M+H]
+
). Anal. Calcd for C25H20ClN5O: C, 67.99; H, 4.55; 

N, 15.88%; Found: C, 67.95; H, 4.56; N, 15.85%. 

a7:(E)-3-(4-chlorophenyl)-N-(4-methyl-3-(4-(pyridin-3-yl)-
pyrimidin-2-ylamino)phenyl) Acrylamide  

Light yellow solid; Yield: 85.7%; m.p. 273-275 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.22 (s, 3H), 7.99-7.81 (d, 1H,  
J = 8.4 Hz), 7.20-7.21 (d, 1H, J = 3.6 Hz), 7.40-7.49 (m, 
2H), 7.56-7.58 (m, 4H), 7.74-7.76 (d, 2H, J = 4.8 Hz), 8.00 
(s, 1H), 8.47-8.53 (m, 2H), 8.69-8.70 (d, 1H, J = 2.4 Hz), 
9.02 (s, 1H), 9.30 (s, 1H), 10.21 (s, 1H). MS (ESI): 443.0 
(C25H20ClN5O, [M+H]

+
). Anal. Calcd for C25H20ClN5O: C, 

67.92; H, 4.58; N, 15.85%; Found: C, 67.95; H, 4.56; N, 
15.84%. 

a8:(E)-3-(2-chloro-5-(trifluoromethyl)phenyl)-N-(4-methyl-
3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Light brown solid; Yield: 80.8%; m.p. 267-270 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.21 (s, 3H), 7.04 (d, 1H,  
J = 1.2 Hz), 7.21 (d, 1H, J = 1.8 Hz), 7.50-7.57 (m, 3H), 
7.75-7.84 (m, 3H), 8.03 (m, 2H), 8.47-8.53 (m, 2H), 8.67-
8.69 (m, 1H), 8.95 (s, 1H), 9.27 (d, 1H, J = 1.2 Hz), 10.27 (s, 
1H). MS (ESI): 510.9 (C26H19ClF3N5O, [M+H]

+
). Anal. 

Calcd for C26H19ClF3N5O: C, 61.27; H, 3.76; N, 13.78%; 
Found: C, 61.24; H, 3.76; N, 13.73%. 

a9:(E)-3-(3,5-dichlorophenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Light yellow solid; Yield: 82.8%; m.p. 252-253 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.21 (s, 3H), 6.91-6.95 (d, 1H,  
J = 12.3 Hz), 7.19-7.21 (d, 1H, J = 6.3 Hz), 7.35-7.70 (m, 
7H), 7.98-7.99 (d, 1H, J = 1.8 Hz), 8.45-8.53 (m, 2H), 8.68-
8.70 (m, 1H), 8.95 (s, 1H), 9.27 (d, 1H, J = 1.8 Hz), 10.16 (s, 
1H). MS (ESI): 477.4 (C25H19Cl2N5O, [M+H]

+
). Anal. Calcd 

for C25H19Cl2N5O: C, 63.10; H, 4.04; N, 14.75%; Found: C, 
63.03; H, 4.02; N, 14.70%. 

a10:(E)-3-(2-methoxyphenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Light yellow solid; Yield: 85.2%; m.p. 245-247 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.21 (s, 3H), 3.89 (s, 3H), 6.87 
(d, 1H, J = 1.2 Hz), 7.01-7.03 (t, 1H, J = 8.4 Hz), 7.09-7.11 
(d, 1H, J = 6.3 Hz), 7.18-7.19 (d, 1H, J = 4.8 Hz), 7.40-7.45 
(m, 3H), 7.52-7.57 (m, 2H), 7.78-7.80 (d, 1H, J = 8.4 Hz), 
7.99 (s, 1H), 8.48-8.53 (m, 2H), 8.69-8.70 (d, 1H, J = 3.3 
Hz), 8.97 (s, 1H), 9.27 (d, 1H, J = 1.2 Hz), 10.12 (s, 1H). MS 
(ESI): 438.5 (C26H23N5O2, [M+H]

+
). Anal. Calcd for 

C26H23N5O2: C, 71.41; H, 5.33; N, 16.06%; Found: C, 71.38; 
H, 5.30; N, 16.01%. 

a11:(E)-3-(3-methoxyphenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

White solid; Yield: 84.7%; m.p. 234-236 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 3.80 (s, 3H), 6.81-6.85 
(d, 1H, J = 12.3 Hz), 6.69-7.00 (m, 1H), 7.18-7.38 (m, 3H), 
7.40-7.44 (m, 3H), 7.51-7.57 (m, 2H), 7.98-8.00 (t, 1H,  
J = 6.3 Hz), 8.45-8.52 (m, 2H), 8.68-8.70 (m, 1H), 8.94 (s, 
1H), 9.27 (d, 1H, J = 1.8 Hz), 10.11 (s, 1H). MS (ESI): 438.8 
(C26H23N5O2, [M+H]

+
). Anal. Calcd for C26H23N5O2: C, 
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71.40; H, 5.36; N, 16.01%; Found: C, 71.38; H, 5.30; N, 
16.02%. 

a12:(E)-3-(4-methoxyphenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Light yellow solid; Yield: 87.5%; m.p. 202-204 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.21 (s, 3H), 3.83(s, 3H), 6.70-
6.71 (d, 1H, J = 5.4 Hz), 6.00-7.03 (d, 1H, J = 9.0 Hz), 7.19-
7.22 (m, 3H), 7.51-7.55 (m, 4H), 8.00 (s, 1H), 8.53-8.55 (m, 
2H), 8.69 (s, 1H), 9.02 (s, 1H), 9.29 (s, 1H), 10.01 (s, 1H). 
MS (ESI): 438.2 (C26H23N5O2, [M+H]

+
). Anal. Calcd for 

C26H23N5O2: C, 71.38; H, 5.32; N, 16.00%; Found: C, 71.37; 
H, 5.30; N, 16.01%. 

a13:(E)-3-(2,5-dimethoxyphenyl)-N-(4-methyl-3-(4-(pyri-
din-3-yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Gray brown solid; Yield: 82.3%; m.p. 232-233 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.21 (s, 3H), 3.76 (s, 3H), 3.83 
(s, 3H), 6.85-6.90 (d, 1H, J = 15.0 Hz), 6.95-6.99 (m, 2H), 
7.12-7.20 (m, 2H), 7.40-7.44 (m, 2H), 7.51-7.55 (m, 1H), 
7.74-7.78 (d, 1H, J = 11.7 Hz), 7.99 (d, 1H, J = 1.5 Hz), 
8.45-8.52 (m, 2H), 8.68-8.70 (m, 1H), 8.94 (s, 1H), 9.27 (d, 
1H, J = 1.2 Hz), 10.11 (s, 1H). MS (ESI): 468.5 
(C27H25N5O3, [M+H]

+
). Anal. Calcd for C27H25N5O3: C, 

69.40; H, 5.40 N, 14.98%; Found: C, 69.36; H, 5.39; N, 
14.98%. 

a14:(E)-3-(3,4-dimethoxyphenyl)-N-(4-methyl-3-(4-(pyri-
din-3-yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

White solid; Yield: 84.9%; m.p. 236-240 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 3.83 (s, 6H), 6.70-6.72 
(d, 1H, J = 6.3 Hz), 6.99-6.02 (d, 1H, J = 8.4 Hz), 7.18-7.22 
(m, 3H), 7.50-7.55 (m, 4H), 8.00 (s, 1H), 8.49-8.54 (m, 2H), 
8.70-8.73 (d, 1H, J = 9.6 Hz), 9.03 (s, 1H), 9.28 (s, 1H), 
10.12 (s, 1H). MS (ESI): 469.0 (C27H25N5O3, [M+H]

+
). Anal. 

Calcd for C27H25N5O3: C, 69.35; H, 5.38; N, 15.04%; Found: 
C, 69.36; H, 5.39; N, 15.00%. 

a15:(E)-3-(3,5-dimethoxyphenyl)-N-(4-methyl-3-(4-(pyri-
din-3-yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Yellow solid; Yield: 81.5%; m.p. 244-245 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 3.76 (s, 6H), 6.54-6.55 
(t, 1H, J = 3.6 Hz), 6.79-6.89 (m, 3H), 7.18-7.20 (d, 1H,  
J = 6.3 Hz), 7.40-7.56 (m, 4H), 7.99 (d, 1H, J = 1.8 Hz), 
8.45-8.52 (m, 2H), 8.68-8.70 (m, 1H), 8.95 (s, 1H), 9.26-
9.27 (d, 1H, J = 1.8 Hz), 10.19 (s, 1H). MS (ESI): 468.7 
(C27H25N5O3, [M+H]

+
). Anal. Calcd for C27H25N5O3: C, 

69.41; H, 5.39; N, 15.01%; Found: C, 69.37; H, 5.39; N, 
14.98%. 

a16:(E)-3-(3,4,5-trimethoxyphenyl)-N-(4-methyl-3-(4-
(pyridin-3-yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Coffee solid; Yield: 82.3%; m.p. 232-233 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 3.76 (s, 3H), 3.83 (s, 
6H), 6.85-6.90 (d, 1H, J = 15.0 Hz), 6.95-6.99 (m, 2H), 7.12-
7.20 (m, 2H), 7.40-7.44 (m, 2H), 7.51-7.55 (m, 1H), 7.74-
7.78 (d, 1H, J = 11.7 Hz), 7.99 (d, 1H, J = 1.8 Hz), 8.45-8.52 
(m, 2H), 8.68-8.70 (m, 1H), 8.94 (s, 1H), 9.27 (d, 1H, J = 1.2 
Hz), 10.11 (s, 1H). MS (ESI): 498.6 (C28H27N5O4, [M+H]

+
). 

Anal. Calcd for C28H27N5O4: C, 67.62; H, 5.49; N, 18.07%; 
Found: C, 67.59; H, 5.47; N, 14.08%. 

a17:(E)-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylami-
no)phenyl)-3-p-tolylacrylamide 

Light brown solid; Yield: 87.4%; m.p. 257-258 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.21 (s, 3H), 3.88 (s, 3H), 6.81-
6.86 (d, 1H, J = 15.3 Hz), 6.96-7.00 (m, 1H), 7.18-7.38 (m, 
3H), 7.40-7.44 (m, 3H), 7.51-7.57 (m, 2H), 7.98-8.00 (t, 1H, 
J = 6.3 Hz), 8.45-8.52 (m, 2H), 8.68-8.70 (m, 1H), 8.94 (s, 
1H), 9.27 (d, 1H, J = 1.8 Hz), 10.11 (s, 1H). MS (ESI): 423.4 
(C26H23N5O, [M+H]

+
). Anal. Calcd for C26H23N5O: C, 70.10; 

H, 5.56; N, 16.60%; Found: C, 74.09; H, 5.50; N, 16.62%. 

a18:(E)-3-(4-fluorophenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

Grown solid; Yield: 80.5%; m.p. 273-275 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.22 (s, 3H), 6.81-6.86 (d, 1H,  
J = 15.3 Hz), 6.96-7.00 (m, 1H), 7.18-7.38 (m, 3H), 7.40-
7.44 (m, 3H), 7.51-7.57 (m, 2H), 7.98-8.00 (t, 1H, J = 6.3 
Hz), 8.45-8.52 (m, 2H), 8.68-8.70 (m, 1H), 8.94 (s, 1H), 9.27 
(d, 1H, J = 1.8 Hz), 10.11 (s, 1H).. MS (ESI): 426.4 
(C25H20FN5O, [M+H]

+
). Anal. Calcd for C25H20FN5O: C, 

70.60; H, 4.73; N, 16.49%; Found: C, 70.58; H, 4.74; N, 
16.46%. 

a19:(E)-3-(3-fluoro-2-methylphenyl)-N-(4-methyl-3-(4-
(pyridin-3-yl)pyrimidin-2-ylamino) phenyl) Acrylamide 

Light yellow solid; Yield: 82.0%; m.p. 238-239 °C. 
1
H

NMR (DMSO, 300 MHz) �: 2.21 (s, 3H), 2.30 (s, 3H), 6.76-
6.81 (d, 1H, J = 15.3 Hz), 7.17-7.55 (m, 7H), 7.75-7.80 (d, 
1H, J = 15.6 Hz), 7.98-7.99 (d, 1H, J = 1.8 Hz), 8.45-8.53 
(m, 2H), 8.68-8.70 (m, 1H), 8.94 (s, 1H), 9.27 (d, 1H, J = 1.8 
Hz), 10.19 (s, 1H). MS (ESI): 441.1 (C26H22FN5O, [M+H]

+
). 

Anal. Calcd for C26H22FN5O: C, 71.01; H, 5.10; N, 15.98%; 
Found: C, 71.06; H, 5.06; N, 15.94%. 

a20:(E)-3-(5-fluoro-2-methylphenyl)-N-(4-methyl-3-(4-(py-
ridin-3-yl)pyrimidin-2-ylamino) phenyl) Acrylamide  

Coffee solid; Yield: 84.9%; m.p. 226-228 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 2.38 (s, 3H), 6.75-6.80 
(d, 1H, J = 15.0 Hz), 7.11-7.21 (m, 2H), 7.29-7.45 (m, 4H), 
7.51-7.56 (m, 1H), 7.75 (d, 1H, J = 1.5 Hz), 8.00-8.01 (d, 
1H, J = 1.8 Hz), 8.46-8.50 (m, 2H), 8.53-8.70 (m, 1H), 8.94 
(s, 1H), 9.27 (d, 1H, J = 1.8 Hz), 10.16 (s, 1H). MS (ESI): 
440.9 (C26H22FN5O, [M+H]

+
). Anal. Calcd for C26H22FN5O: 

C, 71.09; H, 5.06; N, 15.98%; Found: C, 71.06; H, 5.05; N, 
15.94%. 

a21:(E)-3-(3,4-dimethylphenyl)-N-(4-methyl-3-(4-(pyridin-
3-yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

White solid; Yield: 85.5%; m.p. 283-284 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 2.26 (s, 6H), 6.75-6.80 
(d, 1H, J = 15.3 Hz), 7.17-7.21 (m, 2H), 7.33-7.45 (m, 6H), 
7.98 (d, 1H, J = 1.8 Hz), 8.45-8.52 (m, 2H), 8.68-8.70 (m, 
1H), 8.94 (s, 1H), 9.27 (d, 1H, J = 1.5 Hz), 10.08 (s, 1H). 
MS (ESI): 436.9 (C27H25N5O, [M+H]

+
). Anal. Calcd for 

C27H25N5O: C, 74.48; H, 5.76; N, 16.11%; Found: C, 74.46; 
H, 5.79; N, 16.08%. 
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a22:(E)-3-(4-(diphenylamino)phenyl)-N-(4-methyl-3-(4-
(pyridin-3-yl)pyrimidin-2-ylamino) phenyl) Acrylamide  

Yellow solid; Yield: 89.8%; m.p. 295-296 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 10.10 (s�1H); 9.28 (s�1H); 8.97(s, 
1H); 8.70-8.69 (d, 1H, J = 4.0Hz); 8.55-8.49 (m, 2H); 7.98 
(s, 1H); 7.59-7.52 (m, 1H); 7.51-7.49 (t, 3H, J = 8.0Hz); 
7.44-7.41(t, 2H, J = 12.4Hz); 7.37-7.34 (t, 4H, J = 12.0Hz); 
7.19-7.17(d, 1H, J = 8.4Hz); 7.14-7.12 (d, 2H, J = 7.2Hz); 
7.10-7.08 (d, 4H, J = 8.0Hz); 6.95-6.93 (d, 2H, J = 8.4Hz), 
6.70-6.67 (d, 1H, J = 10.8Hz); 2.21(s, 3H). MS (ESI): 575.0 
(C37H30N6O, [M+H]

+
). Anal. Calcd for C37H30N6O: C, 77.34; 

H, 5.26; N, 14.62%; Found: C, 77.33; H, 5.26; N, 14.62%. 

a23:(E)-3-(4-(dimethylamino)phenyl)-N-(4-methyl-3-(4-
(pyridin-3-yl)pyrimidin-2-ylamino) phenyl) Acrylamide  

Yellow solid; Yield: 89.5%; m.p. 258-259 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 2.26 (s, 6H), 6.75-6.80 
(d, 1H, J = 15.3 Hz), 7.17-7.21 (m, 2H), 7.33-7.45 (m, 6H), 
7.98 (d, 1H, J = 1.8 Hz), 8.45-8.52 (m, 2H), 8.68-8.70 (m, 
1H), 8.94 (s, 1H), 9.27 (d, 1H, J = 1.5 Hz), 10.11 (s, 1H). 
MS (ESI): 449.0 (C27H26N6O, [M+H]

+
). Anal. Calcd for 

C27H26N6O: C, 71.96; H, 5.86; N, 18.66%; Found: C, 71.98; 
H, 5.82; N, 18.65%. 

a24:(E)-4-(3-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-yla-
mino)phenylamino)-3-oxoprop-1-enyl)phenyl Acetate  

Yellow solid; Yield: 83.2%; m.p. 252-253 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 3.83 (s, 3H), 6.75-6.80 
(d, 1H, J = 15.3 Hz), 7.17-7.21 (m, 2H), 7.33-7.45 (m, 6H), 
7.98 (d, 1H, J = 1.8 Hz), 8.45-8.52 (m, 2H), 8.68-8.70 (m, 
1H), 8.94 (s, 1H), 9.27 (d, 1H, J = 1.5 Hz), 10.08 (s, 1H). 
MS (ESI): 467.0 (C27H23N5O, [M+H]

+
). Anal. Calcd for 

C27H23N5O: C, 69.66; H, 4.98; N, 15.04%; Found: C, 69.66; 
H, 4.98; N, 15.04%. 

a25:(E)-3-(4-hydroxyphenyl)-N-(4-methyl-3-(4-(pyridin-3-
yl)pyrimidin-2-ylamino)phenyl) Acrylamide  

White solid; Yield: 82.8%; m.p. 220-221 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.21 (s, 3H), 6.75-6.80 (d, 1H, J = 
15.3 Hz), 7.17-7.21 (m, 2H), 7.33-7.45 (m, 6H), 7.98 (d, 1H, 
J = 1.8 Hz), 8.45-8.52 (m, 2H), 8.68-8.70 (m, 1H), 8.94 (s, 
1H), 9.27 (d, 1H, J = 1.5 Hz), 10.08 (s, 1H). MS (ESI): 425.0 
(C25H21N5O2, [M+H]

+
). Anal. Calcd for C25H21N5O2: C, 

70.91; H, 5.00; N, 16.56%; Found: C, 70.91; H, 5.00; N, 
16.54%. 

a26:(E)-4-methyl-(3-(4-methyl-3-(4-(pyridin-3-yl)pyrimid-
in-2-ylamino)phenylamino)-3-oxoprop-1-enyl)benzoate  

Yellow solid; Yield: 87.9%; m.p. 267-271 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.18 (s, 3H), 3.83 (s, 3H), 6.65-6.76 
(m, 1H), 7.15-7.17 (d, 1H, J = 8.1 Hz), 7.46-7.57 (m, 2H), 
7.61-7.63 (d, 2H, J = 6.9 Hz), 7.70-7.75 (t, 2H, J = 15.6 Hz), 
7.77-7.89 (m, 3H), 7.96 (s, 1H), 8.38-8.49 (m, 2H), 8.64 (s, 
1H), 8.96 (s, 1H), 9.23 (s, 1H), 10.23 (s, 1H). MS (ESI): 
466.5 (C27H23N5O3, [M+H]

+
). Anal. Calcd for C27H23N5O3:

C, 69.66; H, 4.97; N, 15.04%; Found: C, 69.66; H, 4.98; N, 
15.04%. 

a27:(E)-4-(3-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-yla-
mino)phenylamino)-3-oxoprop-1-enyl)benzoic Acid  

To a solution of KOH (0.25mol) and 10 mL of H2O in 50 
mL of methanol a26 (0.05mol) was added slowly, and the 
reaction mixture was refluxed for 2 h. 50 mL of H2O the 
reaction solution, followed by adjustment of pH = 3 with 
HCl solution. A yellow solid was obtained and recrystalliza-
ted from methanol to afford a27.

Yellow solid; Yield: 94.6%; m.p. 293-296 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.22 (s, 3H), 6.97-7.00 (d, 1H, J = 9.0 
Hz), 7.20-7.24 (d, 1H, J = 12.3 Hz), 7.43-7.45 (t, 2H, J = 6.0 
Hz), 7.55-7.64 (m, 2H), 7.73-7.75 (d, 2H, J = 5.4 Hz), 7.99-
8.00 (d, 3H, J = 3.6 Hz), 8.49-8.55 (m, 2H), 8.70-8.71 (d, 
1H, J = 2.4 Hz), 8.99 (s, 1H), 9.29 (s, 1H), 10.31 (s, 1H) , 
13.10 (s, 1H). MS (ESI): 452.4 (C26H21N5O3, [M+H]

+
). Anal. 

Calcd for C26H21N5O3: C, 69.19; H, 4.69; N, 15.50%; Found: 
C, 69.17; H, 4.69; N, 15.51%. 

a28:sodium(E)-4-(3-(4-methyl-3-(4-(pyridin-3-yl)pyrimid-
in-2-ylamino)phenylamino)-3-oxoprop-1-enyl)benzoate  

To a solution of NaOH (0.05mol) in 30 mL of methanol 
compound a27 (0.05mol) at 0-5 °C was added, and the reac-
tion mixture was stirred for 1 h at room temperature. Then, 
the solvent was concentrated to afford a28.

Yellow solid; Yield: 97.0%; m.p.�300 °C. 
1
H NMR 

(DMSO, 300 MHz) �: 2.22 (s, 3H), 6.97-7.00 (d, 1H, J = 
12.4Hz), 7.21-7.24 (d, 1H, J = 13.2Hz), 7.43-7.44 (t, 2H, J = 
6.4Hz), 7.55-7.63 (m, 2H), 7.73-7.75 (d, 2H, J = 8.4Hz), 
7.99-8.00 (d, 3H, J = 5.2Hz), 8.49-8.55 (m, 2H), 8.70-8.71 
(d, 1H, J = 4.4Hz), 8.99 (s, 1H), 9.29 (s, 1H), 10.31(s, 1H). 
MS (ESI): 474.9 (C26H20N5NaO3, [M+H]

+
). Anal. Calcd for 

C26H20N5NaO3: C, 65.96; H, 4.26; N, 14.80%; Found: C, 
65.96; H, 4.26; N, 14.79%. 

General Procedure for the Preparation of Compounds b1-6 

Compounds b1-6 were synthesized by the procedure as 
compounds a1-26.

b1: N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)-
phenyl)-4-(trifluoromethyl)benzamide  

White solid; Yield: 84.2%; m.p. 218-220 °C. 
1
H NMR 

(CDCl3, 300 MHz) �: 2.24 (s, 3H), 7.22-7.24 (d, 1H, J =
8.4Hz), 7.43-7.45 (d, 1H, J = 5.2Hz), 7.50-7.55 (m, 2H), 
7.90-7.92 (d, 2H, J = 8.4Hz), 8.12-8.16 (t, 3H, J = 16.4Hz), 
8.45-8.54 (m, 2H), 8.68-8.69 (t, 1H, J = 4.4Hz), 9.00 (s, 1H), 
9.28 (s, 1H), 10.49 (s, 1H). MS (ESI): 451.0 (C24H18F3N5O, 
[M+H]

+
). Anal. Calcd for C24H18F3N5O: C, 64.16; H, 4.05; 

N, 15.57%; Found: C, 64.14; H, 4.04; N, 15.58%. 

b2:4-methyl-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-
ylamino)phenyl)benzamide  

Light yellow solid; Yield: 84.7%; m.p. 211-213 °C. 
1
H

NMR (CDCl3, 300 MHz) �: 2.23 (s, 3H), 2.38 (s, 3H), 7.20-
7.23 (d, 1H, J = 10.4Hz), 7.32-8.53 (m, 5H), 7.85-7.88 (t, 
1H, J = 12.0Hz), 7.01-8.10 (m, 2H), 8.49-8.54 (m, 2H), 8.73 
(s, 1H), 8.94-9.07 (m, 1H), 9.27 (s, 1H), 10.14 (s, 1H). MS  
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(ESI): 398.0 (C24H21N5O, [M+H]
+
). Anal. Calcd for 

C24H21N5O: C, 72.89; H, 5.35; N, 17.71%; Found: C, 72.90; 
H, 5.33; N, 17.69%.

b3:3,4,5-trimethoxy-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimi-
din-2-ylamino)phenyl)benzamide  

Yellow solid; Yield: 84.0%; m.p. 236-238 °C. 
1
H NMR 

(CDCl3, 300 MHz) �: 2.30 (s, 3H), 3.32 (s, 9H), 6.72-6.87 
(m, 1H), 7.22-7.24 (d, 1H, J = 8.0Hz), 7.41-8.61 (m, 3H), 
8.14 (s, 1H), 8.40-8.73 (m, 4H), 9.00 (s, 1H), 9.27 (s, 1H), 
10.75 (s, 1H). MS (ESI): 472.2 (C26H25N5O4, [M+H]

+
). Anal. 

Calcd for C26H25N5O4: C, 66.23; H, 5.34; N, 14.85%; Found: 
C, 66.23; H, 5.33; N, 14.87%.

b4:2-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)ph-
enylcarbamoyl)phenyl Acetate 

Light yellow solid; Yield: 80. 5%; m.p. 165-167 °C. 
1
H 

NMR (CDCl3, 300 MHz) �: 2.23 (s, 3H), 2.41 (s, 3H), 7.32 
(m, 4H), 7.44 (m, 1H), 7.53-7.55 (m, 1H), 7.61-7.63 (m, 
1H), 7.90-7.93 (m, 1H), 8.22 (s, 1H), 8.51-8.54 (m, 2H), 
8.61 (s, 1H), 8.82 (s, 1H), 9.21 (s, 1H). MS (ESI): 441.0 
(C25H21N5O3, [M+H]

+
). Anal. Calcd for C25H21N5O3: C, 

68.33; H, 4.82; N, 15.94%; Found: C, 68.33; H, 4.83; N, 
15.94%. 

b5: 3-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)ph-
enylcarbamoyl)phenyl Acetate  

Light yellow solid; Yield: 86. 5%; m.p. 204-206 °C. 
1
H 

NMR (CDCl3, 300 MHz) �: 2.32 (s, 3H), 7.02 (s, 1H), 7.13-
7.25 (m, 4H), 7.27 (d, 1H, J = 1.8Hz), 7.12-7.56 (m, 1H), 
7.86-7.91 (t, 3H, J = 15.6Hz), 8.47-8.49 (d, 2H, J = 5.4Hz), 
8.57 (s, 1H), 8.66-8.67 (t, 1H, J = 4.5Hz), 9.21 (d, 1H,  
J = 1.5Hz). MS (ESI): 441.0 (C25H21N5O3, [M+H]

+
). Anal. 

Calcd for C25H21N5O3: C, 68.33; H, 4.82; N, 15.94%; Found: 
C, 68.33; H, 4.83; N, 15.94%. 

b6:3-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-ylamino)ph-
enylcarbamoyl)phenyl Acetate  

Yellow solid; Yield: 87.7%; m.p. 210-212 °C. 
1
H NMR 

(CDCl3, 300 MHz) �: 2.32 (s, 3H), 7.02 (s, 1H), 7.15-7.24 
(m, 2H), 7.33-7.48 (m, 2H), 7.46-7.48 (d, 2H, J = 7.8Hz), 
7.59 (s, 1H), 7.69-7.72 (d, 1H, J = 7.5Hz), 7.93 (s, 1H), 8.47-
8.49 (d, 2H, J = 5.4Hz), 8.56 (s, 1H), 8.66-8.67 (d, 1H,  
J = 3.6Hz), 9.20 (s, 1H). MS (ESI): 440.9 (C25H21N5O3, 
[M+H]

+
). Anal. Calcd for C25H21N5O3: C, 68.32; H, 4.82; N, 

15.94%; Found: C, 68.33; H, 4.82; N, 15.94%. 

General Procedure for the Preparation of Compounds b7-9 

To a solution of b4-6 (5 mmol) in 10 mL of methanol 10 
mLof NH3.H2O was added, and the reaction mixture was 
stirred for 12 h at room temperature. Then, the solid that 
formed was collected by filtration and recrystallizated from 
methanol to afford b7-9. 

b7: 2-hydroxy-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-
ylamino)phenyl)benzamide 

Green solid; Yield: 87.2%; m.p. 247-248 °C. 
1
H NMR 

(CDCl3, 300 MHz) �: 2.18 (s, 3H), 6.90-6.95 (t, 2H,  

J = 16.2Hz), 7.19-7.22 (d, 1H, J = 8.4Hz), 7.34-7.51 (m, 
4H), 7.92-8.08 (m, 2H), 8.31-8.49 (m, 2H), 8.62-8.64 (d, 1H, 
J = 4.5Hz), 8.97 (s, 1H), 9.26 (s, 1H), 10.31 (s, 1H), 10.94 (s, 
1H). MS (ESI): 399.0 (C23H19N5O2, [M+H]

+
). Anal. Calcd 

for C23H19N5O2: C, 69.51; H, 4.82; N, 17.62%; Found: C, 
69.53; H, 4.83; N, 17.62%.

b8: 2-hydroxy-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-
ylamino)phenyl)benzamide  

White solid; Yield: 88.7%; m.p. 222-224 °C. 
1
H NMR 

(CDCl3, 300 MHz) �: 2.16 (s, 3H), 6.80-6,82 (d, 2H, J = 
6.9Hz), 7.12-7.14 (d, 1H, J = 7.2Hz), 7.32- 7.48 (m, 3H), 
7.81-7.89 (d, 2H, J = 7.2Hz), 8.00 (s, 2H), 8.45 (s, 2H), 8.63 
(s, 1H), 8.94 (s, 1H), 9.22 (s, 1H), 9.91 (s, 1H), 10.05 (s, 
1H). MS (ESI): 399.0 (C23H19N5O2, [M+H]

+
). Anal. Calcd 

for C23H19N5O2: C, 69.51; H, 4.82; N, 17.62%; Found: C, 
69.53; H, 4.83; N, 17.62%.

b9: 2-hydroxy-N-(4-methyl-3-(4-(pyridin-3-yl)pyrimidin-2-
ylamino)phenyl)benzamide  

Green solid; Yield: 87.9%; m.p. 261-262 °C. 
1
H NMR 

(CDCl3, 300 MHz) �: 2.18 (s, 3H), 6.90-6.95 (t, 2H, J = 
16.2Hz), 7.19-7.22 (d, 1H, J = 8.4Hz), 7.34-7.51 (m, 4H), 
7.92-8.08 (m, 2H), 8.31-8.49 (m, 2H), 8.62-8.64 (d, 1H, J = 
4.5Hz), 8.97 (s, 1H), 9.26 (s, 1H), 10.31 (s, 1H), 10.94 (s, 
1H). MS (ESI): 398.9 (C23H19N5O2, [M+H]

+
). Anal. Calcd 

for C23H19N5O2: C, 69.51; H, 4.81; N, 17.62%; Found: C, 
69.53; H, 4.82; N, 17.62%.

3. Biological Activity 

K562 cells were incubated at 37 °C under 5% CO2 in 

RPMI-1640 medium supplemented with 10% fetal bovine 

serum and 1% penicillin-streptomycin. For growth inhibition 

studies, K562 cells were grown to log phase and diluted to  

1 � 10
5
 cells mL

-1
 with the complete medium, 100 �L of the 

obtained cell suspension was added to each well of 96-well 

culture plates. The subsequent incubation was permitted at 

37 °C, 5% CO2 atmosphere for 24 h before the cytotoxicity 

assessments and varying concentrations of each compound 

were added with imatinib as positive reference and DMSO 

as negative control. After 96 h of treatment, 20 �L of PBS 

containing 5.0 mg mL
-1

 of MTT (3-(4, 5-dimethylthiazol-2-

yl)-2, 5-diphenyltetrazolium bromide)) was added to each 

well. 4 h later, 100 �L extraction solution (10% SDS - 5% 

isobutyl alcohol - 0.01 M HCl) was added. After an over-

night incubation at 37 °C, the optical density was measured 

at a wavelength of 572 nm on an ELISA microplate reader. 

In all experiments three replicate wells were used for each 

drug concentration. Each assay was carried out at least three 
times [21]. The results were presented in Table 1.  

The structure-activity relationship studies were analyzed 
to determine how the substituents affected the anti-
proliferative activity subsequently. Among the first series of 
compounds a1-28, a4 (R = 4-CF3), a10 (R = 2-OCH3) 
and a21 (R = 3,4-di-CH3) displayed the most potent 
activity with the IC50 values of 0.67, 0.66 and 0.65 
�M, respectively, more effective than imatinib in inhibiting 
K562 cell growth. It can be seen that compounds with small 
substituents at position 2 and at position 4 were more potent 
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than the corresponding substituents at position 3, from the 
compounds substituted with whether a electron donating 
group (-OCH3) or a electron withdrawing group (-CF3, -
Cl). The sequence of activity of the compounds substituted 
with the methoxy group was 2-OCH3 > 2,5-di-OCH3 > 4-
OCH3 > 3,4-di-OCH3> 3-OCH3 > 3,5-di-OCH3> 3,4,5-tri-
OCH3. This demonstrated that the methoxy group substitu-

tion of position 2 had much effect on the activities, and the 
increase in the number of methoxy group had an adverse 
effect on the molecule, a16 showing at least a fourfold re-
duction in cytotoxicity compared with only one methoxy 
substituted compounds a10, a11 and a12. Compound a8 had 
both chlorine and trifluoromethyl groups, whereas displaying 
less activity than compounds substituted with the groups 
separately. The similar case also emerged when a19 and a20 
with double substituents of fluorine and methyl groups. In 
order to increase the solubility of the molecule, the methyl 
ester group of compound a26 was converted into carboxyl 
group (a27) and sodium salt (a28) further, but the anti-
proliferative activity was not synchronized with the increase 
of solubility. All of these above suggested a possible critical 
role for these groups in the distribution of the electron den-
sity on the right hand benzene ring, thereby affecting the 
binding site and binding strength of the molecular target. 

Compounds b1-9 showed almost the same moderate anti-
leukemia activities, particularly b1 and b2 with IC50 value of 
0.59 and 0.62 �M, respectively. Compound b7 was obtained 
by removing the acetyl group of b4 with ammonia, display-
ing higher activity. Compounds b5 and b8, b6 and b9 re-
vealed the same regularity, because these replacements of 
groups increased the hydrophobic interaction between com-
pounds and receptor.  

4. Molecular Docking 

Molecular docking studies were performed to get a better 

insight into the binding affinity and guide further SAR stud-

ies, using Molecular Operating Environment (MOE). 2008. 

10 software with crystal structure of Abl enzyme given in 

PDB code 1IEP, of which ligand is imatinib (Fig. 1). All the 

compounds were docked over the ligand atoms in the active 

binding site and they occupied nearly the same space in the 

binding pocket. The 3D binding modes of a21 and b1 were 

depicted in Fig. (2). From 2D-presentation for the binding 

interactions of compound a21 with receptor (Fig. 2a), it can 

be seen that compound a21 interacts with Met 318, Thr 315 

and Glu 286 of receptor active site. The introduction of the 

new fragment benzene propylene increases the flexibility of 

the molecule, but as the substitution number in the benzene 

ring of benzene propylene group increases, the binding inter-

action between compound and receptor decreases. Com-

pound b1 (Fig. 2b) as well as a21, formed well binding af-

finity to the active pocket via hydrophobic interactions, and 

had one more interaction. 

These results of molecular docking studies proved that 
compounds a21 and b1 had high binding potency of recep-
tor. 

CONCLUSION 

In the present study, two series of imatinib derivatives, 
37 compounds were designed, synthesized and evaluated for 
their biological activities. All these compounds showed re-
markable anti-proliferative activities against K562 leukemia 
cell lines, and compounds a4, a10, a21, b1 and b2 exhibited 
the most potent activities, even better than imatinib. Docking 
simulation were performed to position compounds a21 and

 

Fig. (1). The tertiary structure, active region and ligand of 1IEP. 

 

 

(a) 

 

(b)

Fig. (2). (a) The 3D binding mode of compound a21. (b) The 3D 

binding mode of compound b1. 
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b1 into the active site of Abl, the result shows the two com-
pounds can bind well with the active pocket. 
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